JP4368761B2 - Magnetic shield structure and magnetic shield panel on load receiving surface - Google Patents

Magnetic shield structure and magnetic shield panel on load receiving surface Download PDF

Info

Publication number
JP4368761B2
JP4368761B2 JP2004241584A JP2004241584A JP4368761B2 JP 4368761 B2 JP4368761 B2 JP 4368761B2 JP 2004241584 A JP2004241584 A JP 2004241584A JP 2004241584 A JP2004241584 A JP 2004241584A JP 4368761 B2 JP4368761 B2 JP 4368761B2
Authority
JP
Japan
Prior art keywords
magnetic
receiving surface
load receiving
shield
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241584A
Other languages
Japanese (ja)
Other versions
JP2006060093A (en
Inventor
賢 大塚
幸成 高橋
和彦 奥山
泰男 小川
健 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Kajima Corp
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Kajima Corp
Priority to JP2004241584A priority Critical patent/JP4368761B2/en
Publication of JP2006060093A publication Critical patent/JP2006060093A/en
Application granted granted Critical
Publication of JP4368761B2 publication Critical patent/JP4368761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は荷重受け面の磁気シールド構造及び磁気シールドパネルに関し、とくに重量機器等の荷重を受ける面に所要磁気シールド性能を付与する構造及びそれに用いる磁気シールドパネルに関する。   The present invention relates to a magnetic shield structure and a magnetic shield panel for a load receiving surface, and more particularly to a structure for imparting a required magnetic shield performance to a surface receiving a load of a heavy equipment or the like and a magnetic shield panel used therefor.

最近の半導体関連施設・医療施設等では、EB(Electron Beam、電子ビーム)露光装置、EB描画機、MRI(Magnetic Resonance Imaging、磁気共鳴画像診断)装置、NMR(Nuclear Magnetic Resonance、核磁気共鳴)装置、SQUID(Superconducting Quantum Interference Device、超電導量子干渉素子)利用の生体磁気測定装置等の強磁気利用装置を使用することが増えており、強磁気利用装置を環境磁気ノイズから保護して正常な動作を保証するため及び/又は強磁気利用装置の周囲の人や機器に対する磁気的影響を避けるため、磁気シールドルームに対する要求が高まっている。従来の磁気シールドルームは、例えば特許文献1や非特許文献1が開示するように、透磁率の高い磁性材料板(以下、磁性板ということがある。)によりシールド対象空間の壁面を覆う構造(以下、密閉型シールドということがある。)を基本としている。しかし密閉型シールドは、磁性板の材料特性から期待されるようなシールド効果がなかなか得られず、しかも空気や光の透過性がないという問題点がある。   In recent semiconductor-related facilities and medical facilities, EB (Electron Beam) exposure equipment, EB lithography, MRI (Magnetic Resonance Imaging) equipment, NMR (Nuclear Magnetic Resonance) equipment The use of strong magnetic devices such as biomagnetic measuring devices using SQUID (Superconducting Quantum Interference Device) has been increasing, and the strong magnetic devices are protected from environmental magnetic noises and operate normally. In order to guarantee and / or avoid magnetic influences on people and equipment around the strong magnetic devices, there is an increasing demand for magnetic shield rooms. A conventional magnetic shield room has a structure in which a wall surface of a space to be shielded is covered with a magnetic material plate having high permeability (hereinafter also referred to as a magnetic plate) as disclosed in, for example, Patent Document 1 and Non-Patent Document 1. Hereinafter, it is sometimes referred to as a sealed shield.) However, the hermetic shield has a problem in that the shielding effect expected from the material characteristics of the magnetic plate cannot be obtained easily and air and light are not transmitted.

これに対し本発明者等は、簾状に並べた磁性板5の群(以下、磁性簾体という。)を用いて隙間のある磁気シールド構造(以下、開放型シールドということがある。)を開発し、特許文献2に開示した。特許文献2の開放型シールドを、図6及び図7を参照して本発明の理解に必要な限度において説明する。図6(A)は、例えば厚さ0.35mm、幅25mm、長さ300mmの8枚の短冊状磁性板5を、その長さ方向中心軸Cが同一簾面Fにほぼ平行に並ぶように板厚方向に間隔d=30mmで重ねて形成した磁性簾体6の一例を示す。磁性板5の横断面の面積Smと磁性板5の比透磁率μsとの積(Sm・μs)に対する隣接板間隙dの断面積Saの割合(Sm・μs/Sa)を、その板間隙d中の磁束密度が磁性板5中の磁束密度に比し著しく小さくなるように、例えば(Sm・μs)/Sa>1となるように選択する。   On the other hand, the present inventors use a group of magnetic plates 5 arranged in a bowl shape (hereinafter referred to as a magnetic casing) to form a magnetic shield structure with a gap (hereinafter also referred to as an open type shield). Developed and disclosed in US Pat. The open type shield of Patent Document 2 will be described with reference to FIGS. 6 and 7 to the extent necessary for understanding the present invention. FIG. 6A shows an example of eight strip-shaped magnetic plates 5 having a thickness of 0.35 mm, a width of 25 mm, and a length of 300 mm, for example, such that their longitudinal central axes C are arranged substantially parallel to the same ridge surface F. An example of the magnetic housing 6 formed by being overlapped with a distance d = 30 mm in the thickness direction is shown. The ratio (Sm · μs / Sa) of the cross-sectional area Sa of the adjacent plate gap d to the product (Sm · μs) of the cross-sectional area Sm of the magnetic plate 5 and the relative permeability μs of the magnetic plate 5 is defined as the plate gap d. For example, (Sm · μs) / Sa> 1 is selected so that the magnetic flux density in the magnetic plate 5 is significantly smaller than the magnetic flux density in the magnetic plate 5.

図6(A)のように板厚方向間隔dを有する磁性簾体6は、各磁性板5の端縁14を重ね合わせて列状に結合し、図6(B)に示すように磁気的に連続した磁性簾体6の列(以下、列状簾体という。)8を形成することができる。同図は、4つの磁性簾体6a、6b、6c、6dをそれぞれ対応する磁性板5の端縁14の重ね合わせにより列状に結合し、更にその一端側における磁性板5の未結合端縁を他端側の対応する磁性板5の未結合端縁と重ね合わせ結合することにより、磁気的に閉じた環状の列状簾体6(内容積280mm×280mm×280mm)を形成した例である。   As shown in FIG. 6 (A), the magnetic housing 6 having the plate thickness direction interval d overlaps the edges 14 of the magnetic plates 5 and joins them in a row, and as shown in FIG. A row of magnetic housings 6 (hereinafter referred to as a row-like housing) 8 can be formed. In the figure, four magnetic housings 6a, 6b, 6c and 6d are coupled in a row by overlapping the corresponding edge 14 of the magnetic plate 5, and the unbound edge of the magnetic plate 5 at one end thereof. This is an example in which a magnetically closed annular columnar housing 6 (internal volume 280 mm × 280 mm × 280 mm) is formed by overlapping and coupling with the unbonded edge of the corresponding magnetic plate 5 on the other end side. .

図6(B)の列状簾体8を、図8(A)に示す環状コイル(例えばヘルムホルツ・コイル)Lの中央部に設置し、コイルLの中央部に10〜100μTの一方向磁場Mを形成して磁性簾体8の内側中央部の磁気センサ24(例えばガウスメータ)で磁束密度Bを測定し、列状簾体8のシールド係数S(=シールドがない場合の磁束密度B0/シールドがある場合の磁束密度B)を算出した。また比較のため、厚さ0.35mmで幅及び長さが280mm×280mmの4枚の方形磁性板21a、21b、21c、21dにより図6(C)のような立方体形の密閉型シールド体22を作製し、同様に環状コイルLの中央部に設置して密閉型シールド体22のシールド係数Sを算出した。同図(C)の密閉型シールド体22で用いた磁性材料の重量は、同図(B)の列状簾体8で用いた磁性材料の重量とほぼ同じである。10μT、50μT、100μTにおける列状簾体8及び密閉型シールド体22のシールド係数Sを表1に示す。 6B is installed at the center of the annular coil (for example, Helmholtz coil) L shown in FIG. 8A, and the unidirectional magnetic field M of 10 to 100 μT is provided at the center of the coil L. , And the magnetic flux density B is measured by a magnetic sensor 24 (for example, a gauss meter) in the center of the inside of the magnetic housing 8, and the shield coefficient S (= the magnetic flux density B 0 when there is no shield / shield) of the row housing 8 The magnetic flux density B) was calculated when there was. For comparison, a cubic sealed shield 22 as shown in FIG. 6C is formed by four rectangular magnetic plates 21a, 21b, 21c, and 21d having a thickness of 0.35 mm and a width and length of 280 mm × 280 mm. The shield coefficient S of the hermetic shield 22 was calculated in the same manner, and installed at the center of the annular coil L. The weight of the magnetic material used in the sealed shield body 22 in FIG. 10C is substantially the same as the weight of the magnetic material used in the row housing 8 in FIG. Table 1 shows the shield coefficient S of the row housing 8 and the sealed shield body 22 at 10 μT, 50 μT, and 100 μT.

表1は、列状簾体8の10〜100μTの一方向直流磁場Mに対するシールド性能が、密閉型シールド体22に比し2〜3倍程度高いことを示す。すなわち特許文献2の開放型シールドによれば、磁束漏洩が少なく密閉型シールドより高いシールド性能と通気性・透光性とを同時に備えた磁気シールド構造を構築できる。また、所要シールド効果を得るために必要な磁性材料を密閉型シールドに比して節減し、高度な磁気シールド構造を経済的・効率的に構築できる。図6(B)はシールド対象空間を列状簾体8で囲んだ例であるが、列状簾体8は必ずしも対象空間を囲む必要はなく、対象空間の任意シールド対象面に適用できる。   Table 1 shows that the shielding performance against the one-way DC magnetic field M of the row-shaped housing 8 is about 2 to 3 times higher than that of the sealed shield body 22. That is, according to the open type shield of Patent Document 2, it is possible to construct a magnetic shield structure which has less magnetic flux leakage and has higher shielding performance and air permeability / translucency than the sealed type shield. In addition, the magnetic material required to obtain the required shielding effect can be saved compared to the hermetic shield, and an advanced magnetic shield structure can be constructed economically and efficiently. FIG. 6B shows an example in which the shield target space is surrounded by the row-shaped enclosure 8, but the row-like enclosure 8 does not necessarily need to surround the target space, and can be applied to an arbitrary shield target surface in the target space.

図7は、図6(B)に示すような3つの環状の列状簾体81、82、83を、各々の中心軸線A1、A2、A3が交差するように3層の入れ子式構造とした磁気シールド構造を示す。第1の列状簾体81の中空部に、その中心軸線A1と交差する中心軸線A2に沿って、その内径以下の外径の第2の列状簾体82を配置する。更に第2の列状簾体82の中空部に、中心軸線A1及びA2と交差する中心軸線A3に沿って、その内径以下の外径の第3の列状簾体83を配置する。図7の配置により、例えば図5(B)に示すように、シールド対象空間の天井・床・壁の6面全体に、その長さ方向中心軸Cが相互に交差する2層の磁性簾体6が積層された開放型シールド構造を構築できる。磁性簾体6を積層することにより、単層の場合に比し磁気シールド性能を高めることができる。また、例えば第3の列状簾体83の中空部に更に列状簾体8を配置することにより、4層以上のシールド構造とすることも可能である。本発明者等は、図7の3層の入れ子式開放型シールド構造体を作製し、図8(B)に示すようにシールド構造体の中央部に環状コイルLを設置し、コイルLに矢印I向きにMRI装置と同程度の直流電流を流して直流磁場Mを形成し、構造体外側における漏洩磁束を磁気センサ9で測定することにより、開放型シールド構造が受動的シールドだけでなく能動的シールドにも適用可能であることを確認することができた。図7のシールド構造については、本発明者等による国際出願PCT/JP2004/003457の明細書に詳述されている。 FIG. 7 shows a three-layer nested structure in which three annular row-like housings 8 1 , 8 2 , and 8 3 as shown in FIG. 6 (B) are crossed by their respective central axes A 1, A 2, and A 3. The magnetic shield structure made into the structure is shown. A first hollow portion of the column-shaped blind body 81, along the central axis A2 which intersects with the central axis A1, to arrange the second rows blind member 82 of the outer diameter of its inner diameter or less. Furthermore the hollow portion of the second rows blind body 82, along the central axis A3 which intersects the central axis A1 and A2, to arrange the third rows blind body 8 3 of the outer diameter of the inner diameter or less. With the arrangement of FIG. 7, for example, as shown in FIG. 5B, two layers of magnetic enclosures whose longitudinal central axes C intersect each other over the entire six surfaces of the ceiling, floor, and wall of the shielded space. An open type shield structure in which 6 is laminated can be constructed. By laminating the magnetic housing 6, the magnetic shielding performance can be enhanced as compared with the case of a single layer. Further, for example, a shield structure having four or more layers can be formed by further arranging the row-like housing 8 in the hollow portion of the third row-like housing 83. The present inventors made the three-layer nested open type shield structure shown in FIG. 7 and installed an annular coil L at the center of the shield structure as shown in FIG. A direct current equivalent to that of the MRI apparatus is applied in the direction I to form a DC magnetic field M, and the leakage magnetic flux outside the structure is measured by the magnetic sensor 9, so that the open shield structure is not only passively shielded but also actively It was confirmed that it can be applied to the shield. The shield structure of FIG. 7 is described in detail in the specification of the international application PCT / JP2004 / 003457 by the present inventors.

特開平9−162585号公報JP-A-9-162585 特開2002−164686号公報JP 2002-164686 A 岡崎靖雄「電磁シールドとシールド材料」、日本応用磁気学会誌、第26巻第4号、2002年4月Ikuo Okazaki “Electromagnetic Shielding and Shielding Materials”, Journal of Japan Society of Applied Magnetics, Vol. 26, No. 4, April 2002 谷良浩他「電磁鋼板の応力下における磁気特性の測定」、電気学会マグネティックス研究会資料MAG-03-I91、2003年12月Yoshihiro Tani et al. “Measurement of magnetic properties of electromagnetic steel sheets under stress”, IEEJ Magnetics Study Group Material MAG-03-I91, December 2003

特許文献2の開放型シールドのシールド性能は、磁性簾体6における磁性板5の断面積Smと比透磁率μsとの積Sm・μsに対する板間隙dの断面積Saの割合(Sm・μs/Sa)、磁性簾体6の積層数、磁性板5の種類等によって設計できる。しかし、重量機器を設置する磁気シールドルーム等において、その荷重を受ける面(例えば床面)に磁性簾体6を配置した場合は、荷重によって磁性板5の比透磁率μsが低下し、設計通りのシールド性能が得られない場合がある。   The shield performance of the open type shield of Patent Document 2 is the ratio of the cross-sectional area Sa of the plate gap d to the product Sm · μs of the cross-sectional area Sm of the magnetic plate 5 and the relative permeability μs in the magnetic housing 6 (Sm · μs / Sa), the number of laminated magnetic housings 6, the type of magnetic plate 5, and the like. However, in a magnetic shield room or the like where heavy equipment is installed, when the magnetic housing 6 is disposed on the surface that receives the load (for example, the floor surface), the relative permeability μs of the magnetic plate 5 is lowered by the load, and as designed. Shield performance may not be obtained.

例えば非特許文献2は、パーマロイ等の磁性板5の最大比透磁率μrについて、圧縮又は引張応力が加わると無負荷sf(stress free)時の比透磁率μr-sfに対する比透磁率の差分Δμrが増大し、荷重の大きさが10MPaに及んだ時に差分率(Δμr/μr-sf)が0.5に達することを報告している(同文献の図6参照)。この差分率(Δμr/μr-sf)をそのまま特許文献2の磁性簾体6に適用すると、荷重が10MPaに及ぶ場合に(Sm・μs/Sa)の値が半減し、設計通りのシールド性能が発揮できなくなるおそれが生じる。比透磁率μsの低下を見込んで磁性板5の断面積Smを増やす等の対策を採ることも考えられるが、高度な磁気シールド構造を経済的・効率的に構築できるという開放型シールドの利点が失われる。荷重の有無に拘わらず、設計通りのシールド性能が得られる開放型シールドの施工法の開発が望まれている。   For example, Non-Patent Document 2 describes the difference Δμr in relative permeability with respect to the relative permeability μr-sf at the time of no load sf (stress free) with respect to the maximum relative permeability μr of the magnetic plate 5 such as permalloy when a compression or tensile stress is applied. It has been reported that the difference rate (Δμr / μr-sf) reaches 0.5 when the magnitude of the load reaches 10 MPa (see FIG. 6 of the same document). When this difference rate (Δμr / μr-sf) is applied to the magnetic housing 6 of Patent Document 2 as it is, when the load reaches 10 MPa, the value of (Sm · μs / Sa) is halved and the shield performance as designed is achieved. There is a risk that it cannot be used. It is possible to take measures such as increasing the cross-sectional area Sm of the magnetic plate 5 in anticipation of a decrease in the relative permeability μs, but the advantage of the open type shield is that it is possible to construct an advanced magnetic shield structure economically and efficiently. Lost. There is a demand for the development of an open shield construction method that can achieve the shield performance as designed regardless of the presence or absence of load.

そこで本発明の目的は、荷重のない場合と同様のシールド性能が得られる荷重受け面の磁気シールド構造及び磁気シールドパネルを提供することにある。   Therefore, an object of the present invention is to provide a magnetic shield structure and a magnetic shield panel having a load receiving surface that can obtain the same shielding performance as when no load is applied.

図1の実施例を参照するに、本発明による荷重受け面の磁気シールド構造は、剛性版2の荷重受け面A(又はB)に所要間隔dで複数の並列溝3を穿ち、各溝3内にそれぞれ磁性材料板5を荷重伝達がないように遊嵌させてなるものである。ここに「遊嵌」とは、応力の伝達を伴わない嵌合をいう。好ましくは、磁性材料板5の各々の長さ方向中心線Cを荷重受け面A(又はB)とほぼ平行な面F上に芯合わせする(図2参照)。更に好ましくは、荷重受け面A(又はB)に相互に交差する方向の複数組の並列溝3x、3yの群を穿ち、複数組の溝3x、3yの群にそれぞれ磁性材料板5x、5yの群を遊嵌させる。   Referring to the embodiment of FIG. 1, in the magnetic shield structure of the load receiving surface according to the present invention, a plurality of parallel grooves 3 are formed in the load receiving surface A (or B) of the rigid plate 2 at a required interval d, and each groove 3 Each of the magnetic material plates 5 is loosely fitted therein so as not to transmit a load. Here, “free fitting” refers to fitting that does not involve transmission of stress. Preferably, each longitudinal center line C of the magnetic material plate 5 is centered on a surface F substantially parallel to the load receiving surface A (or B) (see FIG. 2). More preferably, a group of a plurality of sets of parallel grooves 3x and 3y in a direction intersecting with the load receiving surface A (or B) is formed, and the group of the plurality of sets of grooves 3x and 3y is provided with magnetic material plates 5x and 5y, respectively. Freely fit the group.

また図3及び図4を参照するに、本発明による磁気シールドパネルは、荷重受け面A(又はB)を有する剛性パネル10、荷重受け面A(又はB)に所要間隔dで穿った並列溝3の群、各溝3内に荷重伝達がないように遊嵌した磁性材料板5の群、及び磁性材料板5の各々の長さ方向中心線Cを荷重受け面A(又はB)とほぼ平行な面F上に芯合わせして保持する保持手段12を備えてなるものである。好ましくは、荷重受け面A(又はB)に相互に交差する方向の複数組の並列溝3x、3yの群を穿ち、複数組の溝3x、3yの群にそれぞれ遊嵌させる複数組の磁性材料板5x、5yの群を設ける。   3 and 4, the magnetic shield panel according to the present invention includes a rigid panel 10 having a load receiving surface A (or B), and a parallel groove formed in the load receiving surface A (or B) at a required interval d. 3, the group of magnetic material plates 5 that are loosely fitted so that no load is transmitted in each groove 3, and the longitudinal center line C of each of the magnetic material plates 5 is substantially the same as the load receiving surface A (or B). It is provided with holding means 12 for holding it in alignment on a parallel surface F. Preferably, a plurality of sets of magnetic materials which are formed in a plurality of sets of parallel grooves 3x, 3y in a direction intersecting with the load receiving surface A (or B) and are loosely fitted in the plurality of sets of grooves 3x, 3y, respectively. A group of plates 5x, 5y is provided.

本発明による荷重受け面の磁気シールド構造は、剛性版の荷重受け面に所要間隔で複数の並列溝を穿ち、各溝内にそれぞれ磁性材料板を荷重伝達がないように遊嵌させるので、次の顕著な効果を奏する。   In the magnetic shield structure of the load receiving surface according to the present invention, a plurality of parallel grooves are drilled at a required interval on the load receiving surface of the rigid plate, and the magnetic material plate is loosely fitted in each groove so that there is no load transmission. Has a remarkable effect.

(イ)荷重受け面にかかる荷重を剛性版の所要間隔で受け、並列溝内に遊嵌させた磁性材料板への応力伝達を避けることができるので、所要間隔の磁性材料板の群により荷重のない場合と同様のシールド性能が得られる。
(ロ)荷重の有無に拘わらず磁性材料板の断面積Smと比透磁率μsと所要間隔dとによりシールド性能を設計することが可能となり、荷重印加時の磁性材料板の比透磁率低下を見込んだ過剰設計等が不要となる。
(ハ)磁性材料板の各々の長さ方向中心線を荷重受け面とほぼ平行な面上に芯合わせすることにより、所要板厚方向間隔の磁性簾体を形成することができ、従来の磁性簾体の場合と同様のシールド性能の設計が可能となる。
(ニ)荷重受け面には相互に交差する方向に複数組の並列溝を穿つことができ、各溝内にそれぞれ交差する方向の磁性材料板を遊嵌させることにより、シールド性能を更に高めてシールド対象磁場に応じて最適な磁気シールド構造を設計することができる。
(ホ)並列溝付きの剛性パネルと各溝内に遊嵌する磁性材料板とを組み合わせた磁気シールドパネルを形成し、各パネルの磁性材料板の端縁を相互に重ね合わせて列状に結合することにより、広い荷重受け面に対しても容易に磁気シールドを施工することが可能となる。
(B) The load applied to the load receiving surface is received at the required interval of the rigid plate, and stress transmission to the magnetic material plate loosely fitted in the parallel groove can be avoided. Shield performance similar to the case without the can be obtained.
(B) Regardless of the presence or absence of a load, the shield performance can be designed based on the cross-sectional area Sm, the relative permeability μs, and the required interval d of the magnetic material plate, and the relative permeability of the magnetic material plate can be reduced when a load is applied. Expected overdesign is not necessary.
(C) By aligning the lengthwise center line of each magnetic material plate on a surface substantially parallel to the load receiving surface, it is possible to form a magnetic housing having a required interval in the plate thickness direction. It is possible to design a shield performance similar to that of the case.
(D) The load receiving surface can be provided with a plurality of sets of parallel grooves in the direction intersecting each other, and the shielding performance is further enhanced by loosely fitting the magnetic material plates in the intersecting directions in the respective grooves. An optimum magnetic shield structure can be designed according to the magnetic field to be shielded.
(E) A magnetic shield panel is formed by combining a rigid panel with parallel grooves and a magnetic material plate that fits loosely in each groove, and the edges of the magnetic material plates of each panel are overlapped with each other and connected in a row By doing so, it is possible to easily construct a magnetic shield even on a wide load receiving surface.

図1は、図5に示すような磁気シールドルーム20a、20bの重量機器等が設置される床基盤1上に本発明を適用した実施例を示す。図示例の床基盤1は、例えば厚さ300mm程度のコンクリート製スラブである。図5(A)は、天井及び側壁が磁性板で覆われた従来の密閉型シールドルーム20aの床に本発明を適用した例であり、同図(B)は、図7を参照して上述したように天井・床・側壁の6面全体に磁性簾体6を設けた開放型シールドルーム20bの床に本発明を適用した例である。ただし、本発明は床への適用に限定されず、荷重を受ける壁・天井等に適用することも可能である。   FIG. 1 shows an embodiment in which the present invention is applied to a floor base 1 on which heavy equipment and the like of magnetic shield rooms 20a and 20b as shown in FIG. 5 are installed. The floor base 1 in the illustrated example is a concrete slab having a thickness of about 300 mm, for example. FIG. 5A is an example in which the present invention is applied to the floor of a conventional sealed shield room 20a whose ceiling and side walls are covered with a magnetic plate, and FIG. 5B is described above with reference to FIG. As described above, the present invention is applied to the floor of the open shield room 20b in which the magnetic casing 6 is provided on the entire six surfaces of the ceiling, floor, and side walls. However, the present invention is not limited to the application to the floor, but can also be applied to walls, ceilings and the like that receive a load.

図示例の磁気シールド構造は、床基盤1と対向する荷重受け面Aを有し且つその荷重受け面Aに所要間隔dで複数の並列溝3が穿たれた剛性版2と、各溝3内に荷重伝達がないように遊嵌して荷重受け面Aと交差する磁性板5の群とを有する。例えば、床基盤1上に板厚方向の間隔dで床面とほぼ平行な簾面Fの磁性簾体6(図2参照)を形成するように磁性板5の群を配置し、その磁性板5の上方から荷重受け面Aの並列溝3にそれぞれ磁性板5が遊嵌するように剛性版2を床基盤1上に載置する。図示例では床基盤1と対応する大きさの単独の剛性版2を載置しているが、剛性版2の大きさは施工性等に応じて任意に選択できる。例えば、図3に示すように、比較的小面積の荷重受け面Aを有する複数の剛性版2を相互に隣接させて床基盤1上に載置してもよい。   The magnetic shield structure in the illustrated example has a rigid plate 2 having a load receiving surface A facing the floor base 1 and having a plurality of parallel grooves 3 formed in the load receiving surface A at a required interval d, and in each groove 3. And a group of magnetic plates 5 which are loosely fitted so as not to transmit load and intersect the load receiving surface A. For example, a group of magnetic plates 5 is arranged on the floor base 1 so as to form a magnetic housing 6 (see FIG. 2) having a flange surface F substantially parallel to the floor surface at a distance d in the plate thickness direction. The rigid plate 2 is placed on the floor base 1 so that the magnetic plates 5 are loosely fitted to the parallel grooves 3 on the load receiving surface A from above 5 respectively. In the illustrated example, a single rigid plate 2 having a size corresponding to the floor base 1 is placed, but the size of the rigid plate 2 can be arbitrarily selected according to workability and the like. For example, as shown in FIG. 3, a plurality of rigid plates 2 having a load receiving surface A having a relatively small area may be placed on the floor base 1 adjacent to each other.

図示例では、磁気シールド性能を高めるため、床基盤1上に2組の磁性板5xの群及び磁性板5yの群を格子状に配置して2層の磁性簾体6x、6yを積層し、それに応じて剛性版2の荷重受け面Aにそれぞれ磁性簾体6x、6yと遊嵌する格子状の2組の並列溝3x及び3yを設けている。ただし、本発明は1組の磁性板5の群を有するものであれば足り、剛性版2の荷重受け面Aには1組の並列溝3があれば足りる。また、磁気シールド性能を更に高める必要がある場合は、床基盤1上に3組以上の磁性板5の群を積層・配置して3層以上の磁性簾体6を設けることができる。   In the illustrated example, in order to improve the magnetic shielding performance, two groups of magnetic plates 5x and a group of magnetic plates 5y are arranged in a lattice pattern on the floor base 1, and two layers of magnetic housings 6x and 6y are laminated. Accordingly, two lattice-like parallel grooves 3x and 3y are provided on the load receiving surface A of the rigid plate 2 so as to be loosely fitted to the magnetic housings 6x and 6y, respectively. However, the present invention suffices if it has a group of a pair of magnetic plates 5, and a pair of parallel grooves 3 is sufficient on the load receiving surface A of the rigid plate 2. When it is necessary to further improve the magnetic shield performance, three or more groups of magnetic plates 5 can be laminated and arranged on the floor base 1 to provide three or more layers of magnetic housings 6.

図2(A)は2層の磁性簾体6x、6yの形成方法を示す。図示例の磁性簾体6xは、複数の所定幅Wxの磁性板5xをその長さ方向中心軸Cxが床基盤1とほぼ平行な簾面Fx上に、所要板厚方向間隔dxでほぼ平行に並ぶように重ねて形成する。例えば、図5(A)のように床基盤1の周縁に設けた適当な固定用枠体又は支持枠体25により、各磁性板5xが荷重受け面Aと交差するように各磁性板5xの端縁14を支持する。ただし、各磁性板5xの中心軸Cxの回りの角度位置は磁性板5x毎に相違していてもよい。図5(B)のように側壁に磁性簾体を設けた開放型シールドルーム20bの場合は、各磁性板5xの端縁14を側壁の磁性簾体の端縁〈下端縁)と結合して支持することができる。また、後述する剛性版2の並列溝3内に、剛性版2への荷重が伝達されないように各磁性板5xを支持する適当な位置決め部材等を設けてもよい。各磁性板5xの板間隔dxは必ずしも全て同じである必要はなく、磁性板5xの位置によって板間隔dxが相違してもよい。   FIG. 2A shows a method of forming the two-layer magnetic housings 6x and 6y. In the illustrated magnetic case 6x, a plurality of magnetic plates 5x having a predetermined width Wx are substantially parallel to each other with a required plate thickness direction interval dx on a flange surface Fx whose longitudinal center axis Cx is substantially parallel to the floor base 1. Overlapping to form. For example, as shown in FIG. 5 (A), each magnetic plate 5x is arranged so that each magnetic plate 5x intersects the load receiving surface A by an appropriate fixing frame or support frame 25 provided on the periphery of the floor base 1. Supports the edge 14. However, the angular position around the central axis Cx of each magnetic plate 5x may be different for each magnetic plate 5x. In the case of the open type shield room 20b having a magnetic housing on the side wall as shown in FIG. 5B, the end edge 14 of each magnetic plate 5x is coupled to the end edge <lower end edge> of the magnetic housing on the side wall. Can be supported. Further, an appropriate positioning member or the like for supporting each magnetic plate 5x may be provided in a parallel groove 3 of the rigid plate 2 described later so that a load to the rigid plate 2 is not transmitted. The plate intervals dx of the magnetic plates 5x are not necessarily the same, and the plate intervals dx may be different depending on the positions of the magnetic plates 5x.

磁性簾面6xに積層する磁性簾体6yは、磁性板5xの長さ方向中心軸Cxと交差する方向の長さ方向中心線Cyの複数の所定幅Wyの磁性板5yを、その長さ方向中心軸Cyが床基盤1及び磁性簾面Fxとほぼ平行な簾面Fy上に、所要板厚方向間隔dyでほぼ平行に並ぶように重ねて形成する。各磁性板5yの端縁14も、各磁性板5yと荷重受け面Aとが交差するように、例えば図5に示す固定用枠体又は支持枠体25又は側壁の磁性簾体によって支持することができる。各磁性板5yの中心軸Cyの周りの角度位置及び各磁性板5yの板間隔dyは、磁性板5y毎に相違してもよい。   The magnetic housing 6y laminated on the magnetic housing surface 6x is composed of a plurality of magnetic plates 5y having a predetermined width Wy of a longitudinal center line Cy in a direction intersecting with the longitudinal central axis Cx of the magnetic plate 5x. The central axis Cy is formed on the floor base 1 and the saddle face Fy substantially parallel to the magnetic saddle face Fx so as to be aligned substantially parallel to each other at a required plate thickness direction interval dy. The edge 14 of each magnetic plate 5y is also supported by, for example, a fixing frame or support frame 25 shown in FIG. 5 or a magnetic housing on the side wall so that each magnetic plate 5y and the load receiving surface A intersect each other. Can do. The angular position around the central axis Cy of each magnetic plate 5y and the plate interval dy of each magnetic plate 5y may differ for each magnetic plate 5y.

複数の磁性簾体6x、6yを積層する磁気シールド構造では、各磁性簾体6x、6yの磁性板5x、5yの中心線Cx、Cyの向き(以下、簾体向きということがある。)の選択により、シールド性能を調節することが可能である。本発明者等の実験によれば、図示例のように2層の磁性簾体6x、6yの簾体向きを相互に直交させて積層することによりシールド性能を最も高めることができるが、要求されるシールド性能に応じて簾体6x、6yの簾体向きを適当な交差角度としてシールド性能を調節することができる。また、磁性簾体6x、6yを積層する磁気シールド構造では、隣接する磁性簾体6x、6yの間に空隙層を介在させることにより、磁性材料の使用量を増やさずにシールド性能を向上させることも可能である。   In the magnetic shield structure in which a plurality of magnetic casings 6x and 6y are stacked, the direction of the center lines Cx and Cy of the magnetic plates 5x and 5y of each magnetic casing 6x and 6y (hereinafter also referred to as the casing direction). The shield performance can be adjusted by selection. According to the experiments by the present inventors, the shielding performance can be maximized by laminating the two-layer magnetic housings 6x and 6y so that the housing directions thereof are orthogonal to each other as shown in the example. Depending on the shield performance, the shield performance can be adjusted with the housing orientation of the housings 6x and 6y as an appropriate crossing angle. In addition, in the magnetic shield structure in which the magnetic housings 6x and 6y are laminated, the shielding performance can be improved without increasing the amount of magnetic material used by interposing a gap layer between the adjacent magnetic housings 6x and 6y. Is also possible.

図示例の剛性版2は、例えばコンクリート製、金属製又は樹脂製の剛性パネルとすることができる。剛性版2の床基盤1と対向する荷重受け面Aに、磁性簾体6xの板厚方向間隔dxに対応する間隔の並列溝3xと、磁性簾体6yの板厚方向間隔dyに対応する間隔の並列溝3yとを、各磁性簾体6x、6yの簾体向きに対応する交差角度で形成する。図示例では並列溝3x、3yを直交向きに穿ち、全ての溝3x、3yの深さpを磁性簾体6x(磁性板5x)の所定幅Wxと磁性簾体6y(磁性板5y)の所定幅Wyとの和以上(p≧Wx+Wy)としているが、並列溝3xの深さpは磁性簾体6x(磁性板5x)の所定幅Wx以上であればよい。各溝3x、3yの幅は、各磁性板5x、5yの厚さと中心軸Cx、Cyの周りの角度位置とを考慮して、磁性板5x、5yが接触しない適当な大きさとする。剛性版2をコンクリート製とする場合は、現場で上述した並列溝3x、3yの形状にコンクリートを打設してもよい。   The rigid plate 2 in the illustrated example can be a rigid panel made of, for example, concrete, metal, or resin. On the load receiving surface A facing the floor base 1 of the rigid plate 2, the parallel groove 3x having an interval corresponding to the plate thickness direction interval dx of the magnetic housing 6x and the interval corresponding to the plate thickness direction interval dy of the magnetic housing 6y The parallel grooves 3y are formed at an intersecting angle corresponding to the housing direction of the magnetic housings 6x and 6y. In the illustrated example, parallel grooves 3x and 3y are drilled in an orthogonal direction, and the depth p of all the grooves 3x and 3y is set to a predetermined width Wx of the magnetic casing 6x (magnetic plate 5x) and a predetermined width of the magnetic casing 6y (magnetic plate 5y). Although the sum of the width Wy and the sum (p ≧ Wx + Wy) is set, the depth p of the parallel grooves 3x may be equal to or greater than the predetermined width Wx of the magnetic housing 6x (magnetic plate 5x). The width of each of the grooves 3x and 3y is set to an appropriate size that does not contact the magnetic plates 5x and 5y in consideration of the thickness of each magnetic plate 5x and 5y and the angular position around the central axes Cx and Cy. When the rigid plate 2 is made of concrete, the concrete may be placed in the shape of the parallel grooves 3x and 3y described above on site.

図示例の剛性版2を、荷重受け面Aの並列溝3x、3yと各磁性簾体6x、6yの磁性板5x、5yとを位置合わせしつつ下降させて床基盤1上に載置することにより、図2(B)の断面図に示すように各磁性板5x、5yを並列溝3x、3yに遊嵌させ、2層の磁性簾体6x、6yを並列溝3x、3y内に包含させる。磁性簾体6x、6yを剛性版2の並列溝3x、3yに遊嵌させることにより、図1の矢印で示すように剛性版2に荷重Gが加わったとしても、床基盤1の反力がこの荷重Gと平衡するので磁性簾体6x、6yへの応力の伝達を避けることができる。従って、荷重Gの印加により磁性板5x、5yの比透磁率μsが低下するおそれがなく、荷重Gの有無に拘わらず磁性簾体6x、6yの設計通りのシールド性能を長期間安定的に維持できる。   The rigid plate 2 of the illustrated example is lowered and placed on the floor base 1 while aligning the parallel grooves 3x, 3y of the load receiving surface A and the magnetic plates 5x, 5y of the magnetic housings 6x, 6y. Thus, as shown in the cross-sectional view of FIG. 2B, the magnetic plates 5x and 5y are loosely fitted in the parallel grooves 3x and 3y, and the two-layer magnetic housings 6x and 6y are included in the parallel grooves 3x and 3y. . Even if a load G is applied to the rigid plate 2 as shown by the arrows in FIG. 1 by loosely fitting the magnetic casings 6x and 6y into the parallel grooves 3x and 3y of the rigid plate 2, the reaction force of the floor base 1 is Since it balances with this load G, the transmission of stress to the magnetic housings 6x and 6y can be avoided. Therefore, there is no possibility that the relative permeability μs of the magnetic plates 5x and 5y is reduced by applying the load G, and the shield performance as designed for the magnetic housings 6x and 6y is stably maintained for a long time regardless of the presence or absence of the load G. it can.

こうして本発明の目的である「荷重のない場合と同様のシールド性能が得られる荷重受け面の磁気シールド構造及び磁気シールドパネル」の提供が達成できる。   Thus, provision of “a magnetic shield structure and magnetic shield panel of a load receiving surface capable of obtaining the same shielding performance as that without a load”, which is an object of the present invention, can be achieved.

なお、剛性版2はシールドルーム20a、20bの床面全体に設ける必要はなく、重量機器等が設置される箇所に部分的に設ければ足りる。また、剛性版2の並列溝3x、3yを介して通気性や放熱性、透光性等を確保することができ、必要に応じて強度に影響を与えない範囲内で剛性版2に貫通孔を設けることもできるので、磁性簾体6x、6yを剛性版2の並列溝3x、3yに遊嵌させた場合でも、高いシールド性能と通気性・透光性とを同時に備えた開放型シールドの利点を維持することができる。更に、図示例では床基盤1上に載置する剛性版2に並列溝3x、3yを形成しているが、可能であれば床基盤1を剛性版2としてその荷重受け面(表面)に並列溝3x、3yを形成し、床基盤1の並列溝3x、3yに磁性簾体6x、6yを荷重伝達がないように遊嵌させて本発明の磁気シールド構造とすることも可能である。   The rigid plate 2 does not need to be provided on the entire floor surface of the shield rooms 20a and 20b, and may be provided partially at a place where heavy equipment or the like is installed. In addition, air permeability, heat dissipation, translucency, etc. can be ensured through the parallel grooves 3x, 3y of the rigid plate 2, and if necessary, the through hole is provided in the rigid plate 2 within a range that does not affect the strength. Even when the magnetic housings 6x and 6y are loosely fitted in the parallel grooves 3x and 3y of the rigid plate 2, an open type shield that has both high shielding performance and air permeability and translucency is provided. Benefits can be maintained. Further, in the illustrated example, the parallel grooves 3x and 3y are formed in the rigid plate 2 placed on the floor base 1, but if possible, the floor base 1 can be used as the rigid plate 2 in parallel with its load receiving surface (surface). It is also possible to form the magnetic shield structure of the present invention by forming the grooves 3x and 3y and loosely fitting the magnetic casings 6x and 6y into the parallel grooves 3x and 3y of the floor base 1 so as not to transmit the load.

図3は、剛性パネル10の荷重受け面Aに設けた並列溝3内に磁性簾体6を保持した本発明の磁気シールドパネル9の実施例を示す。図示例の磁気シールドパネル9は、剛性パネル10の荷重受け面Aに所要間隔dで並列溝3の群を穿ち、各溝3内に磁性板5を群荷重伝達がないように遊嵌させ、保持手段12により各磁性板5の長さ方向中心線Cを荷重受け面Aとほぼ平行な面F上に芯合わせして保持したものである。各磁性板5の中心線Cを同じ面F上に芯合わせすることにより、並列溝3内に内蔵された磁性簾体6を形成する。図示例では、並列溝3内に荷重伝達のないように磁性板5を支持する位置合わせ部材を保持手段12としているが、並列溝3内に磁性板5の位置合わせ用のスリット等を形成して保持手段12としてもよい。並列溝3内に磁性板5の遊嵌を助けるための割出し手段(図示せず)を設けてもよい。   FIG. 3 shows an embodiment of the magnetic shield panel 9 of the present invention in which the magnetic housing 6 is held in the parallel groove 3 provided on the load receiving surface A of the rigid panel 10. The magnetic shield panel 9 in the illustrated example has a group of parallel grooves 3 formed on the load receiving surface A of the rigid panel 10 at a required interval d, and a magnetic plate 5 is loosely fitted in each groove 3 so that no group load is transmitted. The center line C in the length direction of each magnetic plate 5 is centered and held on a surface F substantially parallel to the load receiving surface A by the holding means 12. By aligning the center line C of each magnetic plate 5 on the same plane F, the magnetic housing 6 built in the parallel groove 3 is formed. In the illustrated example, an alignment member that supports the magnetic plate 5 so as not to transmit load in the parallel groove 3 is used as the holding means 12. However, a slit for alignment of the magnetic plate 5 is formed in the parallel groove 3. The holding means 12 may be used. Indexing means (not shown) for assisting loose fitting of the magnetic plate 5 may be provided in the parallel grooves 3.

剛性パネル10の一例は、例えば水平断面矩形のコンクリート製、金属製又は樹脂製パネルである。図示例の剛性パネル10は、図1の剛性版2と同様に荷重受け面Aに相互に交差する方向の複数組の並列溝3x、3yが設け、各並列溝3x、3yにそれぞれ磁性板5x、5yを遊嵌させて2層の磁性簾体6x、6yを内蔵させている。ただし、本発明の磁気シールドパネル9は1組の並列溝3と1組の磁性簾体6とを有するものであれば足りる。好ましくは、各並列溝3x、3yに遊嵌させる磁性簾体6x、6yの両端を荷重受け面Aの端縁から突出させ、相互に隣接して配置する各剛性パネル10の磁性簾体6x、6yの端縁を重ね合わせて結合する。なお図示例のパネル10は、剛性パネル10の四周側面を溝3の半割り形状とし、隣接する剛性パネル10の位置合わせの便を図っている。   An example of the rigid panel 10 is a concrete, metal, or resin panel having a rectangular horizontal cross section, for example. The rigid panel 10 in the illustrated example is provided with a plurality of sets of parallel grooves 3x and 3y in a direction intersecting with the load receiving surface A in the same manner as the rigid plate 2 in FIG. 1, and each of the parallel grooves 3x and 3y has a magnetic plate 5x. , 5y is loosely fitted, and two layers of magnetic housings 6x and 6y are incorporated. However, the magnetic shield panel 9 of the present invention only needs to have one set of parallel grooves 3 and one set of magnetic housings 6. Preferably, both ends of the magnetic housings 6x, 6y loosely fitted in the parallel grooves 3x, 3y protrude from the edge of the load receiving surface A, and the magnetic housings 6x of the rigid panels 10 arranged adjacent to each other, Combine 6y edges to overlap. In the illustrated example panel 10, the four circumferential side surfaces of the rigid panel 10 have a half-divided shape of the groove 3 to facilitate the alignment of the adjacent rigid panels 10.

例えば工場で剛性パネル10の並列溝3内に磁性簾体6を遊嵌させ、磁性簾体6が内蔵された磁気シールドパネル9として現場に搬送して据付ける。複数の磁気シールドパネル9を、図5に示すシールドルーム20a、20bの床基盤1上に相互に隣接させて敷設することにより、上述した磁気シールド構造を簡単に且つ迅速に施工することができる。図示例の符号11は、剛性パネル10の表面に設けたフローリング材、絨毯、ビニールタイル、塗装等の床仕上げ材を示す。なお、図示例では、剛性パネル10の荷重受け面Aを床基盤1に対向させて載置しているが、荷重受け面Bを床基盤1に対向させて載置する方法も考えられる。また、並列溝3内に遊嵌する磁性板5を取り外し可能とし、要求される磁気シールド性能に応じて磁気シールドパネル9に内蔵する磁性板5の数や種類を調節可能とすることができる。   For example, the magnetic housing 6 is loosely fitted in the parallel groove 3 of the rigid panel 10 at the factory, and is transported and installed on the site as a magnetic shield panel 9 incorporating the magnetic housing 6. By laying a plurality of magnetic shield panels 9 adjacent to each other on the floor base 1 of the shield rooms 20a and 20b shown in FIG. 5, the above-described magnetic shield structure can be easily and quickly constructed. Reference numeral 11 in the illustrated example indicates a floor finish material such as a flooring material, a carpet, a vinyl tile, or a paint provided on the surface of the rigid panel 10. In the illustrated example, the load receiving surface A of the rigid panel 10 is placed facing the floor base 1, but a method of placing the load receiving surface B facing the floor base 1 is also conceivable. Further, the magnetic plate 5 loosely fitted in the parallel groove 3 can be removed, and the number and type of the magnetic plates 5 built in the magnetic shield panel 9 can be adjusted according to the required magnetic shield performance.

図4は、本発明の磁気シールドパネル9の他の実施例を示す。この例では、図5に示す磁気シールドルーム20bの床を、床基盤1上に高さ調節可能な支持脚16で床板15及び床仕上げ材11を支持した二重床構造とし、二重床の床下空隙に磁性簾体6を配置している。二重床の重量機器を載置する部分を二重床と同じ高さの磁気シールドパネル9で置き換え、磁気シールドパネル9に内蔵された磁性簾体6の端縁を床下空隙に配置した磁性簾体6の端縁と重ね合わせて結合する。単独又は一方向に並べた磁気シールドパネル9を、アングル部材17及びボルト・ナット18の組み合わせ等の固定手段により床基盤1に固定する。この磁気シールドパネル9は、少数の部材により独立の重量磁気機器を安全に磁気遮蔽すると共に機械的に安定な姿勢で支持する。   FIG. 4 shows another embodiment of the magnetic shield panel 9 of the present invention. In this example, the floor of the magnetic shield room 20b shown in FIG. 5 has a double floor structure in which the floor plate 15 and the floor finishing material 11 are supported on the floor base 1 by the support legs 16 whose height is adjustable. A magnetic housing 6 is disposed in the underfloor space. A part of the double floor where heavy equipment is placed is replaced with a magnetic shield panel 9 having the same height as the double floor, and the edge of the magnetic housing 6 built in the magnetic shield panel 9 is disposed in the space below the floor. It overlaps and joins with the edge of the body 6. The magnetic shield panels 9 singly or arranged in one direction are fixed to the floor base 1 by fixing means such as a combination of an angle member 17 and bolts and nuts 18. The magnetic shield panel 9 safely shields an independent heavy magnetic device with a small number of members and supports it in a mechanically stable posture.

本発明の磁気シールド構造は、例えば半導体関連施設・医療施設等において、強磁気利用装置の受動的及び/又は能動的磁気シールドに広く適用できる。また、変電所における電力幹線やトランス、建築物のコンピュータルームや電気室等に対して受動的及び/又は能動的磁気シールドを付与する場合にも利用できる。   The magnetic shield structure of the present invention can be widely applied to passive and / or active magnetic shields of devices using strong magnetism, for example, in semiconductor-related facilities and medical facilities. It can also be used to provide passive and / or active magnetic shields for power trunks and transformers in substations, computer rooms and electrical rooms in buildings, and the like.

本発明の磁気シールド構造の一実施例の説明図である。It is explanatory drawing of one Example of the magnetic shield structure of this invention. 図1の磁気シールド構造における磁性材料板の配置図及び部分的断面図である。FIG. 2 is a layout view and a partial cross-sectional view of a magnetic material plate in the magnetic shield structure of FIG. 1. 本発明の磁気シールド構造の他の実施例の説明図である。It is explanatory drawing of the other Example of the magnetic shield structure of this invention. 本発明の磁気シールド構造の更に他の実施例の説明図である。It is explanatory drawing of other Example of the magnetic shield structure of this invention. 本発明の磁気シールド構造を用いたシールドルームの説明図である。It is explanatory drawing of the shield room using the magnetic shield structure of this invention. 簾型磁気シールド方法の説明図である。It is explanatory drawing of a saddle type magnetic shielding method. 本発明の磁気シールド構造を用いたシールドルームの構成方法の説明図である。It is explanatory drawing of the structural method of the shield room using the magnetic shield structure of this invention. 簾型磁気シールドのシールド性能計測方法の説明図である。It is explanatory drawing of the shield performance measuring method of a saddle type magnetic shield.

符号の説明Explanation of symbols

1…床基盤 2…剛性版(パネル)
3…溝
5…磁性材料板(磁性板) 6…磁性簾体
7…積層磁性簾体 8…列状磁性簾体
9…磁気シールドパネル
10…剛性パネル 11…仕上げ材
12…保持手段 14…磁性材料板の端部
15…床板 16…支持脚
17…アングル部材 18…ボルト・ナット
20…磁気シールドルーム 21…方形磁性板
22…磁気シールド体
24…磁気センサ 25…支持枠体
A、B…荷重受け面 C…長さ方向中心線
d…間隔 F…簾面
G…荷重 I…電流
L…電流担体(コイル) M…磁場
S…シールド係数
1 ... Floor base 2 ... Rigid plate (panel)
DESCRIPTION OF SYMBOLS 3 ... Groove 5 ... Magnetic material board (magnetic board) 6 ... Magnetic casing 7 ... Laminated magnetic casing 8 ... Row-shaped magnetic casing 9 ... Magnetic shield panel
10 ... Rigid panel 11 ... Finishing material
12 ... Holding means 14 ... End of magnetic material plate
15 ... floor board 16 ... support legs
17 ... Angle member 18 ... Bolt / Nut
20… Magnetic shield room 21… Square magnetic plate
22… Magnetic shield
24 ... Magnetic sensor 25 ... Support frame A, B ... Load receiving surface C ... Longitudinal center line d ... Distance F ... Saddle G ... Load I ... Current L ... Current carrier (coil) M ... Magnetic field S ... Shield coefficient

Claims (8)

剛性版の荷重受け面に所要間隔で複数の並列溝を穿ち、前記各溝内にそれぞれ磁性材料板を荷重伝達がないように遊嵌させてなる荷重受け面の磁気シールド構造。   A magnetic shield structure of a load receiving surface in which a plurality of parallel grooves are formed at a predetermined interval on a load receiving surface of a rigid plate, and a magnetic material plate is loosely fitted in each groove so as not to transmit load. 請求項1の磁気シールド構造において、前記磁性材料板の各々の長さ方向中心線を荷重受け面とほぼ平行な面上に芯合わせしてなる荷重受け面の磁気シールド構造。   2. The magnetic shield structure according to claim 1, wherein each of the magnetic material plates is centered on a longitudinal center line on a surface substantially parallel to the load receiving surface. 請求項1又は2の磁気シールド構造において、前記磁性材料板を、前記溝の長さ方向に延在する短冊状磁性材料板としてなる荷重受け面の磁気シールド構造。   3. The magnetic shield structure according to claim 1, wherein the magnetic material plate is a strip-shaped magnetic material plate extending in the length direction of the groove. 請求項1から3の何れかの磁気シールド構造において、前記荷重受け面に相互に交差する方向の複数組の前記並列溝の群を穿ち、前記複数組の溝の群にそれぞれ前記磁性材料板の群を遊嵌させてなる荷重受け面の磁気シールド構造。   4. The magnetic shield structure according to claim 1, wherein a plurality of sets of the parallel grooves in a direction intersecting with the load receiving surface is formed, and the magnetic material plates are respectively formed in the plurality of sets of grooves. A magnetic shield structure with a load-bearing surface formed by loosely fitting a group. 荷重受け面を有する剛性パネル、前記荷重受け面に所要間隔で穿った並列溝の群、前記各溝内に荷重伝達がないように遊嵌した磁性材料板の群、及び前記磁性材料板の各々の長さ方向中心線を荷重受け面とほぼ平行な面上に芯合わせして保持する保持手段を備えてなる磁気シールドパネル。   Each of the rigid panel having a load receiving surface, a group of parallel grooves perforated in the load receiving surface at a required interval, a group of magnetic material plates loosely fitted so that no load is transmitted in each groove, and each of the magnetic material plates A magnetic shield panel comprising holding means for holding the center line in the longitudinal direction on a plane substantially parallel to the load receiving surface. 請求項5の磁気シールドパネルにおいて、前記磁性材料板を、前記溝内の長さ方向に延在する短冊状磁性材料板としてなる磁気シールドパネル。   6. The magnetic shield panel according to claim 5, wherein the magnetic material plate is a strip-shaped magnetic material plate extending in a length direction in the groove. 請求項5又は6の磁気シールドパネルにおいて、前記荷重受け面に相互に交差する方向の複数組の前記並列溝の群を穿ち、前記複数組の溝の群にそれぞれ遊嵌させる複数組の磁性材料板の群を設け、なる磁気シールドパネル。   The magnetic shield panel according to claim 5 or 6, wherein a plurality of sets of the parallel grooves in the direction intersecting with each other on the load receiving surface are formed, and the plurality of sets of magnetic materials are respectively loosely fitted into the plurality of sets of grooves. A magnetic shield panel made up of a group of plates. 請求項5から7の何れかの磁気シールドパネルにおいて、前記剛性パネルをコンクリート製、金属製又は樹脂製としてなる磁気シールドパネル。   The magnetic shield panel according to any one of claims 5 to 7, wherein the rigid panel is made of concrete, metal or resin.
JP2004241584A 2004-08-20 2004-08-20 Magnetic shield structure and magnetic shield panel on load receiving surface Expired - Fee Related JP4368761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241584A JP4368761B2 (en) 2004-08-20 2004-08-20 Magnetic shield structure and magnetic shield panel on load receiving surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241584A JP4368761B2 (en) 2004-08-20 2004-08-20 Magnetic shield structure and magnetic shield panel on load receiving surface

Publications (2)

Publication Number Publication Date
JP2006060093A JP2006060093A (en) 2006-03-02
JP4368761B2 true JP4368761B2 (en) 2009-11-18

Family

ID=36107294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241584A Expired - Fee Related JP4368761B2 (en) 2004-08-20 2004-08-20 Magnetic shield structure and magnetic shield panel on load receiving surface

Country Status (1)

Country Link
JP (1) JP4368761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787635B2 (en) * 2006-03-10 2011-10-05 東急建設株式会社 Magnetic shield structure
JP5727838B2 (en) * 2011-03-31 2015-06-03 鹿島建設株式会社 Magnetic shield room
CN112469258B (en) * 2020-10-28 2022-03-01 西安电子科技大学 Double-gap electromagnetic shielding system, design method thereof and microwave circuit

Also Published As

Publication number Publication date
JP2006060093A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4347847B2 (en) Open type magnetic shield structure and magnetic body frame thereof
JP3633475B2 (en) Interdigital transducer method and panel, and magnetic darkroom
US8531185B2 (en) Magnetic shield body and magnetic shielded room
JP4368761B2 (en) Magnetic shield structure and magnetic shield panel on load receiving surface
JP5404272B2 (en) Magnetic shield method and structure
JP2008160027A (en) Magnetic shielding body and magnetic shielding room
WO2007074690A1 (en) Blade material for magnetic shield and louver body for magnetic shielding
JP5388365B2 (en) Magnetic shield room design method and program for strong magnetic field generator
JP5328593B2 (en) Open type magnetic shield structure
JP5674269B2 (en) Structure
JP2005294537A (en) Panel-type coil, uniform magnetic field generator, gradient magnetic field generator and magnetic field canceling device
JP2007103854A (en) Magnetic shield apparatus
JP6022411B2 (en) Wide frequency compatible magnetic shield panel and structure
JP4605778B2 (en) Magnetic shield housing and connection structure thereof
JP6628407B2 (en) Low leakage shaking type open magnetic shield structure
JP3217466U (en) Magnetic shield room
JP4919433B2 (en) Magnetic shield blade material and method of manufacturing the same
JP7079481B2 (en) Magnetic shield room
JP5727838B2 (en) Magnetic shield room
JP3749587B2 (en) Method of residual magnetic shielding on floor
US20020167383A1 (en) Space defining structure for magnetic homogenization
JPH05183290A (en) Panel for magnetic shield
JPH03121048A (en) Shield room for mri
JP2005032814A (en) Earthquake-resistant structure transformer
JP4758561B2 (en) Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees