JP4368606B2 - Electrode for plasma torch and plasma cutting method - Google Patents

Electrode for plasma torch and plasma cutting method Download PDF

Info

Publication number
JP4368606B2
JP4368606B2 JP2003096194A JP2003096194A JP4368606B2 JP 4368606 B2 JP4368606 B2 JP 4368606B2 JP 2003096194 A JP2003096194 A JP 2003096194A JP 2003096194 A JP2003096194 A JP 2003096194A JP 4368606 B2 JP4368606 B2 JP 4368606B2
Authority
JP
Japan
Prior art keywords
electrode
electrode material
plasma
current value
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003096194A
Other languages
Japanese (ja)
Other versions
JP2004298940A (en
Inventor
義美 佐野
大輔 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Tanaka Corp
Original Assignee
Nissan Tanaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Tanaka Corp filed Critical Nissan Tanaka Corp
Priority to JP2003096194A priority Critical patent/JP4368606B2/en
Publication of JP2004298940A publication Critical patent/JP2004298940A/en
Application granted granted Critical
Publication of JP4368606B2 publication Critical patent/JP4368606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸素ガスをプラズマ化して被切断材を切断するプラズマトーチ用の電極およびそれを用いたプラズマ切断方法に関する。
【0002】
【従来の技術】
プラズマトーチから鋼板に向けてプラズマアークを噴射して母材を溶融させると共に、溶融した母材を排除しつつプラズマトーチを連続的に移動させることで鋼板を切断するプラズマ切断方法が実用化されている。このプラズマ切断方法では、ガス切断に比較して切断速度の向上をはかれるというメリットがある。
【0003】
プラズマ切断方法で用いるプラズマトーチ用電極は、高純度酸素ガスによる酸化性雰囲気に曝されかつプラズマアークの高い温度が作用するため、使用条件が極めて過酷であり、窒素ガスや空気を利用して溶接する際に一般的に使用されるタングステンや銅等の金属からなる溶接用の電極では瞬時に溶けてしまい使用に耐えない。
【0004】
このため、切断用の電極の寿命を延長させるための種々の開発がなされ、最近では、銅又は銅合金からなる電極材ホルダ(電極基体)の先端部略中央に形成した孔に、ハフニウムからなる電極材を挿入し、かつ電極材ホルダーと電極材との間にアルミニウム,金,金合金,銀,銀合金の中から選択された金属を介在させて構成し、さらに、電極材ホルダの先端面の外径と電極材の径とを一定の関係としたものが提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−239736号公報(第2頁、図1)
【0006】
【発明が解決しようとする課題】
上記のような従来のプラズマトーチ用電極は、電極材ホルダの先端面の外径と電極材の径との関係から電極の長寿命化を図ろうとしたが、本発明者等が鋭意研究を行った結果、電極を印加する電流値を一定にし、電極材の径、言い換えれば電極材の断面積を種々変えたところ、寿命が変化することがわかった。すなわち、印加する電流値と電極材の断面積とを一定の関係に保つことによって、電極の長寿命化が図れることを見い出した。
【0007】
このように、印加する電流値と電極材の断面積との関係が電極の長寿命化に影響するのは、以下の理由によるものと推定される。
すなわち、前述したように、電極材はプラズマアークの高い温度が作用するため、ある程度大きな印加電流値を用いる場合、通常、電極材ホルダの内部に冷却水を通して電極材を積極的に冷却する方法が採られる。ところで、電極材の径が大きくなれば、その分容量が増すため、熔損による破壊が行われにくくなることが期待できるものの、電極材を構成する材料例えばハフニウムは電極材ホルダを構成する銅や銅合金に比べて熱伝導率が悪く、電極材の径が大きくなると、それにつれて冷却性が悪くなる。つまり、印加する電流値を大きくする場合、径の大きな電極材を用いるのが好ましいが、単純に、電極材の径を大きくすればよいわけではなく、冷却性も考慮すると、自ずと、印加する電流値に応じた最適径あるいは最適断面積の電極材が決定されるのである。つまり、電流値と電極材の断面積とを一定の関係に保てば、電極の寿命を延ばすことが期待できる。
【0008】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、電極材の断面積と、該電極材および被加工物の間に印加する電流値との関係から、長寿命化を図ることにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、電極基体の先端部略中央の孔に電極材が挿入され、該電極材と被加工物との間に所定の電流を印加してプラズマアークを形成するためのプラズマトーチ用電極であって、表面に、前記電極材の断面積に対応して、電極材および被加工物間に印加される電流値の表示がなされ、前記電流値は、以下の式に基づき決定されることを特徴とする。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
【0011】
請求項2記載の発明は、電極基体の先端部略中央の孔に電極材が挿入され、該電極材および被加工物間に電流を印加してプラズマアークを形成するためのプラズマトーチ用電極を用いたプラズマ切断方法であって、以下の式に基づき、前記電極材の断面積に対応して決定される前記電流値で前記被加工材を切断することを特徴とする。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
【0013】
請求項3記載の発明は、電極基体の先端部略中央の孔に電極材が挿入され、該電極材および被加工物間に電流を印加してプラズマアークを形成するためのプラズマトーチ用電極を用いたプラズマ切断方法であって、以下の式に基づき、前記電流値に対応して決定される断面積を有する前記電極材を用いて前記被加工材を切断することを特徴とする。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
【0015】
【発明の実施の形態】
以下、本発明に係るプラズマトーチ用の電極およびそれを用いたプラズマ切断方法の実施の形態について、図面を参照して説明する。
【0016】
図1は本発明に係るプラズマトーチ用の電極を示す側面図、図2は同正面図、図3は同断面図である。
図1に示すように、プラズマトーチ用電極1は、銅または銅合金からなる電極基体2を備える。電極基体2は有底円筒状をなしており、内部の空間2aには冷却水が循環される形で供給される。電極基体2の先端部略中央には孔2bが形成され、この孔2bにはハフニウムあるいはジルコニウムからなる電極材3が挿入される。電極材3は略円柱状に形成されている。電極基体2と電極材3の間にはロウ材が介在される。
【0017】
電極基体2の外表面例えば側周面には表示窓2cが設けられ、ここには電極材3の直径およびまたは断面積(詳しくは軸線に直交する横断面積)、並びに電極材3の断面積に対応して切断加工時に被加工物とプラズマトーチ用電極との間で印加される電流値の適正範囲についての表示がなされる。
【0018】
ここで、印加される電流値の適正範囲は、以下の式(1)に基づき決定される。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
・・・(1)
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
【0019】
上記式(1)によって得られる電流値の適正範囲は、この範囲でプラズマトーチ用の電極1と被加工物との間に電流値を印加する場合、当該プラズマトーチ用の電極1(具体的にはその中の電極材3)について長寿命化が期待できるよう、電極材3が熔損による破壊を受けず、しかも自身の冷却性が損なわれないという2つの主要素から決定される。
なお、上記式(1)の意味や求め方については、後程詳しく説明する。
【0020】
次に、上記プラズマトーチ用電極を用いたプラズマ切断方法について説明する。
プラズマトーチ用電極1は、先端部略中央に挿入される電極材3の直径dが例えば1.4mm、1.6mm.2.0mm、2.3mmのように種々異なるものを予め用意されているが、そのうちの一つ、例えば直径dが1.6mmのものをプラズマ切断装置にセットして切断作業を行う場合を例にとって説明する。
この場合、電極材3の径あるいは断面積に対応して、切断加工時の被加工物とプラズマトーチ用電極との間で印加する電流値の適正範囲を前記(1)式に基づき定める。
図4において曲線Xaは(1)式において定数Zを0とおいたものを示し、曲線Xbは(1)式において定数Zを0.2とおいたときのプラス側のものを示し、曲線Xcは(1)式において定数Zを0.2とおいたときのマイナス側のものを示している。
なお、この図において、縦軸は電極材の断面積、横軸は被加工物とプラズマトーチ用電極との間で印加する電流値を示す。
この図において定数Zを0とおいたときの曲線Xaは、電極材3が最も長寿命となるときの、電極材の断面積と被加工物とプラズマトーチ用電極との間で印加する電流値との関係を表す。
【0021】
図4に従うと、直径1.6mmの電極材3は断面積に直すと略2mmであり、曲線Xaにおける縦軸2mmの点を横軸でみると、300アンペアである。つまり、直径1.6mmの電極材3を用いる場合、300アンペアの電流値を印加するのが、プラズマトーチ用電極1の寿命を長くする上で最も有効であることがわかる。しかしながら、現実の切断作業では、印加する電流値を一定に保つのは難しく、切断状況によって多少のずれが出るのは仕方ない。定数Zはそれを考慮したものであり、±Zの範囲内でずれたとしても、寿命の点で多少劣るものの、それほど寿命が極端に下がるものではなく、いわゆる寿命を長く保てる許容範囲を決めるものである。この定数Zの値を0.2にするか、0.3にするかあるいは0.4にするか等は、プラズマ切断機の電源側の性能、あるいは被加工物である例えば鋼板の厚みの精度等によって操作者が適宜定める。
【0022】
ここで、前述のようにZを0.2に定めたときには、図4の曲線Xbにおける縦軸2mmに対応する点を横軸でみると285アンペア、曲線Xcにおける縦軸2mmに対応する点を横軸でみると315アンペアである。つまり、直径1.6mmの電極材3を用いる場合、285〜315アンペアの電流値を印加すると、プラズマトーチ用電極1の寿命を比較的長く保てることがわかる。
【0023】
上述した手順に従い、電極材3の直径が種々異なる他のプラズマトーチ用電極1についても、電極材3の断面積に対応した、切断加工時の被加工物とプラズマトーチ用電極との間で印加する電流値の適正範囲を定め、この適正範囲内でプラズマ切断作業を行うものとする。
【0024】
具体的には、プラズマトーチに取り付けたプラズマトーチ用電極1の周囲に高い純度を持った酸素ガスを供給すると共に該電極1とその先端側に離間配置したノズルとの間で放電させてパイロットアークを形成する。引き続き酸素ガスを供給することで、形成されたパイロットアークをノズルから被加工物である例えば鋼板に向けて噴射し、噴射したパイロットアークが鋼板と接触したとき、該鋼板と電極との間で放電させることでプラズマアーク(メインアーク)を形成し、同時に電極とノズルとの放電によるパイロットアークを停止させる。
【0025】
メインアークが噴射された鋼板は、メインアークの熱エネルギによって溶融すると共にメインアークを構成する酸素によって燃焼が促進され、更に、メインアークの噴射エネルギによって溶融物が排除される。これにより、鋼板に厚さ方向に貫通した溝を形成し、もってプラズマ切断が実行される。
【0026】
ここで、電極材3および被加工物間に印加する電流値を決定して切断するにあたり、切断する被加工物の品質を維持するための、被加工物の板厚と切断速度との関係を実験データにより求め、該関係に基づき、被加工物の板厚に対応する切断速度を決定し、その切断速度で被加工物を切断する。
すなわち、図5は、電極材および被加工物間に印加する電流値を所定値(図では250アンペア、300アンペア、350アンペア、400アンペア)に定めたとき、切断する被加工物の品質を維持するための、被加工物の板厚と切断速度との関係を実験データにより求めたものである。
この図に従えば、例えば、印加電流として300アンペアを用いる場合、被加工物である鋼板の板厚が20mmのときには約1900mm/minの切断速度で切断するのが、被加工物の品質を維持する上で最もよいことがわかる。
【0027】
上記の説明は、電極材3の直径あるいは断面積が予め定まったプラズマトーチ用電極1を用い、電極材3の断面積に対応した、被加工物とプラズマトーチ用電極との間の印加電流値を適正範囲に定めてプラズマ切断する場合を例にとって説明したが、これとは逆に、被加工物とプラズマトーチ用電極との間で印加する電流値が先に定まり、この電流値に対応したプラズマトーチ用電極1を選択してプラズマ切断加工する場合でも本発明は適用可能である。
【0028】
すなわち、被加工物とプラズマトーチ用電極との間で印加する電流値が例えば予め200アンペアと定まっている場合には、図4の曲線Xb、Xcにおける横軸200アンペアに対応する点を縦軸でみると約1.2mmと1.45mmである。これを直径に直すと1.2mmと1.4mmである。
つまり、被加工物とプラズマトーチ用電極との間で印加する電流値が200アンペアである場合、直径が1.2mmと1.4mmの間の電極材3を備えたプラズマトーチ用電極を用いるのが、長寿命化を図る上で有効であることがわかる。
【0029】
次に、上記(1)式をどのようにして求めたかを説明する。
本発明者等は、被加工物とプラズマトーチ用電極との間で印加する電流値が100アンペアの場合について、先端部略中央に挿入される電極材3の直径dが1.0m、1.2mm、1.4mm、2.0mmの種々異なるプラズマトーチ用電極1を用意し、それらについて実際に厚さ25mmの鋼板をプラズマ切断し、そのときプラズマトーチ用電極の可能切断回数の形で、プラズマトーチ用電極の寿命を調べた。
【0030】
図6がその結果を示すものである。この図から明らかなように、被加工物とプラズマトーチ用電極との間に印加する電流値が100アンペアの場合、直径dが1.2mmの電極材3を挿入されたプラズマトーチ用電極1を用いてプラズマ切断するのが長寿命化を図る上で最も有効であることがわかった。
【0031】
同様に、被加工物とプラズマトーチ用電極との間で印加する電流値が300アンペア、400アンペアの場合について、電極材3の直径dが1.4mm、1.6mm、2.0mm、2.3mm、3.0mmの種々異なるプラズマトーチ用電極1を用意し、それらについてプラズマトーチ用電極の寿命を調べた。
【0032】
図7および図8がその結果を示すものである。図7から明らかなように、被加工物とプラズマトーチ用電極との間に印加する電流値が300アンペアの場合、直径dが1.6mmの電極材3を挿入されたプラズマトーチ用電極1を用いてプラズマ切断するのが長寿命化を図る上で最も有効であることがわかった。また、図8から明らかなように、被加工物とプラズマトーチ用電極との間に印加する電流値が400アンペアの場合、直径dが2.3mmの電極材3を挿入されたプラズマトーチ用電極1を用いてプラズマ切断するのが長寿命化を図る上で最も有効であることがわかった。
【0033】
これら図6〜図8から得られる情報を、横軸に印加電流値、縦軸に最適な電極材断面積をとって、被加工物とプラズマトーチ用電極との間に印加する電流値に対する最適な電極材断面積の形で表したものが図9である。
図9における点Yの近傍を通るようにして求めた近似式が前記(1)式であり、それを図に表したものが図4のXaである。
【0034】
【発明の効果】
以上説明したように、本発明によれば、プラズマトーチ用電極の寿命を長くするための、電極材の断面積と電極材および被加工物間に印加する電流値との関係式を実験データにより求め、関係式に基づき、電極材の予め定められた断面積に対応する、電極材および被加工物間に印加する電流値を決定して切断したり、電極材および被加工物間に印加する予め定められた電流値に対応する、断面積を有する電極材を決定して該電極材を用いて切断するから、プラズマトーチ用電極の長寿命化を図ることができる。
【図面の簡単な説明】
【図1】 本発明に係るプラズマトーチ用電極の実施の形態を示す側面図である。
【図2】 本発明に係るプラズマトーチ用電極の実施の形態を示す正面図である。
【図3】 本発明に係るプラズマトーチ用電極の実施の形態を示す断面図である。
【図4】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【図5】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【図6】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【図7】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【図8】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【図9】 本発明に係るプラズマトーチ用電極の作用を説明する図である。
【符号の説明】
1 プラズマトーチ用電極
2 電極基体
2a 内部の空間
2b 孔
2c 表示窓
3 電極材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for a plasma torch that converts oxygen gas into plasma and cuts a workpiece, and a plasma cutting method using the same.
[0002]
[Prior art]
A plasma cutting method for cutting a steel sheet by injecting a plasma arc from a plasma torch toward a steel sheet to melt the base material and continuously moving the plasma torch while removing the molten base material has been put into practical use. Yes. This plasma cutting method has an advantage that the cutting speed can be improved as compared with gas cutting.
[0003]
The plasma torch electrode used in the plasma cutting method is exposed to an oxidizing atmosphere with high-purity oxygen gas and the high temperature of the plasma arc acts, so the usage conditions are extremely severe, and welding is performed using nitrogen gas or air When welding, a welding electrode made of a metal such as tungsten or copper generally melts instantaneously and cannot be used.
[0004]
For this reason, various developments have been made to extend the life of the electrode for cutting. Recently, a hole formed in the center of the tip of an electrode material holder (electrode base) made of copper or copper alloy is made of hafnium. An electrode material is inserted, and a metal selected from aluminum, gold, gold alloy, silver, and silver alloy is interposed between the electrode material holder and the electrode material, and the tip surface of the electrode material holder There has been proposed one having a certain relationship between the outer diameter of the electrode and the diameter of the electrode material (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP 2002-239736 A (2nd page, FIG. 1)
[0006]
[Problems to be solved by the invention]
The conventional plasma torch electrode as described above has attempted to extend the life of the electrode from the relationship between the outer diameter of the tip surface of the electrode material holder and the diameter of the electrode material, but the present inventors have conducted extensive research. As a result, it was found that when the current value applied to the electrode was made constant and the diameter of the electrode material, in other words, the cross-sectional area of the electrode material was variously changed, the lifetime changed. That is, it has been found that the life of the electrode can be extended by maintaining a constant relationship between the applied current value and the cross-sectional area of the electrode material.
[0007]
Thus, it is presumed that the relationship between the applied current value and the cross-sectional area of the electrode material affects the life extension of the electrode for the following reason.
That is, as described above, since the high temperature of the plasma arc acts on the electrode material, when using a somewhat large applied current value, there is usually a method of actively cooling the electrode material by passing cooling water inside the electrode material holder. Taken. By the way, if the diameter of the electrode material is increased, the capacity is increased by that amount. Therefore, although it is expected that the destruction due to melting is difficult to be performed, the material constituting the electrode material, for example, hafnium is copper or copper constituting the electrode material holder. Compared with a copper alloy, the thermal conductivity is poor, and as the diameter of the electrode material increases, the cooling performance deteriorates accordingly. In other words, when increasing the current value to be applied, it is preferable to use an electrode material having a large diameter. However, it is not necessary to simply increase the diameter of the electrode material. The electrode material having the optimum diameter or the optimum cross-sectional area corresponding to the value is determined. That is, if the current value and the cross-sectional area of the electrode material are kept in a certain relationship, it can be expected to extend the life of the electrode.
[0008]
The present invention has been made in view of the above circumstances, and the object of the present invention is to extend the life from the relationship between the cross-sectional area of the electrode material and the current value applied between the electrode material and the workpiece. There is to plan.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a plasma for forming a plasma arc by inserting an electrode material into a hole at substantially the center of the tip of the electrode substrate and applying a predetermined current between the electrode material and the workpiece. A current value applied between the electrode material and the workpiece corresponding to the cross-sectional area of the electrode material is displayed on the surface of the torch electrode, and the current value is determined based on the following equation: It is characterized by being.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
[0011]
According to a second aspect of the present invention, there is provided a plasma torch electrode for forming a plasma arc by applying an electric current between the electrode material and a workpiece, wherein an electrode material is inserted into a hole at a substantially central portion of the tip of the electrode base. The plasma cutting method used is characterized in that the workpiece is cut at the current value determined corresponding to the cross-sectional area of the electrode material based on the following equation.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
[0013]
According to a third aspect of the present invention, there is provided a plasma torch electrode for forming a plasma arc by applying an electric current between the electrode material and a workpiece, wherein an electrode material is inserted into a hole at a substantially central portion of the tip of the electrode base. The plasma cutting method used is characterized in that the workpiece is cut using the electrode material having a cross-sectional area determined corresponding to the current value based on the following equation.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a plasma torch electrode and a plasma cutting method using the same according to the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 is a side view showing an electrode for a plasma torch according to the present invention, FIG. 2 is a front view thereof, and FIG. 3 is a sectional view thereof.
As shown in FIG. 1, the plasma torch electrode 1 includes an electrode base 2 made of copper or a copper alloy. The electrode substrate 2 has a bottomed cylindrical shape, and cooling water is supplied to the internal space 2a in a circulating manner. A hole 2b is formed substantially at the center of the tip of the electrode substrate 2, and an electrode material 3 made of hafnium or zirconium is inserted into the hole 2b. The electrode material 3 is formed in a substantially cylindrical shape. A brazing material is interposed between the electrode base 2 and the electrode material 3.
[0017]
A display window 2 c is provided on the outer surface of the electrode base 2, for example, the side peripheral surface, and the diameter and / or cross-sectional area of the electrode material 3 (specifically, the cross-sectional area perpendicular to the axis) and the cross-sectional area of the electrode material 3 are provided. Correspondingly, an appropriate range of the current value applied between the workpiece and the plasma torch electrode during the cutting process is displayed.
[0018]
Here, the appropriate range of the applied current value is determined based on the following equation (1).
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
... (1)
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
[0019]
The appropriate range of the current value obtained by the above equation (1) is such that when the current value is applied between the plasma torch electrode 1 and the workpiece in this range, the plasma torch electrode 1 (specifically, Is determined from two main factors that the electrode material 3 is not damaged by melting and its cooling performance is not impaired so that the life of the electrode material 3) can be expected.
Note that the meaning and determination method of the above formula (1) will be described in detail later.
[0020]
Next, a plasma cutting method using the plasma torch electrode will be described.
The electrode 1 for the plasma torch has a diameter d of the electrode material 3 inserted approximately at the center of the tip, for example, 1.4 mm, 1.6 mm. Different types such as 2.0 mm and 2.3 mm are prepared in advance, but one of them, for example, a case where the diameter d is 1.6 mm is set in the plasma cutting apparatus and the cutting operation is performed as an example I will explain to you.
In this case, the appropriate range of the current value to be applied between the workpiece and the plasma torch electrode at the time of cutting is determined based on the equation (1) corresponding to the diameter or cross-sectional area of the electrode material 3.
In FIG. 4, the curve Xa shows the constant Z set to 0 in the equation (1), the curve Xb shows the plus side when the constant Z is set 0.2 in the equation (1), and the curve Xc ( In the formula (1), the negative side when the constant Z is set to 0.2 is shown.
In this figure, the vertical axis represents the cross-sectional area of the electrode material, and the horizontal axis represents the current value applied between the workpiece and the plasma torch electrode.
In this figure, the curve Xa when the constant Z is set to 0 indicates the cross-sectional area of the electrode material 3 and the current value applied between the workpiece and the plasma torch electrode when the electrode material 3 has the longest life. Represents the relationship.
[0021]
According to FIG. 4, the electrode material 3 having a diameter of 1.6 mm is approximately 2 mm 2 when converted to a cross-sectional area, and 300 amperes when the point of the vertical axis 2 mm 2 in the curve Xa is viewed on the horizontal axis. That is, when the electrode material 3 having a diameter of 1.6 mm is used, applying a current value of 300 amperes is most effective for extending the life of the plasma torch electrode 1. However, in an actual cutting operation, it is difficult to keep the applied current value constant, and it is inevitable that some deviation occurs depending on the cutting situation. The constant Z is taken into consideration, and even if it deviates within the range of ± Z, although it is somewhat inferior in terms of life, it does not decrease the life so much, it determines the allowable range that can keep the life long It is. Whether the value of the constant Z is 0.2, 0.3 or 0.4 depends on the performance on the power source side of the plasma cutting machine, or the accuracy of the thickness of the workpiece, for example, a steel plate Etc., as required by the operator.
[0022]
Here, when Z is set to 0.2 as described above, the point corresponding to the vertical axis 2 mm 2 in the curve Xb in FIG. 4 corresponds to 285 amperes on the horizontal axis, and corresponds to the vertical axis 2 mm 2 in the curve Xc. The point is 315 amps on the horizontal axis. That is, when the electrode material 3 having a diameter of 1.6 mm is used, it can be understood that the life of the plasma torch electrode 1 can be kept relatively long by applying a current value of 285 to 315 amperes.
[0023]
In accordance with the above-described procedure, other plasma torch electrodes 1 having different diameters of the electrode material 3 are also applied between the workpiece and the plasma torch electrode during the cutting process corresponding to the cross-sectional area of the electrode material 3. An appropriate range of the current value to be determined is determined, and the plasma cutting operation is performed within this appropriate range.
[0024]
Specifically, oxygen gas having high purity is supplied around the plasma torch electrode 1 attached to the plasma torch, and the pilot arc is discharged by discharging between the electrode 1 and a nozzle spaced apart on the tip side thereof. Form. By continuously supplying oxygen gas, the formed pilot arc is injected from the nozzle toward the workpiece, for example, a steel plate, and when the injected pilot arc comes into contact with the steel plate, a discharge is generated between the steel plate and the electrode. By doing so, a plasma arc (main arc) is formed, and at the same time, a pilot arc due to discharge between the electrode and the nozzle is stopped.
[0025]
The steel sheet on which the main arc is injected is melted by the heat energy of the main arc, the combustion is promoted by the oxygen constituting the main arc, and the melt is removed by the injection energy of the main arc. Thereby, the groove | channel penetrated in the thickness direction in the steel plate is formed, and plasma cutting is performed.
[0026]
Here, in determining the current value to be applied between the electrode material 3 and the workpiece, and cutting, the relationship between the plate thickness of the workpiece and the cutting speed in order to maintain the quality of the workpiece to be cut. Based on the experimental data, the cutting speed corresponding to the plate thickness of the workpiece is determined based on the relationship, and the workpiece is cut at the cutting speed.
That is, FIG. 5 shows the quality of the workpiece to be cut when the current value applied between the electrode material and the workpiece is set to a predetermined value (250 amp, 300 amp, 350 amp, 400 amp in the figure). For this purpose, the relationship between the plate thickness of the workpiece and the cutting speed is obtained from experimental data.
According to this figure, for example, when using 300 amperes as the applied current, when the plate thickness of the steel plate as the workpiece is 20 mm, cutting at a cutting speed of about 1900 mm / min maintains the quality of the workpiece. It turns out that it is the best in doing.
[0027]
In the above description, the applied current value between the workpiece and the plasma torch electrode corresponding to the cross-sectional area of the electrode material 3 using the electrode 1 for plasma torch in which the diameter or cross-sectional area of the electrode material 3 is determined in advance. However, on the contrary, the current value to be applied between the workpiece and the plasma torch electrode is determined in advance and corresponds to this current value. The present invention can be applied even when the plasma torch electrode 1 is selected and plasma cutting is performed.
[0028]
That is, when the current value applied between the workpiece and the plasma torch electrode is predetermined to be, for example, 200 amperes, a point corresponding to the horizontal axis 200 amperes in the curves Xb and Xc in FIG. it is a view and about 1.2mm 2 and 1.45mm 2 in. When this is converted into a diameter, they are 1.2 mm and 1.4 mm.
That is, when the current value applied between the workpiece and the plasma torch electrode is 200 amperes, the plasma torch electrode including the electrode material 3 having a diameter of 1.2 mm and 1.4 mm is used. However, it can be seen that this is effective in extending the life.
[0029]
Next, how the equation (1) is obtained will be described.
In the case where the current value applied between the workpiece and the electrode for the plasma torch is 100 amperes, the present inventors have a diameter d of the electrode material 3 inserted approximately at the center of the tip portion of 1.0 m. Various plasma torch electrodes 1 of 2 mm, 1.4 mm, and 2.0 mm are prepared, and a steel plate having a thickness of 25 mm is actually plasma-cut with respect to them. The life of the torch electrode was examined.
[0030]
FIG. 6 shows the result. As is apparent from this figure, when the current value applied between the workpiece and the plasma torch electrode is 100 amperes, the plasma torch electrode 1 in which the electrode material 3 having a diameter d of 1.2 mm is inserted is used. It has been found that plasma cutting using this method is most effective for extending the life.
[0031]
Similarly, when the current value applied between the workpiece and the plasma torch electrode is 300 amperes and 400 amperes, the diameter d of the electrode material 3 is 1.4 mm, 1.6 mm, 2.0 mm, and 2. Various plasma torch electrodes 1 of 3 mm and 3.0 mm were prepared, and the life of the plasma torch electrode was examined.
[0032]
7 and 8 show the results. As is clear from FIG. 7, when the current value applied between the workpiece and the plasma torch electrode is 300 amperes, the plasma torch electrode 1 in which the electrode material 3 having a diameter d of 1.6 mm is inserted is used. It has been found that plasma cutting using this method is most effective for extending the life. As is clear from FIG. 8, when the current applied between the workpiece and the plasma torch electrode is 400 amperes, the electrode for plasma torch in which the electrode material 3 having a diameter d of 2.3 mm is inserted. It was found that plasma cutting using 1 was the most effective in extending the life.
[0033]
The information obtained from FIG. 6 to FIG. 8 is the optimum for the current value applied between the workpiece and the plasma torch electrode by taking the applied current value on the horizontal axis and the optimum electrode material cross-sectional area on the vertical axis. FIG. 9 shows the sectional shape of the electrode material.
The approximate expression obtained so as to pass through the vicinity of the point Y in FIG. 9 is the expression (1), and the expression thereof is Xa in FIG.
[0034]
【The invention's effect】
As described above, according to the present invention, the relational expression between the cross-sectional area of the electrode material and the current value applied between the electrode material and the workpiece to increase the life of the electrode for the plasma torch is obtained from experimental data. The current value to be applied between the electrode material and the workpiece corresponding to the predetermined cross-sectional area of the electrode material is determined and cut based on the relational expression, or applied between the electrode material and the workpiece. Since an electrode material having a cross-sectional area corresponding to a predetermined current value is determined and cut using the electrode material, the life of the plasma torch electrode can be extended.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of an electrode for a plasma torch according to the present invention.
FIG. 2 is a front view showing an embodiment of an electrode for a plasma torch according to the present invention.
FIG. 3 is a cross-sectional view showing an embodiment of an electrode for a plasma torch according to the present invention.
FIG. 4 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
FIG. 5 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
FIG. 6 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
FIG. 7 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
FIG. 8 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
FIG. 9 is a diagram for explaining the operation of the plasma torch electrode according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode for plasma torches 2 Electrode base 2a Internal space 2b Hole 2c Display window 3 Electrode material

Claims (3)

電極基体の先端部略中央の孔に電極材が挿入され、該電極材および被加工物間に電流を印加してプラズマアークを形成するためのプラズマトーチ用電極であって、
表面に、前記電極材の断面積に対応して、電極材および被加工物間に印加される電流値の表示がなされ、
前記電流値は、以下の式に基づき決定されることを特徴とするプラズマトーチ用電極。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
An electrode for a plasma torch for forming a plasma arc by applying an electric current between the electrode material and a workpiece, wherein an electrode material is inserted into a hole at the center of the tip of the electrode base,
On the surface, in accordance with the cross-sectional area of the electrode material, an indication of the current value applied between the electrode material and the workpiece is made,
The current value is determined based on the following formula: an electrode for a plasma torch.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
電極基体の先端部略中央の孔に電極材が挿入され、該電極材および被加工物間に電流を印加してプラズマアークを形成するためのプラズマトーチ用電極を用いたプラズマ切断方法であって、
以下の式に基づき、前記電極材の断面積に対応して決定される前記電流値で前記被加工材を切断することを特徴とするプラズマトーチ用電極を用いたプラズマ切断方法。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
A plasma cutting method using an electrode for a plasma torch for forming a plasma arc by applying an electric current between the electrode material and a workpiece by inserting an electrode material into a hole at substantially the center of the tip of the electrode substrate. ,
A plasma cutting method using a plasma torch electrode, wherein the workpiece is cut at the current value determined in accordance with a cross-sectional area of the electrode material based on the following equation.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
電極基体の先端部略中央の孔に電極材が挿入され、該電極材および被加工物間に電流を印加してプラズマアークを形成するためのプラズマトーチ用電極を用いたプラズマ切断方法であって、
以下の式に基づき、前記電流値に対応して決定される断面積を有する前記電極材を用いて前記被加工材を切断することを特徴とするプラズマトーチ用電極を用いたプラズマ切断方法。
y=1.4×10−7×B−5.7×10−5×B+8.6×10−3×B+0.75±Z
y:電極材の断面積(mm
B:印加する電流値(アンペア)(100アンペア以上400アンペア以下)
Z:定数(0≦Z≦0.2)
A plasma cutting method using an electrode for a plasma torch for forming a plasma arc by applying an electric current between the electrode material and a workpiece by inserting an electrode material into a hole at substantially the center of the tip of the electrode substrate. ,
A plasma cutting method using a plasma torch electrode, wherein the workpiece is cut using the electrode material having a cross-sectional area determined corresponding to the current value based on the following equation.
y = 1.4 × 10 −7 × B 3 −5.7 × 10 −5 × B 2 + 8.6 × 10 −3 × B + 0.75 ± Z
y: sectional area of electrode material (mm 2 )
B: Current value to be applied (ampere) (100 amps or more and 400 amps or less)
Z: Constant (0 ≦ Z ≦ 0.2)
JP2003096194A 2003-03-31 2003-03-31 Electrode for plasma torch and plasma cutting method Expired - Lifetime JP4368606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096194A JP4368606B2 (en) 2003-03-31 2003-03-31 Electrode for plasma torch and plasma cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096194A JP4368606B2 (en) 2003-03-31 2003-03-31 Electrode for plasma torch and plasma cutting method

Publications (2)

Publication Number Publication Date
JP2004298940A JP2004298940A (en) 2004-10-28
JP4368606B2 true JP4368606B2 (en) 2009-11-18

Family

ID=33408332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096194A Expired - Lifetime JP4368606B2 (en) 2003-03-31 2003-03-31 Electrode for plasma torch and plasma cutting method

Country Status (1)

Country Link
JP (1) JP4368606B2 (en)

Also Published As

Publication number Publication date
JP2004298940A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US3930139A (en) Nonconsumable electrode for oxygen arc working
JP2591371Y2 (en) Plasma arc torch
JP4726038B2 (en) System for welding and method of use thereof
US6191381B1 (en) Tapered electrode for plasma arc cutting torches
US6583378B1 (en) Plasma machining electrode and plasma machining device
KR100272917B1 (en) Plasma cutting method
JP4368606B2 (en) Electrode for plasma torch and plasma cutting method
US4035605A (en) Narrow groove welding method, and welding apparatus for practicing the method
JP2631574B2 (en) Non-consumable electrode for arc machining
JP2002331373A (en) Welding method for aluminum
JP2008229705A (en) Plasma gma welding torch and plasma gma welding method
KR200379475Y1 (en) Contact tip structure for submerged arc welding by using multiple welding torches
JPH09192844A (en) Electrode of plasma cutting torch
JPS63154273A (en) Plasma torch
JPH08112674A (en) Method for cutting off non-conductive body
US20220346216A1 (en) Wear Part for an Arc Torch and Plasma Torch, Arc Torch and Plasma Torch Comprising Same, Method for Plasma Cutting and Method for Producing an Electrode for an Arc Torch and Plasma Torch
KR200384956Y1 (en) Water cooled copper backing for 2 electrod eledtro gas welding
JP2001232475A (en) Electrode for plasma torch
KR101304694B1 (en) Tandem Electro Gas Arc Welding Device
JP2002239736A (en) Electrode for plasma torch
JPS6127170A (en) Cutting method of thin metallic sheet
JPH091379A (en) Non-consumable electrode for arc machining
JPS62207588A (en) Resistance welding method for body to be welded with small heat capacity
JPH05123889A (en) Nonconsumable electrode for arc working
JPH09314339A (en) Nozzle for plasma-arc welding and plasma-arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Ref document number: 4368606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term