JP4368171B2 - Method and apparatus for anaerobic treatment of liquid containing organic matter - Google Patents

Method and apparatus for anaerobic treatment of liquid containing organic matter Download PDF

Info

Publication number
JP4368171B2
JP4368171B2 JP2003315812A JP2003315812A JP4368171B2 JP 4368171 B2 JP4368171 B2 JP 4368171B2 JP 2003315812 A JP2003315812 A JP 2003315812A JP 2003315812 A JP2003315812 A JP 2003315812A JP 4368171 B2 JP4368171 B2 JP 4368171B2
Authority
JP
Japan
Prior art keywords
anaerobic
fixed bed
organic substance
containing liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003315812A
Other languages
Japanese (ja)
Other versions
JP2005081238A (en
Inventor
久智 福井
嘉之 上野
昌浩 多田羅
哲 山澤
雅史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003315812A priority Critical patent/JP4368171B2/en
Publication of JP2005081238A publication Critical patent/JP2005081238A/en
Application granted granted Critical
Publication of JP4368171B2 publication Critical patent/JP4368171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は有機物含有液の嫌気処理方法及び装置に関し、とくに有機性廃水や有機性廃棄物スラリー等の有機物含有液をメタン生成菌その他の嫌気性微生物群によりバイオガスに分解処理する方法及び装置に関する。   The present invention relates to an anaerobic treatment method and apparatus for organic matter-containing liquids, and more particularly to a method and device for decomposing organic matter-containing liquids such as organic wastewater and organic waste slurries into biogas by methanogens and other anaerobic microorganisms. .

従来から下水処理場の汚泥処理やし尿処理等では、メタン生成菌を主体とする嫌気性微生物群を用いた嫌気性消化処理(以下、単に嫌気処理という。)が提案されている。また最近では、一般家庭やホテル・レストラン等から排出される生ごみ、食品工場等から排出される食品製造残さ、農業・林業・畜産・水産の生産施設や加工解体施設・製紙パルプ工場等から排出される動植物性残さ等の有機性廃棄物についても、スラリー状に粉砕した上で嫌気性微生物群により嫌気処理する技術が開発され普及が進められている。嫌気性微生物群による嫌気処理は、焼却処分・埋め立て処分が難しい高水分の有機性廃棄物を分解すると共に、電力エネルギー・熱エネルギー源として利用可能なバイオガスを生成できるので、有機性廃棄物を有価資源としてリサイクルする循環型社会の形成に寄与する技術として普及が期待されている。   Conventionally, anaerobic digestion treatment (hereinafter simply referred to as anaerobic treatment) using an anaerobic microorganism group mainly composed of methanogens has been proposed for sludge treatment and human waste treatment at a sewage treatment plant. In addition, recently, food waste from ordinary households, hotels and restaurants, food production residue from food factories, etc., agricultural, forestry, livestock, fishery production facilities, processing demolition facilities, and pulp and paper mills, etc. As for organic wastes such as animal and plant residues, a technology for anaerobic treatment with anaerobic microorganisms after pulverization into a slurry has been developed and spread. Anaerobic treatment with anaerobic microorganisms decomposes high-moisture organic waste that is difficult to incinerate and landfill, and can produce biogas that can be used as a source of power and thermal energy. It is expected to spread as a technology that contributes to the formation of a recycling society that is recycled as valuable resources.

しかし従来の嫌気処理は、有機性廃水や有機性廃棄物の粉砕スラリー(以下、これらを纏めて有機物含有液という。)の有機物濃度(COD負荷)や固形物(SS)濃度が高い場合に、希釈水を添加するため反応槽の容積が大きくなり、反応槽の加熱等に要するエネルギーが増大して全体的なエネルギー回収効率が低下する問題点があった。   However, the conventional anaerobic treatment is performed when the organic waste water or organic waste pulverized slurry (hereinafter collectively referred to as the organic matter-containing liquid) has a high organic matter concentration (COD load) or solid matter (SS) concentration. Since the dilution water is added, the volume of the reaction tank increases, and there is a problem that the energy required for heating the reaction tank increases and the overall energy recovery efficiency decreases.

特許文献1は、比較的粒度が大きい高濃度有機物含有液(例えば、生ごみスラリー)を高温菌群により嫌気処理する方法を提案している。この処理方法は、図6に示すように有機性廃棄物Sをディスポーザー21等でスラリー状に粉砕し、高温菌群が付着したガラス繊維製の中空筒状担体10を設けた発酵槽20Aへ粉砕後の廃棄物S(有機物含有液L)を送り、高温菌群が活性を示す温度で有機物含有液Lと高温菌群とを接触させて分解する。図示例では、有機物含有液Lと高温菌群とを効率的に接触させるため、発酵槽20Aの外側の循環流路23及び循環ポンプ22を介して有機物含有液Lを発酵槽20Aの底部から上部へ循環させ、発酵槽20A内に緩やかな下降流を形成している。循環流路23上に設けた保温手段24(例えば、高温流体Hが還流する熱交換器等)により、有機物含有液Lを高温菌群が活性を示す温度に保温する。   Patent Document 1 proposes a method for anaerobically treating a high-concentration organic substance-containing liquid (for example, garbage slurry) having a relatively large particle size with a high-temperature bacteria group. In this treatment method, as shown in FIG. 6, the organic waste S is pulverized into a slurry with a disposer 21 or the like, and pulverized into a fermenter 20A provided with a glass fiber hollow cylindrical carrier 10 to which high-temperature bacteria are attached. The subsequent waste S (organic matter-containing liquid L) is sent, and the organic matter-containing liquid L and the thermophilic bacteria group are brought into contact with each other and decomposed at a temperature at which the thermophilic bacteria group is active. In the illustrated example, in order to efficiently contact the organic substance-containing liquid L and the thermophilic bacteria group, the organic substance-containing liquid L is placed from the bottom of the fermenter 20A through the circulation channel 23 and the circulation pump 22 outside the fermenter 20A. And a gentle downward flow is formed in the fermenter 20A. The temperature of the organic substance-containing liquid L is kept at a temperature at which the high-temperature bacteria group is active by a heat-retaining means 24 (for example, a heat exchanger in which the high-temperature fluid H is refluxed) provided on the circulation channel 23.

特許文献1で用いる高温菌群は、比較的高い温度(50〜60℃)で活性を示す高温メタン生成菌を含む。高温メタン生成菌は、34〜38℃が活性温度の中温メタン生成菌に比し処理速度及びガス発生率が高いので、COD負荷やSS濃度が高い有機物含有液Lを効率的に分解できる。高温菌群は増殖速度が遅いものの、ガラス繊維製の中空筒状担体10を用いれば発酵槽20A内に高温菌群を高濃度に保持することが可能である。特許文献1の嫌気処理方法によれば、発酵槽20Aの小型化を図り、発酵槽20Aの保温費及び設備費を削減し、全体的なエネルギー回収効率の改善が期待できる。   The thermophilic bacterium group used in Patent Document 1 includes a high-temperature methanogenic bacterium that exhibits activity at a relatively high temperature (50 to 60 ° C.). Since the high-temperature methanogen has a higher processing speed and gas generation rate than the medium-temperature methanogen at an active temperature of 34 to 38 ° C., the organic substance-containing liquid L having a high COD load and SS concentration can be efficiently decomposed. Although the thermophilic bacteria group has a slow growth rate, it is possible to keep the high temperature bacteria group at a high concentration in the fermenter 20A by using the hollow cylindrical carrier 10 made of glass fiber. According to the anaerobic treatment method of Patent Document 1, it is possible to reduce the size of the fermenter 20A, reduce the heat insulation cost and the equipment cost of the fermenter 20A, and improve the overall energy recovery efficiency.

また特許文献2は、有機物含有液Lを撹拌手段25で撹拌しながら高温菌群により分解処理する方法及び装置を提案している。例えば図7に示すように、高温菌群が付着したガラス繊維製の中空筒状担体10を配設した発酵槽20B内の底部に撹拌手段25を設け、有機物含有液Lを発酵槽20Bへ装填し、発酵槽20B内の温度を保温手段24により高温菌が活性を示す温度に保ち、撹拌手段25により有機物含有液Lを撹拌しつつ高温菌群と接触させて分解処理する。図示例の撹拌手段25は、発酵槽20Bの底部に設けた磁性体製の回転形撹拌部材26と、発酵槽20B内の鉛直軸線の回りの回転磁界を形成する攪拌駆動装置27とを含む。発酵槽20Bの底壁を介して撹拌部材26と対向する攪拌駆動装置27の形成する回転磁界に応じて発酵槽20B内の撹拌部材26が鉛直軸線の回りに回転し、発酵槽20B内の有機物含有液Lに渦流を形成する。   Patent Document 2 proposes a method and an apparatus for decomposing the organic substance-containing liquid L with a high-temperature bacterial group while stirring the stirring liquid 25 with the stirring means 25. For example, as shown in FIG. 7, an agitation means 25 is provided at the bottom of the fermenter 20B in which the glass fiber hollow cylindrical carrier 10 to which the thermophilic bacteria adhere is provided, and the organic substance-containing liquid L is loaded into the fermenter 20B. Then, the temperature in the fermenter 20B is maintained at a temperature at which the high temperature bacteria are active by the heat retaining means 24, and the organic substance-containing liquid L is brought into contact with the high temperature bacteria group while being stirred by the stirring means 25 for decomposition. The stirring means 25 in the illustrated example includes a rotary stirring member 26 made of a magnetic material provided at the bottom of the fermenter 20B, and an agitation drive device 27 that forms a rotating magnetic field around the vertical axis in the fermenter 20B. The stirring member 26 in the fermenter 20B rotates around the vertical axis according to the rotating magnetic field formed by the stirring drive device 27 facing the stirring member 26 through the bottom wall of the fermenter 20B, and the organic matter in the fermenter 20B A vortex is formed in the containing liquid L.

特許文献1の方法では、長期に亘り処理を継続した場合に、たとえ循環ポンプ22で有機物含有液Lを適当に循環していても発酵槽20Aの底部に汚泥が経時的に滞留し、処理効率が徐々に低下することが経験された。とくにスケールアップ時すなわち有機物含有液Lの処理量や有機物濃度を増やした場合に、処理効率の低下が認められた。これに対し特許文献2の方法によれば、発酵槽20Bの底部の撹拌により汚泥の沈殿・堆積を阻止し、浮遊した汚泥を発酵処理で生じたガス気泡により拡散させることができるので、スケールアップ等を伴う長期運転に際しても処理効率の低下を防止できる。   In the method of Patent Document 1, when the treatment is continued for a long time, even if the organic substance-containing liquid L is appropriately circulated by the circulation pump 22, sludge stays at the bottom of the fermenter 20A over time, and the treatment efficiency Was experienced to gradually decline. In particular, when the scale-up, that is, when the treatment amount of the organic substance-containing liquid L and the organic substance concentration were increased, a reduction in treatment efficiency was observed. On the other hand, according to the method of Patent Document 2, the bottom of the fermenter 20B is agitated to prevent sludge precipitation and accumulation, and the suspended sludge can be diffused by the gas bubbles generated in the fermentation process. It is possible to prevent a decrease in processing efficiency even during long-term operation involving the above.

特許第2708087号公報Japanese Patent No. 270887 特開平10−005718号公報JP-A-10-005718 特開平11−207379号公報Japanese Patent Laid-Open No. 11-207379 村田徳治著「廃棄物の資源化技術」株式会社オーム社、平成12年9月30日第1版、pp28-37Tokuharu Murata "Waste Recycling Technology" Ohm Co., Ltd., September 30, 2000 1st edition, pp28-37

しかし、特許文献2の発酵槽20Bの底部の撹拌手段25は、汚泥の沈殿・堆積の抑制に効果があるものの、有機物含有液Lを昇降させる流れの形成にはあまり寄与しない。すなわち特許文献2の方法では、撹拌手段25のみによって高温菌群と有機物含有液Lとを効率的に接触させることが難しく、効率的な接触を確保するためには例えば特許文献1のような循環ポンプ22を併設して発酵槽20B内に含有液Lの下降流又は上昇流を形成する必要がある。撹拌手段25と循環ポンプ22とを併設した嫌気処理は、有機物含有液Lの沈殿抑制と効率的な微生物接触とによる長期間安定的な連続処理が可能であるものの、複数の動力源を必要とするのでランニング・コストが嵩む問題点がある。嫌気処理の普及を図るため、長期間安定的な連続運転を低コストで実現できるシステムの開発が望まれている。   However, although the stirring means 25 at the bottom of the fermenter 20B of Patent Document 2 is effective in suppressing sludge precipitation / deposition, it does not contribute much to the formation of a flow for raising and lowering the organic substance-containing liquid L. That is, in the method of Patent Document 2, it is difficult to efficiently contact the high-temperature bacteria group and the organic substance-containing liquid L only by the stirring means 25, and in order to ensure efficient contact, for example, circulation as in Patent Document 1 It is necessary to form a downward flow or upward flow of the contained liquid L in the fermenter 20B with the pump 22 provided. The anaerobic treatment provided with the stirring means 25 and the circulation pump 22 is capable of continuous treatment for a long period of time by suppressing precipitation of the organic substance-containing liquid L and efficient microbial contact, but requires a plurality of power sources. Therefore, there is a problem that the running cost increases. In order to promote the spread of anaerobic treatment, it is desired to develop a system that can realize long-term continuous operation at low cost.

また特許文献2の方法は、撹拌手段25と循環ポンプ22とを併設した場合でも、発酵槽20B内の有機物含有液Lの水理学的滞留時間(Hydraulic Retention Time;以下、HRTということがある。)が短くなると効率的処理が難しくなる。図8は、撹拌手段25と循環ポンプ22とを併設した発酵槽20Bに有機物含有液Lを連続的に投入しながら嫌気処理を50日間継続し、投入量を徐々に増やしてHRTを段階的に短縮したときに残留処理液E(図7参照)中の揮発性固形物(VSS)濃度の変化を測定した実験結果のグラフを示す。この実験では、実験開始後26日間はHRT≒5日とし、27〜38日の間はHRT≒3日とし、39日目以降はHRT≒2日とした。同グラフから分かるように、HRTが3日以上あればVSSをある程度効率的に分解できるが、HRTが2日になると未分解のVSSが急激に増加する。すなわち撹拌手段25と循環ポンプ22とを併設した嫌気処理では、有機物含有液Lの有機物濃度や固形物濃度にもよるが、HRTを2日以下に短縮すると有機物含有液Lの効率的な分解が難しくなる。ランニング・コストを削減するためにはHRTを短くすることが有利であり、有機物含有液Lを短時間で効率的に分解できる嫌気処理技術の開発が望まれている。   In addition, the method of Patent Document 2 may be referred to as the hydraulic retention time (hereinafter referred to as HRT) of the organic substance-containing liquid L in the fermenter 20B even when the stirring means 25 and the circulation pump 22 are provided. ) Becomes short, efficient processing becomes difficult. FIG. 8 shows that the anaerobic treatment is continued for 50 days while continuously adding the organic substance-containing liquid L to the fermenter 20B equipped with the stirring means 25 and the circulation pump 22, and the HRT is gradually increased by gradually increasing the input amount. The graph of the experimental result which measured the change of the volatile solid (VSS) density | concentration in the residual process liquid E (refer FIG. 7) when shortening is shown. In this experiment, HRT≈5 days for the 26 days after the start of the experiment, HRT≈3 days from the 27th to 38th days, and HRT≈2 days after the 39th day. As can be seen from the graph, VSS can be efficiently decomposed to some extent if the HRT is 3 days or more, but undegraded VSS increases rapidly when the HRT is 2 days. That is, in the anaerobic treatment with the stirring means 25 and the circulation pump 22, depending on the organic substance concentration and solid substance concentration of the organic substance-containing liquid L, if the HRT is shortened to 2 days or less, the organic substance-containing liquid L is efficiently decomposed. It becomes difficult. In order to reduce the running cost, it is advantageous to shorten the HRT, and development of an anaerobic treatment technology that can efficiently decompose the organic substance-containing liquid L in a short time is desired.

そこで本発明の目的は、有機物含有液を短時間で分解できる省エネルギー型の嫌気処理方法及び装置を提供することにある。   Therefore, an object of the present invention is to provide an energy-saving anaerobic treatment method and apparatus that can decompose an organic substance-containing liquid in a short time.

有機物含有液Lの嫌気処理は、先ず炭水化物・タンパク質・脂肪等の高分子有機物が加水分解細菌により比較的低分子の有機酸やアルコール等に分解され、更に有機酸等がメタン生成菌によりバイオガスに分解される2段階で進行することが知られている(非特許文献1参照)。第1段階の反応を酸生成、第2段階の反応をメタン生成という。   The anaerobic treatment of the organic substance-containing liquid L involves firstly degrading high-molecular organic substances such as carbohydrates, proteins, and fats into relatively low-molecular organic acids and alcohols by hydrolyzing bacteria, and further converting the organic acids and the like into biogas by methane producing bacteria. It is known that the reaction proceeds in two stages that are decomposed into (see Non-Patent Document 1). The first stage reaction is called acid production, and the second stage reaction is called methane production.

特許文献1及び2の嫌気処理において、嫌気性微生物群の大部分は担体10に付着して嫌気処理に寄与し、嫌気性微生物群の一部分は有機物含有液L中に浮遊しつつ嫌気処理に寄与すると考えられる。本発明者は、嫌気処理に寄与する微生物群を分子生物学的手法により解析したところ、担体10には酸生成を担う微生物群よりもメタン生成を担う微生物群(有機酸分解メタン生成菌群)が多く存在しているとの知見を得た。すなわち、詳細には更なる分析が必要であるが、発酵槽内の担体に付着した微生物(以下、付着微生物ということがある。)と有機物含有液L中に浮遊している微生物(以下、浮遊微生物ということがある。)とは嫌気処理に寄与する作用が同一ではなく、メタン生成は付着微生物及び浮遊微生物の両者が担っているが、酸生成は主に浮遊微生物が担っていると予想される。従来から効率的な嫌気処理のためには、担体によって嫌気性微生物群を発酵槽内に高濃度で保持することが有効であると指摘されているが(例えば非特許文献1のp36参照)、浮遊微生物の作用を充分に発揮させることにより嫌気処理の効率を更に改善できる可能性がある。本発明は、この知見に基づく更なる研究開発の結果、完成に至ったものである。   In the anaerobic treatment of Patent Documents 1 and 2, most of the anaerobic microorganisms adhere to the carrier 10 and contribute to the anaerobic treatment, and a part of the anaerobic microorganisms contribute to the anaerobic treatment while floating in the organic substance-containing liquid L. It is thought that. The present inventor analyzed a group of microorganisms contributing to anaerobic treatment by a molecular biological technique. As a result, the carrier 10 is responsible for methane production rather than a group of microorganisms responsible for acid generation (organic acid-decomposing methane-producing bacteria group). The knowledge that there are many existed. Specifically, although further analysis is required in detail, microorganisms attached to the carrier in the fermenter (hereinafter sometimes referred to as attached microorganisms) and microorganisms suspended in the organic substance-containing liquid L (hereinafter referred to as floating) The action that contributes to anaerobic treatment is not the same as that of microbes.) Methane production is carried out by both attached and floating microorganisms, but acid production is expected to be mainly carried out by floating microorganisms. The Conventionally, for efficient anaerobic treatment, it has been pointed out that it is effective to retain anaerobic microorganisms at a high concentration in the fermentor with a carrier (for example, see p36 of Non-Patent Document 1). There is a possibility that the efficiency of anaerobic treatment can be further improved by fully exerting the action of floating microorganisms. The present invention has been completed as a result of further research and development based on this finding.

図1の実施例を参照するに、本発明による有機物含有液の嫌気処理方法は、下向き凸の半球状底壁1Bと嫌気性微生物群が付着する固定床6と嫌気性微生物群が浮遊可能な固定床6下方の下部空間7とを有する嫌気発酵槽1内に有機物含有液Lを装填し、底壁1B内面中央に半径方向軸線回りに回転する撹拌流Rを形成し、下部空間7内の含有液Lを前記撹拌により固定床6を貫いて循環するように撹拌してなるものである。 Referring to the embodiment of FIG. 1, the method for anaerobic treatment of an organic substance-containing liquid according to the present invention is capable of floating anaerobic microorganisms and a fixed bed 6 on which a downwardly convex hemispherical bottom wall 1B and anaerobic microorganisms adhere. The organic substance-containing liquid L is loaded into the anaerobic fermenter 1 having the lower space 7 below the fixed bed 6 to form a stirring flow R rotating around the radial axis at the center of the inner surface of the bottom wall 1B . The liquid L is stirred so as to circulate through the fixed bed 6 by the stirring flow .

好ましくは、撹拌流Rにより下部空間7内の含有液L中の高分子有機物を当該空間7内で回動させ、底壁内面周縁に沿って上昇する撹拌流Rにより下部空間7内の含有液L中の低分子有機物を固定床6に循環させる。更に好ましくは、固定床6に複数の縦貫流路11(図1(B)参照)を形成し、低分子有機物を縦貫流路11経由で昇降させる。この場合、固定床6の中央の縦貫流路11C内に下降流Dの駆動スクリュー12を設け、底壁1bの内面中央の撹拌流Rと固定床6の中央の下降流Dとにより低分子有機物を循環させることができる。 Preferably, the polymer organic matter in the liquid L contained in the lower space 7 is rotated in the space 7 by the stirring flow R , and the liquid contained in the lower space 7 is stirred by the stirring flow R rising along the inner periphery of the bottom wall. The low molecular organic substances in L are circulated to the fixed bed 6 . More preferably, a plurality of longitudinal channels 11 (see FIG. 1B) are formed in the fixed bed 6, and the low molecular organic substance is moved up and down via the longitudinal channels 11. In this case, a driving screw 12 for the downward flow D is provided in the longitudinal passage 11C in the center of the fixed bed 6, and a low molecular organic substance is generated by the stirring flow R at the center of the inner surface of the bottom wall 1b and the downward flow D at the center of the fixed bed 6. Can be circulated.

また図1の実施例を参照するに、本発明による有機物含有液の嫌気処理装置は、下向き凸の半球状底壁1Bと嫌気性微生物群が付着する固定床6と当該微生物群が浮遊可能な固定床6下方の下部空間7とを有し且つ有機物含有液Lが装填される嫌気発酵槽1、及び発酵槽1の底壁1B内面中央で半径方向軸線回りに回転する撹拌子14Aを備え、下部空間7内の含有液Lを撹拌子14Aにより固定床6を貫いて循環するように撹拌てなるものである。 Further, referring to the embodiment of FIG. 1, the anaerobic treatment apparatus for organic substance-containing liquid according to the present invention is capable of floating the microorganism group in a downwardly convex semispherical bottom wall 1B, the fixed bed 6 to which the anaerobic microorganism group adheres, and the microorganism group. An anaerobic fermentation tank 1 having a lower space 7 below the fixed bed 6 and loaded with an organic substance-containing liquid L ; and a stirring bar 14A that rotates about the radial axis at the center of the inner surface of the bottom wall 1B of the fermentation tank 1; those formed by stirring the solution containing L in the lower space 7 so as to circulate through the fixed bed 6 by stirrer 14A.

好ましくは、撹拌子14Aにより下部空間7内の含有液Lを含有液L中の高分子有機物が下部空間7内で回動し且つ含有液L中の低分子有機物が底壁内面周縁に沿って上昇して固定床6に循環するように撹拌させる。更に好ましくは、固定床6に複数の縦貫流路11(図1(B)参照)を形成し、固定床6の中央の縦貫流路11C内に下降流駆動スクリュー12を設ける。 Preferably, the liquid L in the lower space 7 is rotated by the stirrer 14A , the high molecular organic substance in the liquid L is rotated in the lower space 7, and the low molecular organic substance in the liquid L is along the inner periphery of the bottom wall. Then, the mixture is stirred so as to rise and circulate through the fixed bed 6. More preferably, a plurality of longitudinal passages 11 (see FIG. 1B) are formed in the fixed floor 6, and the downflow drive screw 12 is provided in the longitudinal passage 11 </ b> C at the center of the fixed floor 6.

本発明による有機物含有液の嫌気処理方法及び装置は、下向き凸の半球状底壁1Bを有する嫌気発酵槽1内に嫌気性微生物群が付着する固定床を設けると共に、その固定床の下方に(固定床に付着していない)嫌気性微生物群が浮遊可能な下部空間を設け、底壁1B内面中央に半径方向軸線回りに回転する撹拌流Rを形成して下部空間内の有機物含有液撹拌しながら固定床を貫いて循環させるので、次の顕著な効果を奏する。 An anaerobic treatment method and apparatus for an organic substance-containing liquid according to the present invention is provided with a fixed bed to which anaerobic microorganisms adhere in an anaerobic fermentation tank 1 having a downwardly convex hemispherical bottom wall 1B, and below the fixed bed ( fixed bed not attached to) the anaerobic microorganisms are provided the lower space can float, stirring the organic substance-containing liquid in the lower space forms a stirred flow R which rotates in the radial axis around the bottom wall 1B inner surface center As it circulates through the fixed bed, it has the following remarkable effects.

(イ)固定床の下方に含有液と浮遊微生物とを接触させる下部空間を設け、固定床の付着微生物だけでなく下部空間の浮遊微生物を積極的に利用して有機物含有液を分解するので、有機物分解の短時間化及び効率改善が期待できる。
(ロ)下部空間内の撹拌によって有機物含有液を循環させるので、従来のポンプによる含有液の循環に比し循環流の均質化を図り、有機物含有液と固定床との接触の一様化を図り、固定床による有機物分解の効率化が期待できる。
(ハ)従来のポンプ等による有機物含有液の循環に比し、循環のための駆動エネルギーを削減できるので、ランニング・コストが低い経済的な嫌気処理が実現できる。
(ニ)下部空間の浮遊微生物を活用するので、発酵槽内の担体充填量を削減できる可能性があり、発酵槽の小型化が図れる。
(B) Since the lower space where the contained liquid and floating microorganisms are brought into contact with each other below the fixed bed and the floating microorganisms in the lower space are actively utilized to decompose the liquid containing organic matter, It can be expected to shorten the organic matter decomposition time and improve the efficiency.
(B) Since the organic substance-containing liquid is circulated by stirring in the lower space, the circulation flow is homogenized compared to the circulation of the contained liquid by a conventional pump, and the contact between the organic substance-containing liquid and the fixed bed is made uniform. It can be expected to improve the efficiency of organic matter decomposition by fixed bed.
(C) Compared with the circulation of the organic substance-containing liquid by a conventional pump or the like, the driving energy for the circulation can be reduced, so that an economical anaerobic treatment with a low running cost can be realized.
(D) Since the floating microorganisms in the lower space are utilized, there is a possibility that the amount of carrier filling in the fermenter can be reduced, and the fermenter can be downsized.

(ホ)また、固定床内に有機物含有液の保温機能付き縦貫流路を設け、発酵槽内に保温手段を内蔵することができるので、発酵槽の更なる小型化が図れる。
(ヘ)発酵槽の小型化を図ることにより、発酵槽の保温費及び設備費を削減し、全体的なエネルギー回収効率の改善が期待できる。
(ト)効率的で省エネルギー型の小型嫌気処理装置が実現できるので、嫌気処理の普及による循環型社会の形成への寄与が期待できる。
(E) Moreover, since the vertical flow path with the heat retaining function of the organic substance-containing liquid is provided in the fixed bed and the heat retaining means can be built in the fermenter, the fermenter can be further miniaturized.
(F) By reducing the size of the fermenter, it is possible to reduce the heat retention costs and equipment costs of the fermenter and improve the overall energy recovery efficiency.
(G) Since an efficient and energy-saving small anaerobic treatment device can be realized, it can be expected to contribute to the formation of a recycling-oriented society through the spread of anaerobic treatment.

図1は本発明の嫌気処理装置の一実施例を示す。図示例の嫌気処理装置は、有機物含有液Lを装填する嫌気発酵槽1と、発酵槽1内に保持した嫌気性微生物群が付着する固定床6と、固定床6の下方の発酵槽1内に設けた嫌気性微生物群が浮遊可能な下部空間7とを有する。本発明の1つの特徴は、有機物含有液Lと(固定床6に付着していない)浮遊微生物とを接触させるに充分な容積の下部空間7を固定床6の下方に設けることにある。   FIG. 1 shows an embodiment of the anaerobic treatment apparatus of the present invention. The anaerobic treatment apparatus of the illustrated example includes an anaerobic fermenter 1 loaded with an organic substance-containing liquid L, a fixed bed 6 to which anaerobic microorganisms held in the fermenter 1 adhere, and a fermenter 1 below the fixed bed 6. And a lower space 7 in which the anaerobic microorganism group provided in the space can float. One feature of the present invention is that a lower space 7 having a volume sufficient to bring the organic substance-containing liquid L into contact with the suspended microorganisms (not attached to the fixed bed 6) is provided below the fixed bed 6.

固定床6の種類は特に限定されず、嫌気性微生物群が高濃度に付着可能な従来の適当な担体、例えばガラスビーズ・溶融スラグ・酢酸セルロース・活性炭繊維・スポンジ・ほっき貝・発泡させた石・ゼオライト等を使用できる。図示例の固定床6は、担体10として、例えば図4に示すガラス繊維製又は炭素繊維製の多孔質周壁10bを、型枠としてのエポキシ樹脂製の枠体10cに保持して形成した中空筒状担体10aを規則的に並べたものである。ガラス繊維製又は炭素繊維製の織布又は不織布で形成した多孔質周壁10bは、内部に数μm〜数百μm径の無数の小空隙を有し、その空隙に微生物が付着して高濃度に増殖できるので嫌気性微生物群を効率よく担持できる。例えば多孔質周壁10bを低密度の不織布製とすることにより、微生物が増殖する充分な空隙を確保する。また炭素繊維は、ガラス繊維に比し酸に対する強度劣化が少ないので、発酵槽1内が酸性化し易い嫌気処理の微生物担体にとくに適している(特許文献3参照)。また、図示例の担体10としての中空筒状担体10aは、筒体の径の大きさを調節することにより固形分濃度の高い有機物含有液L中でも閉塞を避けることができる。   The type of the fixed bed 6 is not particularly limited, and a conventional suitable carrier capable of adhering anaerobic microorganisms at a high concentration, such as glass beads, molten slag, cellulose acetate, activated carbon fiber, sponge, oyster shell, foamed stone・ Zeolite can be used. The fixed bed 6 in the illustrated example is a hollow cylinder formed by holding a porous peripheral wall 10b made of, for example, glass fiber or carbon fiber shown in FIG. 4 as a carrier 10 on a frame 10c made of epoxy resin as a mold. The shaped carriers 10a are regularly arranged. The porous peripheral wall 10b formed of glass fiber or carbon fiber woven fabric or non-woven fabric has innumerable small voids with a diameter of several μm to several hundred μm inside, and microorganisms adhere to the voids in a high concentration. Since it can proliferate, it can carry anaerobic microorganisms efficiently. For example, the porous peripheral wall 10b is made of a low-density nonwoven fabric to secure a sufficient space for microorganisms to grow. In addition, since carbon fiber is less susceptible to acid deterioration than glass fiber, it is particularly suitable for an anaerobic microorganism carrier that is easily acidified in the fermenter 1 (see Patent Document 3). Further, the hollow cylindrical carrier 10a as the carrier 10 in the illustrated example can avoid clogging even in the organic substance-containing liquid L having a high solid content concentration by adjusting the diameter of the cylindrical body.

固定床6は、適当な支持部材9により発酵槽1内の下部空間7の上方に支持することができる。図示例では、発酵槽1の内側の所要高さ部位に水平に張設した通水性支持板を支持部材9とし、その支持部材9上に中空筒状担体10を規則的に縦向き並列に載置して固定床6としている(図1(B)参照)。但し、支持部材9の構造は図示例に限定されず、例えば発酵槽1の周壁1Sへの係止又は周壁1Sの頂端からの吊り下げ等により固定床6を下部空間7の上方に支持してもよい。   The fixed bed 6 can be supported above the lower space 7 in the fermenter 1 by an appropriate support member 9. In the illustrated example, a water-permeable support plate that is horizontally stretched at a required height inside the fermenter 1 is used as a support member 9, and hollow cylindrical carriers 10 are regularly placed in parallel in the vertical direction on the support member 9. It is set as the fixed floor 6 (refer FIG. 1 (B)). However, the structure of the support member 9 is not limited to the illustrated example. For example, the fixed floor 6 is supported above the lower space 7 by being locked to the peripheral wall 1S of the fermenter 1 or suspended from the top end of the peripheral wall 1S. Also good.

下部空間7には、有機物含有液Lを撹拌する撹拌手段14を設ける。撹拌手段14の撹拌強さを適当に調節し、含有液L中の高分子有機物を下部空間7内で回動させ、含有液L中の低分子有機物を上方の固定床6へ送り込む。撹拌手段14の撹拌によって含有液Lと浮遊微生物とを接触させることにより、上述した浮遊微生物による酸生成機能を促進し、下部空間7において含有液L中の高分子有機物を低分子有機物に分解することが期待できる。また、従来の嫌気処理では有機物含有液Lの全体を固定床6の付着微生物と接触させていたのに対し、本発明では含有液L中の低分子有機物をいわば選択的に固定床6の付着微生物と接触させることができる。   The lower space 7 is provided with stirring means 14 for stirring the organic substance-containing liquid L. The stirring strength of the stirring means 14 is appropriately adjusted, the high molecular organic substance in the containing liquid L is rotated in the lower space 7, and the low molecular organic substance in the containing liquid L is sent to the upper fixed bed 6. By bringing the liquid L and the floating microorganisms into contact with each other by the stirring of the stirring means 14, the above-described acid generation function by the floating microorganisms is promoted, and the high molecular organic substance in the liquid L is decomposed into low molecular organic substances in the lower space 7. I can expect that. In addition, in the conventional anaerobic treatment, the entire organic substance-containing liquid L is brought into contact with microorganisms adhering to the fixed bed 6, whereas in the present invention, low molecular organic substances in the containing liquid L are selectively attached to the fixed bed 6. Can be contacted with microorganisms.

図示例の撹拌手段14は、発酵槽1の下向き凸の半球状底壁1Bと、底壁1Bの内面中央で半径方向軸線回りに回転する撹拌子14Aとを含む。撹拌子14Aの回転により下部空間7内に半径方向軸線回りの撹拌流Rを形成し、撹拌流Rの無限遠方向の遠心力により底壁1Bの内面周縁に沿って上昇する上昇流Uを形成する。上昇流Uの強さを調節することにより、比較的重い高分子有機物を上昇流Uに抗して下部空間7内で回動させ、比較的軽い低分子有機物を固定床6へ送り込む。本発明の他の特徴は、下部空間7内の撹拌手段14により固定床6を貫く有機物含有液Lの循環流を形成することにある。   The stirring means 14 in the illustrated example includes a downward convex hemispherical bottom wall 1B of the fermenter 1 and a stirring bar 14A that rotates around the radial axis at the center of the inner surface of the bottom wall 1B. The stirring flow R around the radial axis is formed in the lower space 7 by the rotation of the stirring bar 14A, and the rising flow U rising along the inner peripheral edge of the bottom wall 1B is formed by the centrifugal force of the stirring flow R in the infinity direction. To do. By adjusting the strength of the upward flow U, relatively heavy polymer organic matter is rotated in the lower space 7 against the upward flow U, and relatively light low molecular organic matter is sent to the fixed bed 6. Another feature of the present invention resides in that a circulation flow of the organic substance-containing liquid L passing through the fixed bed 6 is formed by the stirring means 14 in the lower space 7.

図示例では、固定床6に複数の上下方向の縦貫流路11を設け、撹拌手段14により形成された上昇流Uを外側(周縁側又は発酵槽1の周壁1S側)の縦貫流路11経由で固定床6の上部空間8へ送り、上部空間8の有機物含有液Lを内側の縦貫流路11経由で下部空間7へ下降させ、固定床6を貫く含有液Lの循環流を形成している。図示例の縦貫流路11は、例えば筒状担体10の中空路を利用して形成することができる。好ましくは、図示例のように固定床6の中央の縦貫流路11C内に下降流Dを形成する駆動スクリュー12を設け、底壁1bの内面中央の(下部空間7内の半径方向軸線回りの)撹拌流Rと固定床6の中央の下降流Dとにより含有液Lを循環させる。撹拌子14とスクリュー12とを単独の回転軸に取り付けることができ、単独の駆動力で両者を同時に駆動することができる。但し、スクリュー12は本発明に必須のものではなく、撹拌手段14だけで固定床6を貫く含有液Lの循環流を形成することも可能である。   In the illustrated example, the fixed bed 6 is provided with a plurality of vertical passages 11 in the vertical direction, and the upward flow U formed by the stirring means 14 passes through the longitudinal passages 11 on the outer side (peripheral side or the peripheral wall 1S side of the fermenter 1). To the upper space 8 of the fixed bed 6, and the organic substance-containing liquid L in the upper space 8 is lowered to the lower space 7 through the inner longitudinal flow path 11 to form a circulating flow of the containing liquid L passing through the fixed bed 6. Yes. The longitudinal channel 11 in the illustrated example can be formed using, for example, a hollow path of the cylindrical carrier 10. Preferably, a drive screw 12 that forms a downward flow D is provided in the longitudinal passage 11C in the center of the fixed bed 6 as shown in the drawing, and the center of the inner surface of the bottom wall 1b (around the radial axis in the lower space 7). ) The containing liquid L is circulated by the stirring flow R and the downward flow D at the center of the fixed bed 6. The stirrer 14 and the screw 12 can be attached to a single rotating shaft, and both can be driven simultaneously by a single driving force. However, the screw 12 is not essential for the present invention, and it is possible to form a circulating flow of the liquid L passing through the fixed bed 6 only by the stirring means 14.

図示例の撹拌手段14と縦貫流路11付き固定床6との組み合わせによれば、単独の駆動力で発酵槽1内に有機物含有液Lの循環流を形成できるので、撹拌手段と循環ポンプとを併設した従来の嫌気処理方法に比し少ないエネルギーで含有液Lと固定床6とを効率的に接触させることができる。また、循環ポンプによる含有液Lの循環に比し、撹拌手段14の回転軸線からの距離に応じて含有液Lの上昇流U及び下降流Dの強さを揃えて循環流の均質化を図り、発酵槽1内における含有液Lと固定床6との接触のバラツキを少なくし、固定床6の付着微生物による安定的な反応を期待できる。但し、本発明で用いる撹拌手段14は図示例に限定されず、撹拌強さの調節により高分子有機物を下部空間7内で回動させ且つ低分子有機物を固定床6へ送り込めるものであれば足りる。また、固定床6も通水性であれば含有液Lを貫通させることができるので、縦貫流路11の構造も図示例に限定されない。   According to the combination of the stirring means 14 and the fixed bed 6 with the longitudinal flow path 11 in the illustrated example, a circulating flow of the organic substance-containing liquid L can be formed in the fermenter 1 with a single driving force. Thus, the contained liquid L and the fixed bed 6 can be efficiently contacted with less energy than the conventional anaerobic treatment method. Compared with the circulation of the contained liquid L by the circulation pump, the strength of the rising flow U and the descending flow D of the containing liquid L is made uniform according to the distance from the rotation axis of the stirring means 14 to homogenize the circulating flow. The variation in the contact between the liquid L and the fixed bed 6 in the fermenter 1 can be reduced, and a stable reaction by the microorganisms attached to the fixed bed 6 can be expected. However, the agitation means 14 used in the present invention is not limited to the illustrated example, and may be any one that can rotate the high molecular organic substance in the lower space 7 and feed the low molecular organic substance to the fixed bed 6 by adjusting the agitation strength. It ’s enough. Moreover, since the containing liquid L can be penetrated if the fixed bed 6 is also water-permeable, the structure of the longitudinal channel 11 is not limited to the illustrated example.

嫌気処理に際し、発酵槽1内の固定床6に酸生成及びメタン生成用の嫌気性微生物群を付着させ、取入口(図示せず)から発酵槽1内に有機物含有液Lを取り入れる。含有液Lが有機性廃棄物スラリーである場合は、有機物を平均数100ミクロン程度に細かく粉砕し、等量ないし2倍程度の希釈水Wと混合して含有液Lを調製することが望ましい。発酵槽1の小型化及びバイオガス発生量の効率化の観点からは希釈水は余り多くない方が望ましく、含有液Lの有機物濃度をCODcr値で10〜30万mg/L程度とするのがよい。嫌気性微生物群として高温菌群を使用する場合は、発酵槽1内を高温メタン生成菌の活性温度(54〜56℃)に保温する。次いで撹拌手段14を駆動し、含有液L中の高分子有機物を下部空間7で回動させつつ浮遊微生物と接触させ、含有液L中の低分子有機物を固定床6と交差させて循環させることにより、含有液Lを付着微生物と接触させてバイオガスGに分解する。   In the anaerobic treatment, anaerobic microorganism groups for acid generation and methane generation are attached to the fixed bed 6 in the fermenter 1, and the organic substance-containing liquid L is taken into the fermenter 1 from an inlet (not shown). When the containing liquid L is an organic waste slurry, it is desirable to prepare the containing liquid L by finely pulverizing the organic substance to an average of about several hundred microns and mixing it with an equal amount or about twice the diluted water W. From the viewpoint of downsizing the fermenter 1 and increasing the efficiency of biogas generation, it is desirable that the dilution water is not so much, and that the organic substance concentration of the contained liquid L is about 100 to 300,000 mg / L in terms of CODcr value. Good. When using a thermophilic bacteria group as an anaerobic microorganism group, the inside of the fermenter 1 is kept at the active temperature (54-56 degreeC) of a high temperature methanogen. Next, the agitation means 14 is driven, the high molecular organic substance in the containing liquid L is rotated in the lower space 7 and brought into contact with the floating microorganisms, and the low molecular organic substance in the containing liquid L is circulated across the fixed bed 6. Thus, the contained liquid L is brought into contact with the attached microorganism and decomposed into biogas G.

[実験例1]
本発明による嫌気処理の効率を確認するため、図2に示す容積5リットルの下部空間7付き発酵槽1を試作して実験を行った。図示例の発酵槽1は、下部空間7の下方の発酵槽底壁1Bを下向き凸の半球状とし、下部空間7の上方の通水性支持部材9によりガラス繊維製又は炭素繊維製の中空筒状担体10を規則的に並べた固定床6を保持し、固定床6の中央に縦貫流路11Cを形成したものである。発酵槽1の上方から頂壁及び縦貫流路11Cを貫いて底壁1Bに至る鉛直回転軸15を設け、回転軸15の底壁1B側端に撹拌子14Aを取り付け、縦貫流路11Cの内面と対向する回転軸15上の部位に下降流Dの駆動スクリュー12を取り付けた。固定床6には図8の実験(特許文献2参照)と同様の高温菌群を付着させ、取入口18から図8の実験と同様の有機物含有液L(T-COD濃度=24900mg/リットル、SS濃度=16700mg/リットル)を連続的に投入し、回転駆動装置15Aにより回転軸15を回転させて撹拌子14A及びスクリュー12を駆動しながら嫌気処理を継続し、処理液排出口19から排出される処理液E中の揮発性固形物(VSS)濃度を継続的に測定した。
[Experiment 1]
In order to confirm the efficiency of the anaerobic treatment according to the present invention, a fermenter 1 with a lower space 7 having a volume of 5 liters shown in FIG. In the illustrated fermenter 1, the bottom wall 1B of the fermenter below the lower space 7 has a downwardly convex hemispherical shape, and a hollow cylindrical shape made of glass fiber or carbon fiber by a water-permeable support member 9 above the lower space 7. A fixed bed 6 in which the carriers 10 are regularly arranged is held, and a longitudinal flow path 11C is formed in the center of the fixed bed 6. A vertical rotating shaft 15 extending from the top of the fermenter 1 to the bottom wall 1B through the top wall and the longitudinal channel 11C is provided, and a stirring bar 14A is attached to the bottom wall 1B side end of the rotating shaft 15, and the inner surface of the longitudinal channel 11C The drive screw 12 of the downward flow D was attached to the site | part on the rotating shaft 15 which opposes. The same thermophilic bacteria group as in the experiment of FIG. 8 (see Patent Document 2) is attached to the fixed bed 6, and the organic substance-containing liquid L (T-COD concentration = 24900 mg / liter, similar to the experiment of FIG. SS concentration = 16700 mg / liter) is continuously added, and the rotating shaft 15 is rotated by the rotation drive device 15A to continue the anaerobic treatment while driving the stirrer 14A and the screw 12, and discharged from the treatment liquid discharge port 19. The concentration of volatile solids (VSS) in the treatment liquid E was continuously measured.

本実験では、発酵槽1による嫌気処理を80日間継続し、投入量を徐々に増やしてHRT(水理学的滞留時間)を段階的に短縮したときに処理液E中のVSS濃度の変化を測定した。本実験結果を図3に示す。実験開始後30日間はHRT≒5日とし、31〜43日の間はHRT≒3日とし、44〜58日の間はHRT≒2日とし、59日目以降はHRT≒1日とした。図3のグラフと図8のグラフとの比較から、本発明の嫌気処理装置によればHRTを2日程度に短縮してもVSSの効率的な分解が可能であり、撹拌手段25と循環ポンプ22とを併設した従来の下部空間7なしの嫌気処理装置に比し同じ濃度の有機物含有液Lを短時間で処理できることを確認できた。また、従来の嫌気処理ではHRT=5日程度であっても処理液E中に濃度2000mg/リットル程度のVSSが残るのに対し、本発明の嫌気処理ではHRT=5日程度とすれば処理液E中のVSS濃度を1000mg/リットル程度に減少することが可能であり、従来の嫌気処理に比しVSSの除去効率が高いことが確認できた。   In this experiment, the anaerobic treatment in fermenter 1 was continued for 80 days, and the change in VSS concentration in treatment liquid E was measured when the input was gradually increased and the HRT (hydraulic residence time) was reduced stepwise. did. The results of this experiment are shown in FIG. 30 days after the start of the experiment, HRT≈5 days, between 31 and 43 days, HRT≈3 days, between 44 and 58 days, HRT≈2 days, and after 59 days, HRT≈1 day. From the comparison between the graph of FIG. 3 and the graph of FIG. 8, according to the anaerobic treatment apparatus of the present invention, VSS can be efficiently decomposed even if the HRT is shortened to about 2 days. It was confirmed that the organic substance-containing liquid L having the same concentration can be treated in a short time as compared with the conventional anaerobic treatment apparatus without the lower space 7 provided with 22. Further, in the conventional anaerobic treatment, VSS having a concentration of about 2000 mg / liter remains in the treatment liquid E even if HRT = 5 days, whereas in the anaerobic treatment of the present invention, the treatment liquid is obtained if HRT = about 5 days. It was possible to reduce the VSS concentration in E to about 1000 mg / liter, and it was confirmed that the VSS removal efficiency was higher than that of the conventional anaerobic treatment.

すなわち、本発明の嫌気処理によれば、従来の嫌気処理に比し有機物含有液Lを短時間で効率的に分解処理できることを実験的に確認できた。この理由の1つは、固定床6の下方に含有液Lと浮遊微生物とを接触させる下部空間7を設けたことにより、下部空間7の浮遊微生物による含有液Lの分解反応、例えば酸生成を促進できたことにあると考えられる。また、他の理由として、下部空間7内の撹拌手段14のみによって発酵槽1内に均質な循環流を形成するので、従来の循環ポンプによる含有液Lの循環に比し固定床6の付着微生物と含有液Lとの均質で安定的な接触を確保し、付着微生物による反応を促進できたことにあると考えられる。
[実験例2]
That is, according to the anaerobic treatment of the present invention, it was experimentally confirmed that the organic substance-containing liquid L can be efficiently decomposed in a short time as compared with the conventional anaerobic treatment. One reason for this is that a lower space 7 is provided below the fixed bed 6 to bring the contained liquid L into contact with the floating microorganisms, so that the decomposition reaction of the contained liquid L by the suspended microorganisms in the lower space 7, for example, acid generation. It is thought that it was promoted. As another reason, since a homogeneous circulation flow is formed in the fermenter 1 only by the stirring means 14 in the lower space 7, the microorganisms adhering to the fixed bed 6 as compared with the circulation of the contained liquid L by the conventional circulation pump. It is considered that the homogeneous and stable contact between the liquid and the contained liquid L was ensured and the reaction by the attached microorganisms was promoted.
[Experimental example 2]

次に、下部空間7内の撹拌手段14によって有機物含有液Lを循環させる効果を確認するため、含有液Lとして表1の有機酸溶液を用い、撹拌手段25と循環ポンプ22とを併設した従来の嫌気処理装置による有機酸除去効率(T-CODcr分解率)と、本発明の嫌気処理装置による有機酸除去効率(T-CODcr分解率)を比較する実験を行った。本実験では、含有液LのT-CODcr負荷量(kg/m3/day)を徐々に上昇させながら嫌気処理を継続し、含有液LのT-CODcr負荷量の上昇に応じたT-CODcr分解率の変化を測定した。 Next, in order to confirm the effect of circulating the organic substance-containing liquid L by the stirring means 14 in the lower space 7, the organic acid solution shown in Table 1 is used as the containing liquid L, and the stirring means 25 and the circulation pump 22 are provided together. Experiments were conducted to compare the organic acid removal efficiency (T-CODcr decomposition rate) of an anaerobic treatment apparatus with the organic acid removal efficiency (T-CODcr decomposition ratio) of the anaerobic treatment apparatus of the present invention. In this experiment, anaerobic treatment was continued while gradually increasing the T-CODcr load (kg / m 3 / day) of the liquid L, and T-CODcr corresponding to the increase of the T-CODcr load of the liquid L The change in decomposition rate was measured.

従来の嫌気処理による実験結果を図5(A)に示し、本発明の嫌気処理による実験結果を同図(B)に示す。同図(A)の実験結果から、従来の嫌気処理では有機物含有液LのT-CODcr負荷量が60(kg/m3/day)を越えると急激に分解率が低下し始め、T-CODcr負荷量が70(kg/m3/day)を越えると分解率が50%以下に低下することが分かる。これに対し同図(B)の実験結果からは、本発明の嫌気処理ではT-CODcr負荷量を100(kg/m3/day)程度に上昇させても分解率が70%以上に保たれ、T-CODcr負荷量が120(kg/m3/day)以上となってはじめて分解率が50%以下に低下することが確認できた。これらの実験結果から、嫌気性微生物群による嫌気処理では、固定床6の下方に下部空間7を設け、下部空間7内の撹拌手段14によって含有液Lを循環させることが、有機酸等の低分子有機物の効率的分解に極めて有効であることが確認できた。しかも、従来の嫌気処理では、例えば高さ10mの発酵槽1内に7.5リットル/分程度の流量で含有液Lを環流するために約18.5kWの駆動エネルギーが必要であるのに対し、本発明の嫌気処理では含有液Lの循環の駆動エネルギーを約1/3の5.5kW程度に削減できる。 The experimental result by the conventional anaerobic process is shown in FIG. 5 (A), and the experimental result by the anaerobic process of the present invention is shown in FIG. 5 (B). From the experimental results shown in Fig. 3 (A), when the T-CODcr load of the organic substance-containing liquid L exceeds 60 (kg / m 3 / day) in the conventional anaerobic treatment, the decomposition rate starts to decrease rapidly, and T-CODcr It can be seen that when the load exceeds 70 (kg / m 3 / day), the decomposition rate decreases to 50% or less. On the other hand, from the experimental results in FIG. 5B, the anaerobic treatment of the present invention kept the decomposition rate at 70% or higher even when the T-CODcr load was increased to about 100 (kg / m 3 / day). It was confirmed that the degradation rate decreased to 50% or less only when the T-CODcr loading amount was 120 (kg / m 3 / day) or more. From these experimental results, in the anaerobic treatment with the anaerobic microorganism group, it is possible to provide the lower space 7 below the fixed bed 6 and to circulate the liquid L by the stirring means 14 in the lower space 7. It was confirmed that it is extremely effective for the efficient decomposition of molecular organic substances. Moreover, in the conventional anaerobic treatment, for example, the driving energy of about 18.5 kW is required to circulate the liquid L at a flow rate of about 7.5 liters / minute in the fermentation tank 1 having a height of 10 m. In the anaerobic treatment, the driving energy for circulating the contained liquid L can be reduced to about 1/3 of 5.5kW.

Figure 0004368171
Figure 0004368171

こうして本発明の目的である「有機物含有液を短時間で分解できる省エネルギー型の嫌気処理方法及び装置」の提供を達成できる。   Thus, it is possible to achieve the “energy-saving anaerobic treatment method and apparatus capable of decomposing an organic substance-containing liquid in a short time”, which is an object of the present invention.

図2の実施例では、固定床6に設けた縦貫流路11cの周壁に、所定温度の流体Hとして、例えば高温流体Hが還流する間隙16付き二重伝熱壁17を設け、縦貫流路11経由で昇降する有機物含有液Lを所定温度の流体Hとの熱交換により嫌気性微生物群の活性温度に保温している。図示例では、固定床6の中央の縦貫流路11cの周壁を二重伝熱壁17とし、二重伝熱壁17の間隙16に連通する(高温)流体入口13A及び出口13Bを設け、入口13Aから流体Hを間隙16に充填し、間隙16通過後の流体Hを出口13Bへ還流させている。含有液Lは、スクリュー12によって縦貫流路11Cを下降する際に、伝熱壁17を介して流体Hにより加熱される。所定温度の流体Hとして、例えばガス抜き口28を通じて得たバイオガスGから回収した熱エネルギーを利用できる。但し、二重伝熱壁17は固定床6の中央の縦貫流路11Cに限らず、固定床6の適当な縦貫流路11に設けることができる。発酵槽1内の縦貫流路11で含有液Lを保温することにより、図6に示す発酵槽1の外側に保温手段24を設ける従来方法に比し、発酵槽1の更なる小型化を図ることが可能となる。また、含有液Lの保温を確実なものとするため、発酵槽1の外側に保温手段として、例えば断熱材製の保温ジャケット又は図7のような保温手段24を設けることができるのは言うまでもない。 In the embodiment of FIG. 2, for example, a double heat transfer wall 17 with a gap 16 through which the high-temperature fluid H circulates is provided as a fluid H at a predetermined temperature on the peripheral wall of the longitudinal passage 11 c provided in the fixed bed 6. The organic substance-containing liquid L that moves up and down via 11 is kept at the activation temperature of the anaerobic microorganism group by heat exchange with the fluid H at a predetermined temperature. In the illustrated example, the peripheral wall of the longitudinal passage 11c in the center of the fixed bed 6 is a double heat transfer wall 17, and a (high temperature) fluid inlet 13A and an outlet 13B communicating with the gap 16 of the double heat transfer wall 17 are provided. The fluid H is filled into the gap 16 from 13A, and the fluid H after passing through the gap 16 is refluxed to the outlet 13B. The contained liquid L is heated by the fluid H through the heat transfer wall 17 when the screw 12 moves down the longitudinal passage 11C. As the fluid H having a predetermined temperature, for example, heat energy recovered from the biogas G obtained through the gas vent 28 can be used. However, the double heat transfer wall 17 is not limited to the longitudinal passage 11C in the center of the fixed bed 6, but can be provided in an appropriate longitudinal passage 11 of the fixed floor 6. By keeping the contained liquid L warm in the longitudinal flow path 11 in the fermenter 1, the fermenter 1 can be further reduced in size as compared with the conventional method in which the heat retaining means 24 is provided outside the fermenter 1 shown in FIG. It becomes possible. Moreover, in order to ensure the heat insulation of the containing liquid L, it cannot be overemphasized that the heat insulation means made from a heat insulating material or the heat insulation means 24 like FIG. .

本発明の一実施例の縦断面図及び横断面図である。It is the longitudinal cross-sectional view and cross-sectional view of one Example of this invention. 本発明の他の実施例の縦断面図である。It is a longitudinal cross-sectional view of the other Example of this invention. 本発明の嫌気処理方法による槽内の水理学的滞留時間(HRT)と揮発性固形物(VSS)の分解量との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the hydraulic residence time (HRT) in the tank by the anaerobic processing method of this invention, and the decomposition amount of a volatile solid (VSS). 本発明で用いる固定床担体の一例の説明図である。It is explanatory drawing of an example of the fixed bed carrier used by this invention. 本発明の嫌気処理による有機酸の除去効率と従来の嫌気処理による有機酸の除去効率とを比較した実験結果を示すグラフである。It is a graph which shows the experimental result which compared the removal efficiency of the organic acid by the anaerobic process of this invention, and the removal efficiency of the organic acid by the conventional anaerobic process. 従来の嫌気処理方法の一例の説明図である。It is explanatory drawing of an example of the conventional anaerobic processing method. 従来の嫌気処理方法の他の例の説明図である。It is explanatory drawing of the other example of the conventional anaerobic processing method. 図7の従来の嫌気処理方法による槽内の水理学的滞留時間(HRT)と揮発性固形物(VSS)の分解量との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the hydraulic residence time (HRT) in the tank by the conventional anaerobic processing method of FIG. 7, and the decomposition amount of a volatile solid (VSS).

符号の説明Explanation of symbols

1…嫌気発酵槽 1B…(下向きの半球凸状)底壁
1S…周壁 3…高分子有機物
5…低分子有機物 6…固定床
7…下部空間 8…上部空間
9…固定床支持部材 10…(中空筒状)担体
10a…中空筒状担体 10b…多孔質周壁
10c…(樹脂製)枠体 11、11c…縦貫流路
12…下降流駆動スクリュー
13A…(高温)流体入口
13B…(高温)流体出口
14…撹拌手段 14A…撹拌子
15…回転軸 15A…回転駆動装置
16…間隙 17…二重伝熱壁
18…取入口 19…処理液排出口
20A、20B…発酵槽 21…ディスポーザー
22…循環ポンプ 23…循環流路
24…保温手段 25…撹拌手段
26…撹拌部材 28…ガス抜き口
27…撹拌駆動装置 29…脱硫装置
D…下降流 E…(残留)処理液
G…バイオガス H…(高温)流体
L…有機物含有液 R…撹拌流
S…有機性廃棄物 U…上昇流
1 ... Anaerobic fermenter 1B ... (downward hemispherical convex) Bottom wall
DESCRIPTION OF SYMBOLS 1S ... Perimeter wall 3 ... High molecular organic substance 5 ... Low molecular organic substance 6 ... Fixed floor 7 ... Lower space 8 ... Upper space 9 ... Fixed floor supporting member 10 ... (hollow cylinder shape) support | carrier
10a ... Hollow cylindrical carrier 10b ... Porous peripheral wall
10c ... (Resin) Frame 11, 11c ... Longitudinal channel
12 ... Downflow drive screw
13A ... (High temperature) Fluid inlet
13B… (High temperature) Fluid outlet
14 ... Stirring means 14A ... Stirring bar
15 ... Rotary shaft 15A ... Rotary drive device
16 ... Gap 17 ... Double heat transfer wall
18 ... Inlet 19 ... Processing liquid outlet
20A, 20B ... Fermenter 21 ... Disposer
22 ... circulation pump 23 ... circulation flow path
24 ... Insulation means 25 ... Agitation means
26… Stirring member 28… Gas vent
27 ... Stirring drive device 29 ... Desulfurization device D ... Downstream E ... (Residual) treatment liquid G ... Biogas H ... (High temperature) fluid L ... Organic substance-containing liquid R ... Stirring flow S ... Organic waste U ... Upstream flow

Claims (13)

下向き凸の半球状底壁と嫌気性微生物群が付着する固定床と当該微生物群が浮遊可能な固定床下方の下部空間とを有する嫌気発酵槽内に有機物含有液を装填し、底壁内面中央に半径方向軸線回りに回転する撹拌流を形成し、下部空間内の含有液を前記撹拌により固定床を貫いて循環するように撹拌してなる有機物含有液の嫌気処理方法。 The organics containing liquid loaded into the anaerobic fermenter for fixed bed and the microorganisms capable of hemispherical bottom wall and anaerobic microorganisms in a downward convex is attached has a lower space of the fixed floor side can be suspended, the bottom wall inner surface center An anaerobic treatment method for an organic substance-containing liquid, in which an agitating flow rotating around a radial axis is formed and the contained liquid in the lower space is agitated so as to circulate through the fixed bed by the agitating flow . 請求項1の処理方法において、前記撹拌流により下部空間内の含有液中の高分子有機物を当該空間内で回動させ、底壁内面周縁に沿って上昇する前記撹拌流により下部空間内の含有液中の低分子有機物を固定床に循環させてなる有機物含有液の嫌気処理方法。 2. The processing method according to claim 1, wherein the polymer organic matter in the liquid contained in the lower space is rotated in the space by the stirring flow , and is contained in the lower space by the stirring flow rising along the inner peripheral edge of the bottom wall. An anaerobic treatment method for an organic-containing liquid obtained by circulating low-molecular organic substances in the liquid to a fixed bed . 請求項1又は2の処理方法において、前記固定床に複数の縦貫流路を形成し、前記低分子有機物を前記縦貫流路経由で昇降させてなる有機物含有液の嫌気処理方法。 3. The treatment method according to claim 1 or 2, wherein a plurality of longitudinal passages are formed on the fixed bed, and the low molecular organic substance is moved up and down via the longitudinal passages. 請求項3の処理方法において、前記固定床の中央の縦貫流路内に下降流駆動スクリューを設け、前記底壁内面中央の撹拌流と前記固定床中央の下降流とにより低分子有機物を循環させてなる有機物含有液の嫌気処理方法。 4. The processing method according to claim 3, wherein a downflow drive screw is provided in a longitudinal passage in the center of the fixed bed, and low molecular organic substances are circulated by the stirring flow at the center of the bottom wall inner surface and the downflow at the center of the fixed bed. An anaerobic treatment method for an organic substance-containing liquid. 請求項1から4の何れかの処理方法において、前記嫌気性微生物群に高温メタン生成菌を含め、前記発酵槽内を高温メタン生成菌の活性温度に保温してなる有機物含有液の嫌気処理方法。 The treatment method according to any one of claims 1 to 4, wherein the anaerobic microorganism group includes a high-temperature methane-producing bacterium, and the fermenter is kept at the activation temperature of the high-temperature methane-producing bacterium. . 請求項1から5の何れかの処理方法において、前記固定床を型枠に保持したガラス繊維製又は炭素繊維製の中空筒状担体としてなる有機物含有液の嫌気処理方法。 6. The treatment method according to claim 1, wherein the organic substance-containing liquid is anaerobically treated as a glass fiber or carbon fiber hollow cylindrical carrier in which the fixed bed is held in a formwork. 下向き凸の半球状底壁と嫌気性微生物群が付着する固定床と当該微生物群が浮遊可能な固定床下方の下部空間とを有し且つ有機物含有液が装填される嫌気発酵槽、及び前記発酵槽の底壁内面中央で半径方向軸線回りに回転する撹拌子を備え、前記下部空間内の含有液を撹拌子により固定床を貫いて循環するように撹拌てなる有機物含有液の嫌気処理装置。 An anaerobic fermentation tank having a downward convex hemispherical bottom wall, a fixed bed to which anaerobic microorganisms adhere, a lower space below the fixed bed in which the microorganisms can float, and loaded with an organic substance-containing liquid , and the fermentation includes a stir bar to rotate in the radial axis around the bottom wall inner surface center of the vessel, stirred anaerobic treatment apparatus of the organic substance-containing liquid comprising to cycle through the fixed bed by stirrer a liquid containing in said lower space . 請求項7の処理装置において、前記撹拌子により下部空間内の含有液を、含有液中の高分子有機物が下部空間内で回動し且つ含有液中の低分子有機物が底壁内面周縁に沿って上昇して固定床に循環するように撹拌してなる有機物含有液の嫌気処理装置。8. The processing apparatus according to claim 7, wherein the liquid contained in the lower space is rotated by the stirrer so that the polymer organic matter in the contained liquid is rotated in the lower space and the low molecular weight organic matter in the contained liquid is along the inner peripheral edge of the bottom wall. An anaerobic treatment device for organic substance-containing liquids, which is stirred and circulated to the fixed bed. 請求項7又は8の処理装置において、前記嫌気性微生物群に高温メタン生成菌を含め、前記発酵槽内を高温メタン生成菌の活性温度に保温する保温手段を設けてなる有機物含有液の嫌気処理装置。 9. The treatment apparatus according to claim 7 or 8 , wherein the anaerobic microorganism group includes a high-temperature methane-producing bacterium, and an anaerobic treatment of an organic substance-containing liquid is provided with a heat retaining means for keeping the inside of the fermenter at an activation temperature of the high-temperature methane-producing bacterium. apparatus. 請求項7から9の何れかの処理装置において、前記固定床に複数の縦貫流路を形成してなる有機物含有液の嫌気処理装置。 The processing apparatus according to any one of claims 7 to 9, wherein the organic substance-containing liquid anaerobic processing apparatus is formed by forming a plurality of longitudinal channels on the fixed floor. 請求項10の処理装置において、前記固定床の中央の縦貫流路内に下降流駆動スクリューを設けてなる有機物含有液の嫌気処理装置。 The processing apparatus of Claim 10 WHEREIN: The anaerobic processing apparatus of the organic substance containing liquid which provides a downward flow drive screw in the longitudinal flow path in the center of the said fixed bed. 請求項9に従属する請求項10又は11の処理装置において、前記保温手段を、前記縦貫流路の何れかの周壁を所定温度の流体が還流する間隙付き二重伝熱壁としてなる有機物含有液の嫌気処理装置。 12. The processing apparatus according to claim 10 or 11 dependent on claim 9 , wherein the heat retaining means is an organic substance-containing liquid formed as a double heat transfer wall with a gap through which a fluid at a predetermined temperature circulates in any peripheral wall of the longitudinal flow path. Anaerobic treatment equipment. 請求項7から12の何れかの処理装置において、前記固定床を型枠に保持したガラス繊維製又は炭素繊維製の中空筒状担体としてなる有機物含有液の嫌気処理装置。 13. The processing apparatus according to claim 7, wherein the organic substance-containing liquid is an anaerobic processing apparatus that is a glass fiber or carbon fiber hollow cylindrical support in which the fixed bed is held in a formwork.
JP2003315812A 2003-09-08 2003-09-08 Method and apparatus for anaerobic treatment of liquid containing organic matter Expired - Fee Related JP4368171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315812A JP4368171B2 (en) 2003-09-08 2003-09-08 Method and apparatus for anaerobic treatment of liquid containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315812A JP4368171B2 (en) 2003-09-08 2003-09-08 Method and apparatus for anaerobic treatment of liquid containing organic matter

Publications (2)

Publication Number Publication Date
JP2005081238A JP2005081238A (en) 2005-03-31
JP4368171B2 true JP4368171B2 (en) 2009-11-18

Family

ID=34415953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315812A Expired - Fee Related JP4368171B2 (en) 2003-09-08 2003-09-08 Method and apparatus for anaerobic treatment of liquid containing organic matter

Country Status (1)

Country Link
JP (1) JP4368171B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454436B2 (en) * 2004-08-24 2010-04-21 鹿島建設株式会社 Organic waste treatment method and apparatus using peroxidase-producing plant
JP2007203150A (en) * 2006-01-31 2007-08-16 Kajima Corp Anaerobic decomposition method and apparatus for organic matter-containing liquid
DE102007024378B4 (en) * 2007-05-23 2009-06-04 Beck, Jürgen, Dr. Fermenter for the production of biogas from pumpable organic material
JP4849481B2 (en) * 2008-03-18 2012-01-11 中国電力株式会社 Microorganism immobilization support, DHS reactor, and biological nitrification denitrification apparatus
JP5372845B2 (en) * 2010-06-25 2013-12-18 鹿島建設株式会社 Organic wastewater treatment system and method
JP5620188B2 (en) * 2010-08-06 2014-11-05 月島機械株式会社 Anaerobic digestion method
JP6280110B2 (en) * 2013-05-24 2018-02-14 佐竹化学機械工業株式会社 Digestive equipment
US20170210653A1 (en) * 2014-09-26 2017-07-27 Panasonic Intellectual Property Management Co. Ltd. Liquid treatment unit and liquid treatment device
JP6943402B2 (en) * 2017-12-05 2021-09-29 住友重機械工業株式会社 Anaerobic processing system

Also Published As

Publication number Publication date
JP2005081238A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
KR100949314B1 (en) Apparatus for algae production using effluents produced from anaerobic digestion of organic wastes
JP4822263B2 (en) Methane fermentation equipment for solid organic waste
JP4368171B2 (en) Method and apparatus for anaerobic treatment of liquid containing organic matter
KR100981187B1 (en) Multi-stage type dry anaerobic digestion reactor
CN101665304B (en) Solar Anaerobic Granular Sludge Circulating Reactor
KR100972178B1 (en) Apparatus for anaerobic treatment of organic waste and method there of
JP2006255626A (en) Dry type anaerobic digester
JP4641854B2 (en) Method and apparatus for methane fermentation treatment with reduced ammonia inhibition
JP2008194602A (en) Method and apparatus for methane fermentation of organic waste
JP2003033780A (en) Method for wastewater treatment
JP2007203150A (en) Anaerobic decomposition method and apparatus for organic matter-containing liquid
KR100306228B1 (en) The method for process and stock raising of aparatus
JP2018143979A (en) Sludge treatment system generating biogas
KR102105197B1 (en) sludge treatment apparatus using ultrasonic wave
KR100498882B1 (en) An apparatus for livestock manure preliminary treatment
JP4604600B2 (en) Methane fermentation treatment method and apparatus
JP4259184B2 (en) Methane fermentation treatment method and apparatus
JP2006205030A (en) Method and apparatus for methane fermentation
JP2006281112A (en) Methane fermentation method and methane fermentation tank
JP2005218898A (en) Methane fermentation system
JP2006255545A (en) Methane fermentation process
JP2008238078A (en) Methane fermentation processing method and apparatus
JPH07265899A (en) Method of treating oil sludge and organic waste
JP4600921B2 (en) Organic waste treatment method and apparatus
JP2003071411A (en) Method for treating organic wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R150 Certificate of patent or registration of utility model

Ref document number: 4368171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees