JP4370885B2 - Load measuring device for rolling bearing units - Google Patents

Load measuring device for rolling bearing units Download PDF

Info

Publication number
JP4370885B2
JP4370885B2 JP2003383282A JP2003383282A JP4370885B2 JP 4370885 B2 JP4370885 B2 JP 4370885B2 JP 2003383282 A JP2003383282 A JP 2003383282A JP 2003383282 A JP2003383282 A JP 2003383282A JP 4370885 B2 JP4370885 B2 JP 4370885B2
Authority
JP
Japan
Prior art keywords
revolution speed
equivalent member
load
outer ring
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003383282A
Other languages
Japanese (ja)
Other versions
JP2005147776A (en
Inventor
浩一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003383282A priority Critical patent/JP4370885B2/en
Publication of JP2005147776A publication Critical patent/JP2005147776A/en
Application granted granted Critical
Publication of JP4370885B2 publication Critical patent/JP4370885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

この発明の対象となる転がり軸受ユニットの荷重測定装置は、例えば、自動車、鉄道車両等の車両の車輪を支持する為の転がり軸受ユニットに負荷される荷重(ラジアル荷重とアキシアル荷重との一方又は双方)を測定し、上記車両の走行安定性確保を図る為に利用する。   A load measuring device for a rolling bearing unit that is an object of the present invention is, for example, a load (one or both of a radial load and an axial load) applied to a rolling bearing unit for supporting wheels of a vehicle such as an automobile or a railway vehicle. ) Is measured and used to ensure the running stability of the vehicle.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更にはビークルスタビリティコントロールシステム(VSC)等の車両用走行安定装置が使用されている。この様な各種車両用走行安定装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等の信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(ラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, an automobile wheel is rotatably supported by a double row angular rolling bearing unit with respect to a suspension device. In order to ensure the running stability of automobiles, vehicle running stabilizers such as an antilock brake system (ABS), a traction control system (TCS), and a vehicle stability control system (VSC) are used. . In order to control such various vehicle running stabilizers, signals such as the rotational speed of the wheels and the acceleration in each direction applied to the vehicle body are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (one or both of a radial load and an axial load) applied to the rolling bearing unit via the wheel.

この様な事情に鑑みて、特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の荷重測定装置付転がり軸受ユニットは、ラジアル荷重を測定するもので、図3に示す様に構成している。懸架装置に支持される外輪1の内径側に、車輪を結合固定するハブ2を支持している。このハブ2は、車輪を固定する為の回転側フランジ3をその外端部(車両への組み付け状態で幅方向外側となる端部で、図6を除く各図の左端部)に有するハブ本体4と、このハブ本体4の内端部(車両への組み付け状態で幅方向中央側となる端部で、図6を除く各図の右端部)に外嵌されてナット5により抑え付けられた内輪6とを備える。そして、上記外輪1の内周面に形成した複列の外輪軌道7、7と、上記ハブ2の外周面に形成した複列の内輪軌道8、8との間に、それぞれ複数個ずつの転動体9a、9bを配置して、上記外輪1の内径側での上記ハブ2の回転を自在としている。   In view of such circumstances, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. The rolling bearing unit with a load measuring device of the first example of this conventional structure measures a radial load and is configured as shown in FIG. A hub 2 for coupling and fixing the wheel is supported on the inner diameter side of the outer ring 1 supported by the suspension device. The hub 2 has a hub body having a rotation-side flange 3 for fixing a wheel at an outer end thereof (an end portion on the outer side in the width direction when assembled to a vehicle, and a left end portion in each drawing excluding FIG. 6). 4 and the inner end portion of the hub body 4 (the end portion on the center side in the width direction in the assembled state in the vehicle, the right end portion of each drawing excluding FIG. 6) and are held down by the nut 5. And an inner ring 6. A plurality of rolling rings are provided between the double row outer ring raceways 7 and 7 formed on the inner peripheral surface of the outer ring 1 and the double row inner ring raceways 8 and 8 formed on the outer peripheral surface of the hub 2. The moving bodies 9a and 9b are arranged to freely rotate the hub 2 on the inner diameter side of the outer ring 1.

上記外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に、この外輪1を直径方向に貫通する取付孔10を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔10内に、荷重測定用のセンサである、円杆状(丸棒状)の変位センサ11を装着している。この変位センサ11は非接触式で、先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング12の外周面に近接対向させている。上記変位センサ11は、上記検出面と上記センサリング12の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。   A mounting hole 10 that diametrically penetrates the outer ring 1 is formed in a substantially vertical direction at an upper end portion of the outer ring 1 in a portion between the double row outer ring raceways 7 and 7 at an intermediate portion in the axial direction of the outer ring 1. Yes. In the mounting hole 10, a circular rod-shaped (round bar-shaped) displacement sensor 11, which is a load measuring sensor, is mounted. This displacement sensor 11 is a non-contact type, and the detection surface provided on the front end surface (lower end surface) is closely opposed to the outer peripheral surface of the sensor ring 12 fitted and fixed to the intermediate portion in the axial direction of the hub 2. When the distance between the detection surface and the outer peripheral surface of the sensor ring 12 changes, the displacement sensor 11 outputs a signal corresponding to the amount of change.

上述の様に構成する従来の荷重測定装置付転がり軸受ユニットの場合には、上記変位センサ11の検出信号に基づいて、転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体9a、9bの弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ11の検出面と上記センサリング12の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ11の検出信号を制御器に送れば、予め実験等により求めた関係式或はマップ等から、当該変位センサ11を組み込んだ転がり軸受ユニットに加わるラジアル荷重を求める事ができる。この様にして求めた、各転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。   In the case of the conventional rolling bearing unit with a load measuring device configured as described above, the load applied to the rolling bearing unit can be obtained based on the detection signal of the displacement sensor 11. That is, the outer ring 1 supported by the vehicle suspension device is pushed downward by the weight of the vehicle, whereas the hub 2 supporting and fixing the wheel tends to stop at the same position. For this reason, the greater the weight, the greater the deviation between the center of the outer ring 1 and the center of the hub 2 based on the elastic deformation of the outer ring 1, the hub 2, and the rolling elements 9a, 9b. The distance between the detection surface of the displacement sensor 11 and the outer peripheral surface of the sensor ring 12 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 11 is sent to the controller, the radial load applied to the rolling bearing unit in which the displacement sensor 11 is incorporated can be obtained from a relational expression or a map obtained beforehand through experiments or the like. Based on the load applied to each rolling bearing unit thus obtained, the ABS is appropriately controlled and the driver is informed of the poor loading state.

尚、図3に示した従来構造は、上記転がり軸受ユニットに加わる荷重に加えて、上記ハブ2の回転速度も検出自在としている。この為に、前記内輪6の内端部に回転速度検出用エンコーダ13を外嵌固定すると共に、上記外輪1の内端開口部に被着したカバー14に回転速度検出用センサ15を支持している。そして、この回転速度検出用センサ15の検知部を、上記回転速度検出用エンコーダ13の被検出部に、測定隙間を介して対向させている。   In the conventional structure shown in FIG. 3, in addition to the load applied to the rolling bearing unit, the rotational speed of the hub 2 can also be detected. For this purpose, the rotational speed detecting encoder 13 is fitted and fixed to the inner end of the inner ring 6, and the rotational speed detecting sensor 15 is supported on the cover 14 attached to the inner end opening of the outer ring 1. Yes. And the detection part of this rotational speed detection sensor 15 is made to oppose the to-be-detected part of the said encoder 13 for rotational speed detection through the measurement clearance gap.

上述の様な回転速度検出装置を組み込んだ転がり軸受ユニットの使用時、車輪を固定したハブ2と共に上記回転速度検出用エンコーダ13が回転し、この回転速度検出用エンコーダ13の被検知部が上記回転速度検出用センサ15の検知部の近傍を走行すると、この回転速度検出用センサ15の出力が変化する。この様にして回転速度検出用センサ15の出力が変化する周波数は、上記車輪の回転数に比例する。従って、この回転速度検出用センサ15の出力信号を図示しない制御器に送れば、ABSやTCSを適切に制御できる。   When the rolling bearing unit incorporating the rotational speed detecting device as described above is used, the rotational speed detecting encoder 13 is rotated together with the hub 2 to which the wheel is fixed, and the detected portion of the rotational speed detecting encoder 13 is rotated as described above. When traveling in the vicinity of the detection unit of the speed detection sensor 15, the output of the rotation speed detection sensor 15 changes. The frequency at which the output of the rotational speed detection sensor 15 changes in this way is proportional to the rotational speed of the wheel. Therefore, if the output signal of the rotational speed detection sensor 15 is sent to a controller (not shown), ABS and TCS can be controlled appropriately.

上述の様な従来構造の第1例の荷重測定装置付転がり軸受ユニットは、転がり軸受ユニットに加わるラジアル荷重を測定する為のものであるが、転がり軸受ユニットに加わるアキシアル荷重を測定する構造も、特許文献2等に記載されて、従来から知られている。図4は、この特許文献2に記載された、アキシアル荷重を測定する為の荷重測定装置付転がり軸受ユニットを示している。この従来構造の第2例の場合、ハブ2aの外端部外周面に、車輪を支持する為の回転側フランジ3aを固設している。又、外輪1aの外周面に、この外輪1aを懸架装置を構成するナックル16に支持固定する為の、固定側フランジ17を固設している。そして、上記外輪1aの内周面に形成した複列の外輪軌道7、7と、上記ハブ2aの外周面に形成した複列の内輪軌道8、8との間に、それぞれ複数個ずつの転動体9a、9bを転動自在に設ける事により、上記外輪1aの内径側に上記ハブ2aを回転自在に支持している。   The rolling bearing unit with a load measuring device of the first example of the conventional structure as described above is for measuring the radial load applied to the rolling bearing unit, but the structure for measuring the axial load applied to the rolling bearing unit is also, It is described in Patent Document 2 and the like and has been conventionally known. FIG. 4 shows a rolling bearing unit with a load measuring device for measuring an axial load described in Patent Document 2. As shown in FIG. In the case of the second example of this conventional structure, the rotation side flange 3a for supporting the wheel is fixed on the outer peripheral surface of the outer end portion of the hub 2a. A fixed-side flange 17 is fixed to the outer peripheral surface of the outer ring 1a for supporting and fixing the outer ring 1a to a knuckle 16 constituting a suspension device. A plurality of rolling rings are respectively provided between the double row outer ring raceways 7 and 7 formed on the inner peripheral surface of the outer ring 1a and the double row inner ring raceways 8 and 8 formed on the outer peripheral surface of the hub 2a. By providing the moving bodies 9a and 9b so as to be able to roll, the hub 2a is rotatably supported on the inner diameter side of the outer ring 1a.

更に、上記固定側フランジ17の内側面複数個所で、この固定側フランジ17を上記ナックル16に結合する為のボルト18を螺合する為のねじ孔19を囲む部分に、それぞれ荷重センサ20を添設している。上記外輪1aを上記ナックル16に支持固定した状態でこれら各荷重センサ20は、このナックル16の外側面と上記固定側フランジ17の内側面との間で挟持される。   Further, a load sensor 20 is attached to a part surrounding the screw hole 19 for screwing the bolt 18 for connecting the fixed side flange 17 to the knuckle 16 at a plurality of positions on the inner side surface of the fixed side flange 17. Has been established. Each load sensor 20 is sandwiched between the outer side surface of the knuckle 16 and the inner side surface of the fixed-side flange 17 in a state where the outer ring 1 a is supported and fixed to the knuckle 16.

この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、図示しない車輪と上記ナックル16との間にアキシアル荷重が加わると、上記ナックル16の外側面と上記固定側フランジ17の内側面とが、上記各荷重センサ20を、軸方向両面から強く押し付け合う。従って、これら各荷重センサ20の測定値を合計する事で、上記車輪と上記ナックル16との間に加わるアキシアル荷重を求める事ができる。又、図示はしないが、特許文献3には、一部の剛性を低くした外輪相当部材の振動周波数から転動体の公転速度を求め、更に、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   In the case of the load measuring device of the rolling bearing unit of the second example having such a conventional structure, when an axial load is applied between a wheel (not shown) and the knuckle 16, the outer surface of the knuckle 16 and the fixed side flange 17 The inner surface strongly presses the load sensors 20 from both sides in the axial direction. Therefore, the axial load applied between the wheel and the knuckle 16 can be obtained by summing up the measured values of the load sensors 20. Although not shown, Patent Document 3 describes a method of obtaining the revolution speed of the rolling element from the vibration frequency of a member corresponding to an outer ring having a reduced rigidity, and measuring the axial load applied to the rolling bearing. ing.

前述の図3に示した従来構造の第1例の場合、変位センサ11により、外輪1とハブ2との径方向に関する変位を測定する事で、転がり軸受ユニットに加わる荷重を測定する。但し、この径方向に関する変位量は僅かである為、この荷重を精度良く求める為には、上記変位センサ11として、高精度のものを使用する必要がある。高精度の非接触式センサは高価である為、荷重測定装置付転がり軸受ユニット全体としてコストが嵩む事が避けられない。   In the case of the first example of the conventional structure shown in FIG. 3 described above, the load applied to the rolling bearing unit is measured by measuring the displacement in the radial direction between the outer ring 1 and the hub 2 by the displacement sensor 11. However, since the displacement amount in the radial direction is small, it is necessary to use a highly accurate displacement sensor 11 in order to obtain this load with high accuracy. Since high-precision non-contact sensors are expensive, it is inevitable that the cost of the entire rolling bearing unit with a load measuring device increases.

又、上述の図4に示した従来構造の第2例の場合、ナックル16に対し外輪1aを支持固定する為のボルト18と同数だけ、荷重センサ20を設ける必要がある。この為、荷重センサ20自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献3に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある。又、この外輪相当部材の振動周波数から転動体の公転速度を求める為、この公転速度を正確に測定できないと言った問題もある。   In the case of the second example of the conventional structure shown in FIG. 4 described above, it is necessary to provide as many load sensors 20 as the number of bolts 18 for supporting and fixing the outer ring 1a to the knuckle 16. For this reason, coupled with the fact that the load sensor 20 itself is expensive, it is inevitable that the cost of the entire load measuring device of the rolling bearing unit is considerably increased. Further, the method described in Patent Document 3 requires that the rigidity of a part of the outer ring equivalent member be lowered, and it may be difficult to ensure the durability of the outer ring equivalent member. Further, since the revolution speed of the rolling element is obtained from the vibration frequency of the outer ring equivalent member, there is a problem that the revolution speed cannot be measured accurately.

この様な事情に鑑みて本発明者等は先に、複列アンギュラ型玉軸受である転がり軸受ユニットを構成する1対の列の転動体(玉)の公転速度に基づいて、この転がり軸受ユニットに加わるラジアル荷重又はアキシアル荷重を測定する、転がり軸受ユニットの荷重測定装置に関する発明を行なった(特願2003−171715号、172483号)。図5は、この先発明の転がり軸受ユニットの荷重測定装置を示している。この先発明に係る構造の場合、外輪1(外輪相当部材)の軸方向中間部で複列の外輪軌道7、7の間部分に形成した取付孔10aにセンサユニット21を挿通し、このセンサユニット21の先端部に設けた検出部22を、上記外輪1の内周面から突出させている。この検出部22には、1対の公転速度検出用センサ23a、23bと、1個の回転速度検出用センサ15aとを設けている。   In view of such circumstances, the present inventors have previously described this rolling bearing unit based on the revolution speed of a pair of rolling elements (balls) constituting a rolling bearing unit which is a double row angular ball bearing. An invention relating to a load measuring device for a rolling bearing unit that measures a radial load or an axial load applied to the bearing is performed (Japanese Patent Application Nos. 2003-171715 and 172483). FIG. 5 shows a load measuring device for a rolling bearing unit according to the present invention. In the case of the structure according to the previous invention, the sensor unit 21 is inserted into the mounting hole 10a formed in the portion between the double-row outer ring raceways 7 and 7 at the intermediate portion in the axial direction of the outer ring 1 (outer ring equivalent member). A detecting portion 22 provided at the tip of the outer ring 1 protrudes from the inner peripheral surface of the outer ring 1. The detection unit 22 is provided with a pair of revolution speed detection sensors 23a and 23b and one rotation speed detection sensor 15a.

そして、このうちの各公転速度検出用センサ23a、23bの検出部を、複列に配置された各転動体9a、9bを回転自在に保持した各保持器24a、24bに設けた、公転速度検出用エンコーダ25a、25bに近接対向させて、各転動体9a、9bの公転速度を検出自在としている。又、上記回転速度検出用センサ15aの検出部を、内輪相当部材であるハブ2の中間部に外嵌固定した回転速度検出用エンコーダ13aに近接対向させて、このハブ2の回転速度を検出自在としている。この様な構成を有する、上記先発明に係る転がり軸受ユニットの荷重測定装置によれば、上記ハブ2の回転速度の変動に拘らず、上記外輪1と上記ハブ2との間に加わる荷重(ラジアル荷重及びアキシアル荷重)を求められる。   And the detection part of each revolution speed detection sensor 23a, 23b of these is provided in each retainer 24a, 24b which hold | maintained each rolling element 9a, 9b arrange | positioned in a double row freely, The revolution speed detection The revolving speeds of the rolling elements 9a and 9b are made freely detectable by being close to and facing the encoders 25a and 25b. Further, the rotational speed of the hub 2 can be detected by making the detection part of the rotational speed detection sensor 15a close to and opposed to the rotational speed detection encoder 13a externally fitted and fixed to the intermediate part of the hub 2 which is an inner ring equivalent member. It is said. According to the load measuring device for a rolling bearing unit according to the above invention having such a configuration, the load (radial) applied between the outer ring 1 and the hub 2 regardless of the fluctuation of the rotational speed of the hub 2. Load and axial load).

即ち、上述の様な先発明に係る転がり軸受ユニットの荷重測定装置の場合、図示しない演算器が、上記各センサ23a、23b、15aから送り込まれる検出信号に基づいて、上記外輪1と上記ハブ2との間に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方の荷重を算出する。例えば、このラジアル荷重を求める場合に上記演算器は、上記各公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の和を求め、この和と、上記回転速度検出用センサ15aが検出する上記ハブ2の回転速度との比に基づいて、上記ラジアル荷重を算出する。又、上記アキシアル荷重は、上記各公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の差を求め、この差と、上記回転速度検出用センサ15aが検出する上記ハブ2の回転速度との比に基づいて算出する。この点に就いて、図6を参照しつつ説明する。尚、以下の説明は、アキシアル荷重Fyが加わらない状態での、上記各列の転動体9a、9bの接触角αa 、αb が互いに同じであるとして行なう。 That is, in the case of the load measuring device for a rolling bearing unit according to the above-described prior invention, an arithmetic unit (not shown) performs the outer ring 1 and the hub 2 based on the detection signals sent from the sensors 23a, 23b, 15a. One or both of a radial load and an axial load applied between the two are calculated. For example, when the radial load is obtained, the computing unit obtains the sum of the revolution speeds of the rolling elements 9a and 9b in each row detected by the revolution speed detection sensors 23a and 23b, and the sum and the rotation speed. The radial load is calculated based on the ratio to the rotational speed of the hub 2 detected by the detection sensor 15a. Further, the axial load is obtained by calculating the difference between the revolution speeds of the rolling elements 9a and 9b in each row detected by the revolution speed detection sensors 23a and 23b, and this difference and the rotational speed detection sensor 15a are detected. Calculation is based on the ratio to the rotational speed of the hub 2. This point will be described with reference to FIG. In the following description, it is assumed that the contact angles α a and α b of the rolling elements 9 a and 9 b in the respective rows are the same in a state where the axial load Fy is not applied.

図6は、上述の図5に示した車輪支持用の転がり軸受ユニットを模式化し、荷重の作用状態を示したものである。複列の内輪軌道8、8と複列の外輪軌道7、7との間に複列に配置された転動体9a、9bには予圧F0 、F0 を付与している。又、使用時に上記転がり軸受ユニットには、車体の重量等により、ラジアル荷重Fzが加わる。更に、旋回走行時に加わる遠心力等により、アキシアル荷重Fyが加わる。これら予圧F0 、F0 、ラジアル荷重Fz、アキシアル荷重Fyは、何れも上記各転動体9a、9bの接触角α(αa 、αb )に影響を及ぼす。そして、この接触角αa 、αb が変化すると、これら各転動体9a、9bの公転速度nc が変化する。これら各転動体9a、9bのピッチ円直径をDとし、これら各転動体9a、9bの直径をdとし、上記各内輪軌道8、8を設けたハブ2の回転速度をni とし、上記各外輪軌道7、7を設けた外輪1の回転速度をno とすると、上記公転速度nc は、次の(1)式で表される。
c ={1−(d・cosα/D)・(ni /2)}+{1+(d・cosα/D)・(no /2)} --- (1)
FIG. 6 schematically shows the wheel bearing rolling bearing unit shown in FIG. 5 described above and shows the action state of the load. Preloads F 0 and F 0 are applied to the rolling elements 9 a and 9 b arranged in a double row between the double row inner ring raceways 8 and 8 and the double row outer ring raceways 7 and 7. Further, a radial load Fz is applied to the rolling bearing unit during use due to the weight of the vehicle body or the like. Further, an axial load Fy is applied due to centrifugal force applied during turning. These preloads F 0 , F 0 , radial load Fz, and axial load Fy all affect the contact angles α (α a , α b ) of the rolling elements 9a, 9b. Then, the contact angle alpha a, the alpha b is changed, these rolling elements 9a, the revolution speed n c of 9b changes. The diameter of the pitch circle of each of these rolling elements 9a, 9b is D, the diameter of each of these rolling elements 9a, 9b is d, the rotational speed of the hub 2 provided with each of the inner ring raceways 8, 8 is n i , When the rotational speed of the outer race 1 provided with the outer ring raceway 7, 7 and n o, the revolution speed n c is expressed by the following equation (1).
n c = {1− (d · cos α / D) · (n i / 2)} + {1+ (d · cos α / D) · (n o / 2)} --- (1)

この(1)式から明らかな通り、上記各転動体9a、9bの公転速度nc は、これら各転動体9a、9bの接触角α(αa 、αb )の変化に応じて変化するが、上述した様にこの接触角αa 、αb は、上記ラジアル荷重Fz及び上記アキシアル荷重Fyに応じて変化する。従って上記公転速度nc は、これらラジアル荷重Fz及びアキシアル荷重Fyに応じて変化する。本例の場合、上記ハブ2が回転し、上記外輪1が回転しない為、具体的には、上記ラジアル荷重Fzに関しては、大きくなる程上記公転速度nc が遅くなる。又、アキシアル荷重Fyに関しては、このアキシアル荷重Fyを支承する列の公転速度が速くなり、このアキシアル荷重Fyを支承しない列の公転速度が遅くなる。従って、この公転速度nc に基づいて、上記ラジアル荷重Fz及びアキシアル荷重Fyを求められる事になる。 As is clear from this equation (1), the rolling elements 9a, the revolution speed n c of 9b, these rolling elements 9a, the contact angle α (α a, α b) of 9b varies in response to changes in As described above, the contact angles α a and α b change according to the radial load Fz and the axial load Fy. Thus the revolution speed n c is changed according to these radial load Fz and the axial load Fy. In this example, the hub 2 is rotated, since the outer ring 1 is not rotated, specifically, with respect to the radial load Fz, the revolution speed n c is slow enough to increase. As for the axial load Fy, the revolution speed of the row that supports the axial load Fy is increased, and the revolution speed of the row that does not support the axial load Fy is decreased. Therefore, on the basis of the revolution speed n c, it will be asked to the radial load Fz and the axial load Fy.

但し、上記公転速度nc の変化に結び付く上記接触角αは、上記ラジアル荷重Fzと上記アキシアル荷重Fyとが互いに関連しつつ変化するだけでなく、上記予圧F0 、F0 によっても変化する。又、上記公転速度nc は、上記ハブ2の回転速度ni に比例して変化する。この為、これらラジアル荷重Fz、アキシアル荷重Fy、予圧F0 、F0 、ハブ2の回転速度ni を総て関連させて考えなければ、上記公転速度nc を正確に求める事はできない。このうちの予圧F0 、F0 は、運転状態に応じて変化するものではないので、初期設定等によりその影響を排除する事は容易である。これに対して上記ラジアル荷重Fz、アキシアル荷重Fy、ハブ2の回転速度ni は、運転状態に応じて絶えず変化するので、初期設定等によりその影響を排除する事はできない。 However, the contact angle α which leads to a change in the revolution speed n c, as well as the radial load Fz and the axial load Fy changes while associated with each other, also vary according to the preload F 0, F 0. Also, the revolution speed n c is changed in proportion to the rotational speed n i of the hub 2. Therefore, these radial load Fz, axial load Fy, the preload F 0, F 0, to be considered in conjunction all the rotational speed n i of the hub 2, it is impossible to correctly determine the revolution speed n c. Of these, the preloads F 0 and F 0 do not change according to the operating state, so it is easy to eliminate the influence by initial setting or the like. The radial load Fz with respect to this, the axial load Fy, the rotational speed n i of the hub 2, since the constantly changing depending on the operating conditions, it is impossible to eliminate the influence by such initialization.

この様な事情に鑑みて先発明の場合には、前述した様に、ラジアル荷重Fzを求める場合には、前記各公転速度検出用センサ23a、23bが検出する各列の転動体9a、9bの公転速度の和を求める事で、上記アキシアル荷重Fyの影響を少なくしている。又、アキシアル荷重Fyを求める場合には、上記各列の転動体9a、9bの公転速度の差を求める事で、上記ラジアル荷重Fzの影響を少なくしている。更に、何れの場合でも、上記和又は差と、前記回転速度検出用センサ15aが検出する上記ハブ2の回転速度ni との比に基づいて上記ラジアル荷重Fz又は上記アキシアル荷重Fyを算出する事により、上記ハブ2の回転速度ni の影響を排除している。但し、上記アキシアル荷重Fyを、上記各列の転動体9a、9bの公転速度の比に基づいて算出する場合には、上記ハブ2の回転速度ni は、必ずしも必要ではない。 In the case of the prior invention in view of such circumstances, as described above, when the radial load Fz is obtained, the rolling elements 9a, 9b of the respective rows detected by the respective revolution speed detection sensors 23a, 23b are detected. By determining the sum of the revolution speeds, the influence of the axial load Fy is reduced. Further, when the axial load Fy is obtained, the influence of the radial load Fz is reduced by obtaining the difference between the revolution speeds of the rolling elements 9a and 9b in each row. Furthermore, in any case, possible to calculate the radial load Fz or the axial load Fy on the basis of the ratio of the above sum or difference, the rotational speed detecting sensor 15a is a rotational speed n i of the hub 2 for detecting way, by eliminating the influence of the rotational speed n i of the hub 2. However, the axial load Fy, when calculating on the basis of the rolling elements 9a, 9b ratio of the revolution speed of said each row, the rotational speed n i of the hub 2 is not necessarily required.

尚、上記各公転速度検出用センサ23a、23bの信号に基づいて上記ラジアル荷重Fzとアキシアル荷重Fyとのうちの一方又は双方の荷重を算出する方法は、他にも各種存在するが、この様な方法に就いては、前述の特願2003−171715号、172483号に詳しく説明されているし、本発明の要旨とも関係しないので、詳しい説明は省略する。   There are various other methods for calculating one or both of the radial load Fz and the axial load Fy based on the signals of the revolution speed detection sensors 23a and 23b. This method is described in detail in the aforementioned Japanese Patent Application Nos. 2003-171715 and 172483, and is not related to the gist of the present invention.

上述の様な先発明に係る転がり軸受ユニットの荷重測定装置は、回転速度検出用エンコーダ13a、回転速度検出用センサ15a、公転速度検出用エンコーダ25a、25b、公転速度検出用センサ23a、23b、並びにこれら各センサ15a、23a、23bの検出信号に基づいて外輪1とハブ2との間に加わる荷重を算出する荷重演算器とを備える。この様な転がり軸受ユニットの荷重測定装置の構成部品の何れか、或は配線等に欠陥を生じた場合には、所期の性能を発揮できない。例えば、上記各公転速度検出用センサ23a、23bが検出する、上記各列の転動体9a、9bの公転速度を表す信号は、上記外輪1とハブ2との間に加わる荷重を算出する為に利用しているので、上記各公転速度検出用センサ23a、23bの検出信号に異常が生じた場合には、上記荷重演算器が算出する荷重が不正確になる。この荷重演算器が算出した、上記外輪1とハブ2との間に加わる荷重を、車両の走行状態を安定させる為の制御に利用した場合、上記荷重演算器が算出する荷重が不正確になると、この制御が適切に行なわれず、車両の走行状態が不安定になる可能性がある。   The load measuring device for a rolling bearing unit according to the above-described invention includes a rotation speed detection encoder 13a, a rotation speed detection sensor 15a, revolution speed detection encoders 25a and 25b, revolution speed detection sensors 23a and 23b, and A load calculator for calculating a load applied between the outer ring 1 and the hub 2 based on detection signals of the sensors 15a, 23a, and 23b is provided. If any of the components of the load measuring device of such a rolling bearing unit, or a defect occurs in the wiring or the like, the expected performance cannot be exhibited. For example, the signals representing the revolution speeds of the rolling elements 9a and 9b in the rows detected by the revolution speed detection sensors 23a and 23b are used to calculate the load applied between the outer ring 1 and the hub 2. Therefore, when an abnormality occurs in the detection signals of the revolution speed detection sensors 23a and 23b, the load calculated by the load calculator becomes inaccurate. When the load applied between the outer ring 1 and the hub 2 calculated by the load calculator is used for control for stabilizing the traveling state of the vehicle, the load calculated by the load calculator becomes inaccurate. This control may not be performed properly, and the traveling state of the vehicle may become unstable.

上記各公転速度検出用センサ23a、23bの検出信号、或はこれら各公転速度検出用センサ23a、23b並びに上記回転速度検出用センサ15aの検出信号を受け入れる上記荷重演算器に異常が存在する事を検知できれば、例えば上記荷重に基づく車両の走行姿勢を安定化させる為の制御を停止して通常走行モードに戻す、フェイルセーフが可能となる。但し、ABSやTCS制御の為の制御回路の異常検知の為に従来から知られている検知方法では、配線が完全に断線した様な場合を除き、上記各公転速度検出用センサ23a、23bの検出信号に異常があるか否かを判断する事は難しい。   It is confirmed that there is an abnormality in the load calculator that receives the detection signals of the revolution speed detection sensors 23a and 23b, or the detection signals of the revolution speed detection sensors 23a and 23b and the rotation speed detection sensor 15a. If it can be detected, for example, it becomes possible to fail-safe, in which the control for stabilizing the traveling posture of the vehicle based on the load is stopped and returned to the normal traveling mode. However, in the conventional detection method for detecting abnormality of the control circuit for ABS or TCS control, the revolution speed detection sensors 23a and 23b are not used unless the wiring is completely disconnected. It is difficult to determine whether the detection signal is abnormal.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特公昭62−3365号公報Japanese Patent Publication No.62-3365

本発明は、上述の様な事情に鑑みて、各公転速度検出用センサ23a、23bの検出信号に異常があるか否かを、容易且つ確実に判断できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure that can easily and reliably determine whether or not there is an abnormality in the detection signals of the revolution speed detection sensors 23a and 23b. .

本発明の転がり軸受ユニットの荷重測定装置は、外輪相当部材と、内輪相当部材と、複数個の転動体と、公転速度検出用センサと、回転速度検出用センサと、荷重演算器と、公転速度演算器と、比較器とを備える。
このうちの外輪相当部材は、内周面に外輪軌道を有する。
又、上記内輪相当部材は、外周面に内輪軌道を有し、上記外輪相当部材の内径側にこの外輪相当部材と同心に配置されている。
又、上記各転動体は、上記外輪軌道と上記内輪軌道との間に、接触角を付与した状態で設けられている。
又、上記公転速度検出用センサは、上記各転動体の公転速度を検出する為のものである。
又、上記回転速度検出用センサは、上記外輪相当部材と上記内輪相当部材とのうちの回転する部材である回転側軌道輪の回転速度を検出する為のものである。
又、上記荷重演算器は、上記回転速度検出用センサの検出信号と上記公転速度検出用センサの検出信号とに基づいて、上記外輪相当部材と上記内輪相当部材との間に加わる荷重を算出するものである。
又、上記公転速度演算器は、上記回転速度検出用センサの検出信号に基づいて、上記各転動体の公転速度を算出するものである。
又、上記比較器は、上記公転速度演算器が算出する上記各転動体の公転速度を表す第一の信号と、上記公転速度検出用センサから送り出されるこれら各転動体の公転速度を表す第二の信号とを比較する。
更に、上記比較器は、上記第一、第二の信号同士の間に予め設定した、上記外輪相当部材と上記内輪相当部材との間に加わる荷重に基づく接触角の変化では生じない程度に大きな値である、閾値を越える差が存在する場合に、上記公転速度検出用センサに基づく信号(この公転速度検出用センサ自体と、上記回転速度検出用センサと、上記公転速度演算器とのうちの何れか)に異常ありとする信号を発する機能を有する。
The load measuring device of the rolling bearing unit of the present invention includes an outer ring equivalent member, an inner ring equivalent member, a plurality of rolling elements, a revolution speed detection sensor, a rotational speed detection sensor, a load calculator, a revolution speed. An arithmetic unit and a comparator are provided.
Of these, the outer ring equivalent member has an outer ring raceway on the inner peripheral surface.
The inner ring equivalent member has an inner ring raceway on the outer peripheral surface, and is disposed concentrically with the outer ring equivalent member on the inner diameter side of the outer ring equivalent member.
Each of the rolling elements is provided with a contact angle between the outer ring raceway and the inner ring raceway.
The revolution speed detection sensor is for detecting the revolution speed of each rolling element.
The rotational speed detection sensor is for detecting the rotational speed of the rotation-side race that is a rotating member of the outer ring equivalent member and the inner ring equivalent member.
The load calculator calculates a load applied between the outer ring equivalent member and the inner ring equivalent member based on a detection signal of the rotation speed detection sensor and a detection signal of the revolution speed detection sensor. Is.
The revolution speed calculator calculates the revolution speed of each rolling element based on the detection signal of the rotational speed detection sensor.
The comparator includes a first signal representing the revolution speed of each rolling element calculated by the revolution speed calculator and a second signal representing the revolution speed of each rolling element sent from the revolution speed detection sensor. Compare the signal with.
Further, the comparator is large enough not to be caused by a change in contact angle based on a load applied between the outer ring equivalent member and the inner ring equivalent member, which is set in advance between the first and second signals. When there is a difference exceeding a threshold value, a signal based on the revolution speed detection sensor (of the revolution speed detection sensor itself, the rotation speed detection sensor, and the revolution speed calculator). Any one) has a function of issuing a signal indicating that there is an abnormality .

上述の様に構成する本発明の転がり軸受ユニットの荷重測定装置は、転動体の公転速度を検出する事により、転がり軸受ユニットに負荷される荷重を測定できる。即ち、玉軸受の如き転がり軸受ユニットに荷重が負荷されると、転動体(玉)の接触角が変化し、これら各転動体の公転速度が変化する。そこで、この公転速度を検出すれば、外輪相当部材と内輪相当部材との間に作用する荷重を求められる。
更に、本発明の転がり軸受ユニットの荷重測定装置によれば、公転速度検出用センサ(回転速度検出用センサ、公転速度演算器)の検出信号に異常があるか否かを、容易且つ確実に判断できる。この為、公転速度検出用センサに異常が存在する事を検知して、上記荷重に基づく車両の走行姿勢を安定化させる為の制御を停止して通常走行モードに戻す、フェイルセーフが可能となる。
The load measuring device of the rolling bearing unit of the present invention configured as described above can measure the load applied to the rolling bearing unit by detecting the revolution speed of the rolling element. That is, when a load is applied to a rolling bearing unit such as a ball bearing, the contact angle of the rolling elements (balls) changes, and the revolution speed of each rolling element changes. Therefore, if this revolution speed is detected, a load acting between the outer ring equivalent member and the inner ring equivalent member can be obtained.
Furthermore, according to the load measuring device of the rolling bearing unit of the present invention, it is easily and reliably determined whether or not there is an abnormality in the detection signal of the revolution speed detection sensor (rotational speed detection sensor, revolution speed calculator). it can. For this reason, it is possible to detect the presence of an abnormality in the revolution speed detection sensor, and to stop the control for stabilizing the traveling posture of the vehicle based on the load and to return to the normal traveling mode. .

本発明を実施する場合に好ましくは、請求項2に記載した様に、外輪相当部材として内周面に複列の外輪軌道を有するものを、内輪相当部材として外周面に複列の内輪軌道を有するものを、それぞれ使用し、転動体をこれら各外輪軌道と各内輪軌道との間に複列に分けて配置する。そして、第二の信号は、これら複列に配置された転動体の公転速度の平均値を表す信号とする。
この様に構成すれば、単一の比較器により、何れの列の転動体の公転速度を表す信号に異常が発生した場合にも、これを検知できる。
又、複列に配置された転動体の公転速度はほぼ等しい(荷重が加わった場合でも差が数%以内となる)ので、これら両公転速度を表す信号同士を比較する事でも、公転速度検出用センサの異常を検知できる。
Preferably, when carrying out the present invention, as described in claim 2, the outer ring equivalent member having a double row outer ring raceway on the inner peripheral surface, and the inner ring equivalent member having a double row inner ring raceway on the outer peripheral surface. The rolling elements are arranged in double rows between the outer ring raceways and the inner ring raceways. And let a 2nd signal be a signal showing the average value of the revolution speed of the rolling elements arrange | positioned in these double rows.
If comprised in this way, even if abnormality has generate | occur | produced in the signal showing the revolution speed of any rolling element of a row | line | column with a single comparator, this can be detected.
In addition, since the revolution speeds of the rolling elements arranged in a double row are almost equal (the difference is within several percent even when a load is applied), the revolution speed can be detected by comparing these signals representing the revolution speeds. An abnormality of the sensor can be detected.

この場合に於いて、請求項3に記載した様に、上記各転動体を各列同士の間で接触角の方向を互いに逆にして設けた状態で、1対の保持器により転動自在に保持する。又、特性を円周方向に関して交互に且つ等間隔で変化させた1対の公転速度検出用エンコーダを上記各保持器の一部に設ける。更に、上記各列の転動体の公転速度をこれら各保持器の回転速度としてそれぞれ検出する為の1対の公転速度検出用センサを、それぞれの検出部を上記各公転速度検出用エンコーダの被検出面に対向させた状態で設ける。そして、荷重演算器は、上記各公転速度検出用センサから送り込まれる検出信号に基づいて、上記外輪相当部材と上記内輪相当部材との間に加わる荷重を算出する。
この様に構成すれば、これら外輪相当部材と内輪相当部材との間に加わる荷重を高精度で求める事ができ、しかも上記各公転速度検出用センサの検出信号の異常を効果的に検知できる構造を実現できる。
In this case, as described in claim 3, the rolling elements can be freely rolled by a pair of cages in a state where the respective rolling elements are provided with the directions of contact angles being reversed between the rows. Hold. Also, a pair of revolution speed detecting encoders whose characteristics are changed alternately and at equal intervals in the circumferential direction are provided in a part of each of the cages. Further, a pair of revolution speed detection sensors for detecting the revolution speed of the rolling elements in each row as the rotation speed of each cage, and the respective detecting portions are detected by the respective revolution speed detection encoders. Provided facing the surface. Then, the load calculator calculates a load applied between the outer ring equivalent member and the inner ring equivalent member based on the detection signal sent from each of the revolution speed detection sensors.
With this configuration, the load applied between the outer ring equivalent member and the inner ring equivalent member can be obtained with high accuracy, and the abnormality of the detection signal of each revolution speed detection sensor can be effectively detected. Can be realized.

この場合に於いて、更に好ましくは、請求項4に記載した様に、上記各転動体を玉とし、使用時に回転しない外輪相当部材の内周面に形成された複列アンギュラ型の外輪軌道と、使用時に回転する内輪相当部材の外周面に形成された複列アンギュラ型の内輪軌道との間にそれぞれ複数個ずつ設けられた玉に、背面組み合わせ型の接触角を付与する。
そして、例えば請求項5に記載した様に、荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との和と、上記内輪相当部材の回転速度との比に基づいて、この内輪相当部材と上記外輪相当部材との間に加わるラジアル荷重を算出する。
或は、請求項6に記載した様に、荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との差と、上記内輪相当部材の回転速度との比に基づいて、この内輪相当部材と上記外輪相当部材との間に加わるアキシアル荷重を算出する。
或は、請求項7に記載した様に、荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との比に基づいて、上記外輪相当部材と上記内輪相当部材との間に加わるアキシアル荷重を算出する。
この様に構成すれば、剛性の高い転がり軸受ユニットで、これら外輪相当部材と内輪相当部材との間に加わる荷重を高精度で求められる。
In this case, more preferably, as described in claim 4, a double-row angular outer ring raceway formed on the inner peripheral surface of an outer ring equivalent member that does not rotate during use, with each rolling element as a ball, A contact angle of the back combination type is imparted to a plurality of balls respectively provided between the inner ring raceway of the double row angular type formed on the outer peripheral surface of the inner ring equivalent member that rotates during use.
For example, as described in claim 5, the load calculator is configured to calculate the sum of the revolution speed of the rolling elements in one row and the revolution speed of the rolling elements in the other row, and the rotation speed of the inner ring equivalent member. Based on the ratio, a radial load applied between the inner ring equivalent member and the outer ring equivalent member is calculated.
Alternatively, as described in claim 6, the load calculator is configured to calculate a difference between the revolution speed of the rolling elements in one row and the revolution speed of the rolling elements in the other row, and the rotation speed of the inner ring equivalent member. Based on the ratio, an axial load applied between the inner ring equivalent member and the outer ring equivalent member is calculated.
Alternatively, as described in claim 7, the load calculator may be configured such that the outer ring equivalent member and the inner ring are based on a ratio between the revolution speed of the rolling elements in one row and the revolution speed of the rolling elements in the other row. The axial load applied between the corresponding members is calculated.
If comprised in this way, with a highly rigid rolling bearing unit, the load added between these outer ring equivalent members and inner ring equivalent members can be calculated | required with high precision.

図1は、本発明の実施例1を示している。本実施例の場合、車輪支持用転がり軸受ユニットの構造、並びに、この車輪支持用転がり軸受ユニットを構成するハブ2の回転速度を検出する為の構造、同じく各転動体9a、9bの公転速度を検出する為の構造は、前述の図5に示した先発明に係る構造と同じである。又、回転速度検出用センサ15aの検出信号と1対の公転速度検出用センサ23a、23bの検出信号とに基づいて、外輪1とハブ2との間に加わる荷重(ラジアル荷重とアキシアル荷重との一方又は双方)を算出する荷重演算器の構成に就いても、上記先発明の場合と同様である。即ち、上記回転速度検出用センサ15aの検出信号を回転速度演算回路26を介して、上記1対の公転速度検出用センサ23a、23bの検出信号を公転速度演算回路27を介して、荷重演算器28に入力し、上記荷重を算出する様にしている。尚、実際には、上記公転速度演算回路27は、上記各公転速度検出用センサ23a、23b毎に設けている。就いては、上記先発明に係る構造と同等部分には同一符号を付して重複する説明を省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   FIG. 1 shows a first embodiment of the present invention. In the case of the present embodiment, the structure of the wheel supporting rolling bearing unit, the structure for detecting the rotational speed of the hub 2 constituting the wheel supporting rolling bearing unit, and the revolution speed of each of the rolling elements 9a and 9b are as follows. The structure for detection is the same as the structure according to the prior invention shown in FIG. Further, based on the detection signal of the rotational speed detection sensor 15a and the detection signal of the pair of revolution speed detection sensors 23a and 23b, a load (a radial load and an axial load) applied between the outer ring 1 and the hub 2 is determined. The configuration of the load calculator for calculating one or both) is the same as in the case of the previous invention. That is, the detection signal of the rotation speed detection sensor 15a is passed through the rotation speed calculation circuit 26, and the detection signal of the pair of revolution speed detection sensors 23a, 23b is passed through the revolution speed calculation circuit 27. 28, and the load is calculated. In practice, the revolution speed calculation circuit 27 is provided for each of the revolution speed detection sensors 23a and 23b. Therefore, the same parts as those in the structure according to the above-described invention are denoted by the same reference numerals, and redundant description is omitted or simplified. Hereinafter, the characteristic parts of the present embodiment will be mainly described.

本実施例の場合、上記各公転速度検出用センサ23a、23bの検出信号に基づいて各列の転動体9a、9bの公転速度を求める他、上記公転速度演算回路27とは別に設けた公転速度演算器29により、上記回転速度検出用センサ15aの検出信号に基づいて、上記各転動体9a、9bの公転速度を算出する様に構成している。尚、上記公転速度演算器29は、前述した(1)式を利用し、上記回転速度検出用センサ15aの検出信号に基づいて、上記各転動体9a、9bの公転速度を算出する。この場合に上記(1)式に使用する接触角αの値は、標準的な値(設計値)とする。又、上記公転速度演算器29が算出する公転速度は、これら各転動体9a、9bの公転速度の平均値となる。この様にして、上記回転速度検出用センサ15aの検出信号に基づいて求めた公転速度の平均値を表す第一の信号イは、比較器30に入力している。又、上記各公転速度検出用センサ23a、23bの検出信号に基づいて求めた各列の転動体9a、9bの公転速度を表す第二の信号ロは、平均処理回路31によりその平均値としてから、上記比較器30に入力している。 In this embodiment, the revolution speed of the rolling elements 9a and 9b in each row is obtained based on the detection signals of the revolution speed detection sensors 23a and 23b, and the revolution speed provided separately from the revolution speed calculation circuit 27. The computing unit 29 is configured to calculate the revolution speed of each of the rolling elements 9a and 9b based on the detection signal of the rotational speed detection sensor 15a. The revolution speed calculator 29 calculates the revolution speeds of the rolling elements 9a and 9b based on the detection signal of the rotational speed detection sensor 15a using the above-described equation (1). In this case, the value of the contact angle α used in the above equation (1) is a standard value (design value). Further, the revolution speed to calculate the revolution speed calculator 29, the respective rolling elements 9a, an average value of the revolution speed of 9b. In this way, the first signal a representing the average value of the revolution speed obtained based on the detection signal of the rotational speed detection sensor 15 a is input to the comparator 30. The second signal b representing the revolution speed of the rolling elements 9a and 9b in each row obtained based on the detection signals of the revolution speed detection sensors 23a and 23b is obtained as an average value by the average processing circuit 31. Are input to the comparator 30.

この比較器30は、上記第一、第二の信号イ、ロ同士の間に予め設定した閾値を越える差が存在する場合に、上記各公転速度検出用センサ23a、23b(回転速度検出用センサ15a、公転速度演算器29、回転速度演算回路26、公転速度演算回路27、平均処理回路31等)に異常ありとする信号ハを、制御器32に向けて発する。この制御器32は、この異常信号を受けた場合に、車輪支持用転がり軸受ユニットに加わる荷重の大きさに対応した制御を停止すると共に、運転席のダッシュボードに設けた警告灯を点灯させる等、運転者に修理を促す為の警報を発する。 The comparator 30 detects the revolution speed detection sensors 23a and 23b (rotational speed detection sensors) when there is a difference between the first and second signals A and B exceeding a preset threshold value. 15a, the revolution speed calculator 29, the rotational speed calculating circuit 26, the revolution speed computing circuit 27, a signal c to a malfunction occurs in the average processing circuit 31, etc.) and emits toward the controller 32. When receiving this abnormality signal, the controller 32 stops the control corresponding to the magnitude of the load applied to the wheel support rolling bearing unit and lights a warning light provided on the dashboard of the driver's seat. , Issue a warning to prompt the driver to repair.

尚、上記比較器30の閾値は、上記各列の転動体9a、9bの公転速度に関して、上記車輪支持用転がり軸受ユニットに加わる荷重に基づく接触角の変化では生じない程度に大きな値とする。即ち、上記各列の転動体9a、9bの接触角αa 、αb は、設計公差内でのばらつきや、上記荷重に基づいて変化する。この様な原因でのこれら各接触角αa 、αb の変化量は、最大で5〜10度に達する場合もあり、この変化に伴って上記各列の転動体9a、9bの公転速度は、数%程度変化する。そこで、上記閾値は、10乃至数10%程度に規定する。即ち、上記比較器30は、上記第一の信号イ、即ち、前記回転速度検出用センサ15aの検出信号に基づいて求めた公転速度に対して、上記第二の信号ロ、即ち、上記各公転速度検出用センサ23a、23bの検出信号に基づいて求めた公転速度の平均値が10乃至数10%ずれた場合に、上記異常ありとする信号ハを、制御器32に向けて発する。 It should be noted that the threshold value of the comparator 30 is set to such a large value that the change in contact angle based on the load applied to the wheel-supporting rolling bearing unit does not occur with respect to the revolution speed of the rolling elements 9a and 9b in each row. That is, the contact angles α a and α b of the rolling elements 9a and 9b in each row change based on variations within design tolerances and the load. The amount of change in each of these contact angles α a and α b due to such a reason may reach 5 to 10 degrees at the maximum, and along with this change, the revolution speed of the rolling elements 9a and 9b in each row is , Change by a few percent. Therefore, the threshold is defined to be about 10 to several tens of percent. That is, the comparator 30 performs the second signal B, that is, each revolution, with respect to the first signal A, that is, the revolution speed obtained based on the detection signal of the rotational speed detection sensor 15a. When the average revolution speed obtained based on the detection signals of the speed detection sensors 23a and 23b is deviated by 10 to several tens of percent, the abnormal signal C is issued to the controller 32.

以上に述べた様に、本実施例の転がり軸受ユニットの荷重測定装置によれば、上記各公転速度検出用センサ23a、23bの検出信号等に異常があるか否かを、容易且つ確実に判断できる。この為、これら各公転速度検出用センサ23a、23bに異常が存在する事を検知して、前記車輪支持用転がり軸受ユニットに加わる荷重に基づく車両の走行姿勢を安定化させる為の制御を停止して通常走行モードに戻す、フェイルセーフが可能となる。   As described above, according to the load measuring device of the rolling bearing unit of the present embodiment, it can be easily and reliably determined whether or not there is an abnormality in the detection signals of the revolution speed detection sensors 23a and 23b. it can. For this reason, it is detected that there is an abnormality in each of the revolution speed detection sensors 23a and 23b, and control for stabilizing the running posture of the vehicle based on the load applied to the wheel support rolling bearing unit is stopped. Fail-safe is possible by returning to normal driving mode.

図2は、本発明の実施例2を示している。本実施例の場合には、1対の公転速度検出用センサ23a、23bを組み込んだ公転速度検出用ユニット33と、回転速度検出用センサ15bとを互いに別体に構成している。この為に本例の場合には、ハブ2を構成する内輪6の内端部に回転速度検出用エンコーダ13bを嵌合固定すると共に、外輪1の内端部に嵌合固定したカバー14aに固定した上記回転速度検出用センサ15bの検出部を、上記回転速度検出用エンコーダ13bの被検出面に対向させている。   FIG. 2 shows a second embodiment of the present invention. In the case of the present embodiment, the revolution speed detection unit 33 incorporating the pair of revolution speed detection sensors 23a and 23b and the rotation speed detection sensor 15b are configured separately from each other. For this reason, in this example, the rotational speed detecting encoder 13b is fitted and fixed to the inner end of the inner ring 6 constituting the hub 2, and fixed to the cover 14a fitted and fixed to the inner end of the outer ring 1. The detection portion of the rotational speed detection sensor 15b is opposed to the detection surface of the rotational speed detection encoder 13b.

この様な本実施例の場合、上記各公転速度検出用センサ23a、23bと上記回転速度検出用センサ15bとを別個に配置しているので、これら各センサ23a、23b、15bが同時に故障する可能性を、上述した実施例1の場合に比べて低くできる。この為、この実施例1に比べて、より確実なフェイルセーフを図れる。   In this embodiment, the revolution speed detection sensors 23a and 23b and the rotation speed detection sensor 15b are separately arranged, so that the sensors 23a, 23b and 15b can be simultaneously broken. The property can be lowered as compared with the case of Example 1 described above. For this reason, more reliable fail safe can be achieved as compared with the first embodiment.

本発明の実施例1を示す部分切断面図。FIG. 3 is a partial cutaway view showing Example 1 of the present invention. 同実施例2を示す部分切断面図。The fragmentary sectional view which shows the same Example 2. FIG. 従来から知られている、ラジアル荷重測定用のセンサを組み込んだ転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit which incorporated the sensor for radial load measurement known conventionally. 従来から知られている、アキシアル荷重測定用のセンサを組み込んだ転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit which incorporated the sensor for axial load measurement conventionally known. 先発明に係る転がり軸受ユニットの荷重測定装置の断面図。Sectional drawing of the load measuring apparatus of the rolling bearing unit which concerns on a prior invention. 転がり軸受ユニットに加わる荷重を求められる理由を説明する為の模式図。The schematic diagram for demonstrating the reason for which the load added to a rolling bearing unit is calculated | required.

符号の説明Explanation of symbols

1、1a 外輪
2、2a ハブ
3、3a 回転側フランジ
4 ハブ本体
5 ナット
6 内輪
7 外輪軌道
8 内輪軌道
9a、9b 転動体
10、10a 取付孔
11 変位センサ
12 センサリング
13、13a、13b 回転速度検出用エンコーダ
14、14a カバー
15、15a、15b 回転速度検出用センサ
16 ナックル
17 固定側フランジ
18 ボルト
19 ねじ孔
20 荷重センサ
21 センサユニット
22 検出部
23a、23b 公転速度検出用センサ
24a、24b 保持器
25a、25b 公転速度検出用エンコーダ
26 回転速度演算回路
27 公転速度演算回路
28 荷重演算器
29 公転速度演算器
30 比較器
31 平均処理回路
32 制御器
33 公転速度検出用ユニット
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Hub 3, 3a Rotation side flange 4 Hub body 5 Nut 6 Inner ring 7 Outer ring raceway 8 Inner ring raceway 9a, 9b Rolling element 10, 10a Mounting hole 11 Displacement sensor 12 Sensor ring 13, 13a, 13b Rotational speed Detection encoder 14, 14a Cover 15, 15a, 15b Rotational speed detection sensor 16 Knuckle 17 Fixed flange 18 Bolt 19 Screw hole 20 Load sensor 21 Sensor unit 22 Detection section 23a, 23b Revolution speed detection sensor 24a, 24b Cage 25a, 25b Revolution speed detection encoder 26 Rotational speed calculation circuit 27 Revolution speed calculation circuit 28 Load calculator 29 Revolution speed calculator 30 Comparator 31 Average processing circuit 32 Controller 33 Revolution speed detection unit

Claims (9)

内周面に外輪軌道を有する外輪相当部材と、この外輪相当部材の内径側にこの外輪相当部材と同心に配置された、外周面に内輪軌道を有する内輪相当部材と、この内輪軌道と上記外輪軌道との間に接触角を付与した状態で設けられた複数個の転動体と、これら各転動体の公転速度を検出する為の公転速度検出用センサと、上記外輪相当部材と上記内輪相当部材とのうちの回転する部材である回転側軌道輪の回転速度を検出する為の回転速度検出用センサと、この回転速度検出用センサの検出信号と上記公転速度検出用センサの検出信号とに基づいて上記外輪相当部材と上記内輪相当部材との間に加わる荷重を算出する荷重演算器と、上記回転速度検出用センサの検出信号に基づいて上記各転動体の公転速度を算出する公転速度演算器と、この公転速度演算器が算出する上記各転動体の公転速度を表す第一の信号と上記公転速度検出用センサから送り出されるこれら各転動体の公転速度を表す第二の信号とを比較する比較器とを備え、この比較器は、これら第一、第二の信号同士の間に予め設定した、上記外輪相当部材と上記内輪相当部材との間に加わる荷重に基づく接触角の変化では生じない程度に大きな値である、閾値を越える差が存在する場合に、上記公転速度検出用センサに基づく信号異常ありとする信号を発する機能を有する転がり軸受ユニットの荷重測定装置。 An outer ring equivalent member having an outer ring raceway on the inner peripheral surface, an inner ring equivalent member having an inner ring raceway on the outer peripheral surface disposed concentrically with the outer ring equivalent member on the inner diameter side of the outer ring equivalent member, the inner ring raceway and the outer ring A plurality of rolling elements provided with a contact angle between them and a raceway, a revolution speed detecting sensor for detecting the revolution speed of each rolling element, the outer ring equivalent member, and the inner ring equivalent member Based on a rotation speed detection sensor for detecting the rotation speed of the rotating raceway, which is a rotating member, and a detection signal of the rotation speed detection sensor and a detection signal of the revolution speed detection sensor. A load calculator for calculating a load applied between the outer ring equivalent member and the inner ring equivalent member, and a revolution speed calculator for calculating a revolution speed of each rolling element based on a detection signal of the rotation speed detection sensor. And this A comparator for comparing the first signal representing the revolution speed of each rolling element calculated by the rolling speed calculator with the second signal representing the revolution speed of each rolling element sent from the revolution speed detection sensor; This comparator is preset between these first and second signals, so that it does not occur due to a change in contact angle based on the load applied between the outer ring equivalent member and the inner ring equivalent member. A load measuring device for a rolling bearing unit having a function of generating a signal indicating that there is a signal abnormality based on the revolution speed detection sensor when there is a large difference exceeding a threshold value . 外輪相当部材が内周面に複列の外輪軌道を有し、内輪相当部材が外周面に複列の内輪軌道を有し、転動体がこれら各外輪軌道と各内輪軌道との間に複列に分けて配置されており、第二の信号は、これら複列に配置された転動体の公転速度の平均値を表す信号である、請求項1に記載した転がり軸受ユニットの荷重測定装置。   The outer ring equivalent member has a double row outer ring raceway on the inner peripheral surface, the inner ring equivalent member has a double row inner ring raceway on the outer peripheral surface, and the rolling elements are double row between each outer ring raceway and each inner ring raceway. 2. The load measuring device for a rolling bearing unit according to claim 1, wherein the second signal is a signal representing an average value of revolution speeds of the rolling elements arranged in the double row. 各転動体が各列同士の間で接触角の方向を互いに逆にして設けられた状態で、1対の保持器により転動自在に保持されており、特性を円周方向に関して交互に且つ等間隔で変化させた1対の公転速度検出用エンコーダが上記各保持器の一部に設けられており、上記各列の転動体の公転速度をこれら各保持器の回転速度としてそれぞれ検出する為の1対の公転速度検出用センサが、それぞれの検出部を上記各公転速度検出用エンコーダの被検出面に対向させた状態で設けられており、荷重演算器は、上記各公転速度検出用センサから送り込まれる検出信号に基づいて外輪相当部材と内輪相当部材との間に加わる荷重を算出するものである、請求項2に記載した転がり軸受ユニットの荷重測定装置。   Each rolling element is held by a pair of cages in a state in which the direction of the contact angle is reversed between each row, and the characteristics are alternately and with respect to the circumferential direction. A pair of revolution speed detecting encoders changed at intervals is provided in a part of each cage, and each revolution speed of the rolling elements in each row is detected as a rotation speed of each cage. A pair of revolution speed detection sensors are provided in a state in which the respective detection portions are opposed to the detected surfaces of the respective revolution speed detection encoders, and the load calculator is connected to each revolution speed detection sensor. The load measuring device for a rolling bearing unit according to claim 2, wherein a load applied between the outer ring equivalent member and the inner ring equivalent member is calculated based on the detection signal sent. 各転動体が玉であり、使用時に回転しない外輪相当部材の内周面に形成された複列アンギュラ型の外輪軌道と、使用時に回転する内輪相当部材の外周面に形成された複列アンギュラ型の内輪軌道との間にそれぞれ複数個ずつ設けられた玉に、背面組み合わせ型の接触角が付与されている、請求項3に記載した車輪支持用転がり軸受ユニットの荷重測定装置。   Each rolling element is a ball, a double row angular type outer ring raceway formed on the inner peripheral surface of the outer ring equivalent member that does not rotate during use, and a double row angular type formed on the outer peripheral surface of the inner ring equivalent member that rotates during use 4. The load measuring device for a wheel support rolling bearing unit according to claim 3, wherein a plurality of balls provided between the inner ring raceway and the inner ring raceway are each provided with a back combination type contact angle. 荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との和と、内輪相当部材の回転速度との比に基づいて、この内輪相当部材と外輪相当部材との間に加わるラジアル荷重を算出する、請求項4に記載した車輪支持用転がり軸受ユニットの荷重測定装置。   The load calculator calculates the inner ring equivalent member and the outer ring equivalent member based on the ratio between the revolution speed of the rolling element in one row and the revolution speed of the rolling element in the other row and the rotation speed of the inner ring equivalent member. The load measuring device for a wheel bearing rolling bearing unit according to claim 4, wherein a radial load applied between the wheel support and the wheel bearing is calculated. 荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との差と、内輪相当部材の回転速度との比に基づいて、この内輪相当部材と外輪相当部材との間に加わるアキシアル荷重を算出する、請求項4に記載した車輪支持用転がり軸受ユニットの荷重測定装置。   The load calculator calculates the inner ring equivalent member and the outer ring equivalent member based on the ratio between the revolution speed of the rolling element in one row and the revolution speed of the rolling element in the other row and the rotation speed of the inner ring equivalent member. The load measuring device for a wheel bearing rolling bearing unit according to claim 4, wherein an axial load applied between the wheel bearing and the rolling bearing unit is calculated. 荷重演算器は、一方の列の転動体の公転速度と他方の列の転動体の公転速度との比に基づいて、外輪相当部材と内輪相当部材との間に加わるアキシアル荷重を算出する、請求項4に記載した車輪支持用転がり軸受ユニットの荷重測定装置。   The load calculator calculates an axial load applied between the outer ring equivalent member and the inner ring equivalent member based on a ratio between the revolution speed of the rolling elements in one row and the revolution speed of the rolling elements in the other row. Item 5. A load measuring device for a wheel-supporting rolling bearing unit according to Item 4. 1対の公転速度検出用センサと回転速度検出用センサとが単一のセンサユニットを構成している、請求項2〜7の何れかに記載した車輪支持用転がり軸受ユニットの荷重測定装置。 The load measuring device for a wheel bearing rolling bearing unit according to any one of claims 2 to 7, wherein the pair of revolution speed detecting sensors and the rotational speed detecting sensor constitute a single sensor unit. 1対の公転速度検出用センサを組み込んだ公転速度検出用ユニットと、回転速度検出用センサとが互いに別体である、請求項2〜7の何れかに記載した車輪支持用転がり軸受ユニットの荷重測定装置。
The load of the wheel bearing rolling bearing unit according to any one of claims 2 to 7, wherein the revolution speed detection unit incorporating the pair of revolution speed detection sensors and the rotation speed detection sensor are separate from each other. measuring device.
JP2003383282A 2003-11-13 2003-11-13 Load measuring device for rolling bearing units Expired - Fee Related JP4370885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383282A JP4370885B2 (en) 2003-11-13 2003-11-13 Load measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383282A JP4370885B2 (en) 2003-11-13 2003-11-13 Load measuring device for rolling bearing units

Publications (2)

Publication Number Publication Date
JP2005147776A JP2005147776A (en) 2005-06-09
JP4370885B2 true JP4370885B2 (en) 2009-11-25

Family

ID=34692045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383282A Expired - Fee Related JP4370885B2 (en) 2003-11-13 2003-11-13 Load measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP4370885B2 (en)

Also Published As

Publication number Publication date
JP2005147776A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP4543643B2 (en) Load measuring device for rolling bearing units
JP2004198247A (en) Load measuring apparatus for rolling bearing unit
JP2008116241A (en) Rolling bearing device with sensor
JP4370884B2 (en) Load measuring device for rolling bearing units
JP4370885B2 (en) Load measuring device for rolling bearing units
JP2005321236A (en) Load measuring device of rolling bearing unit
JP2006177932A (en) Rolling bearing having sensor
JP2005308134A (en) Rolling bearing unit with sensor for detecting revolution speed
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP4952405B2 (en) State quantity measuring device for rolling bearing units
JP4935203B2 (en) Wheel toe abnormality detection device
JP4487528B2 (en) Load measuring device for rolling bearing unit for wheel support
JP4487525B2 (en) Load measuring device for rolling bearing units
JP2005249726A (en) Load measuring apparatus for vehicle
JP2005207788A (en) Load measuring apparatus of rolling bearing unit
JP2005291457A (en) Ball bearing unit
JP4438494B2 (en) Load measuring device for rolling bearing units
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2005147905A (en) Load measuring instrument for rolling bearing unit for supporting wheel
JP2005156507A (en) Load measurement device for rolling bearing unit
JP4911967B2 (en) Wheel bearing with sensor
JP2007292233A (en) Wheel bearing with sensor
JP2005265035A (en) Rolling bearing unit equipped with abnormality detection function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees