JP4366711B2 - Bubbling fluidized bed combustion furnace and its temperature control method - Google Patents

Bubbling fluidized bed combustion furnace and its temperature control method Download PDF

Info

Publication number
JP4366711B2
JP4366711B2 JP2003386495A JP2003386495A JP4366711B2 JP 4366711 B2 JP4366711 B2 JP 4366711B2 JP 2003386495 A JP2003386495 A JP 2003386495A JP 2003386495 A JP2003386495 A JP 2003386495A JP 4366711 B2 JP4366711 B2 JP 4366711B2
Authority
JP
Japan
Prior art keywords
fuel
fluidized bed
temperature
bed
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003386495A
Other languages
Japanese (ja)
Other versions
JP2005147534A (en
Inventor
修三 渡邉
元哉 中村
淳一 小池
輝俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003386495A priority Critical patent/JP4366711B2/en
Publication of JP2005147534A publication Critical patent/JP2005147534A/en
Application granted granted Critical
Publication of JP4366711B2 publication Critical patent/JP4366711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、バブリング流動層燃焼炉とその層内温度制御方法に関する。   The present invention relates to a bubbling fluidized bed combustion furnace and a method for controlling the temperature in the bed.

下水汚泥、バイオマス、都市ゴミ、産業廃棄物等の可燃性廃棄物を燃料とする流動層焼却炉として、特許文献1、2等が開示されている。また加圧流動層を用いて複合発電するシステムとして特許文献3が開示されている。   Patent Documents 1, 2 and the like are disclosed as fluidized bed incinerators using flammable waste such as sewage sludge, biomass, municipal waste, and industrial waste as fuel. Further, Patent Document 3 is disclosed as a combined power generation system using a pressurized fluidized bed.

特許文献1の「流動床式焼却炉の燃焼制御方法」は、砂層部およびフリーボード部の温度に対する燃料流量を最適化して、砂層部、フリーボード部の温度を一定範囲内に維持することを目的とし、図5に示すように、砂層部52とフリーボード部53とからなる流動床式焼却炉の砂層部52への燃料供給量を調節することにより砂層部52の温度を制御する流動床式焼却炉の燃焼制御方法において、砂層部52の温度を温度検出器55で測定し、該測定値を砂層部温度演算器54に入力して砂層部52の単位時間あたりの温度変化率を求める一方、フリーボード部53の温度を温度検出器56で測定して該測定値をフリーボード部温度演算器57に入力し、予め演算器57に入力されているフリーボード部53の基準温度と前記測定値との温度偏差を求め、砂層部52の温度変化率とフリーボード部53の温度偏差とに基づき前記燃料流量を制御するものである。   Patent Document 1 “Combustion Control Method for Fluidized Bed Incinerator” optimizes the fuel flow rate with respect to the temperature of the sand layer part and the free board part, and maintains the temperature of the sand layer part and the free board part within a certain range. As shown in FIG. 5, a fluidized bed for controlling the temperature of the sand layer portion 52 by adjusting the amount of fuel supplied to the sand layer portion 52 of the fluidized bed incinerator composed of the sand layer portion 52 and the freeboard portion 53. In the combustion control method of the incinerator, the temperature of the sand layer portion 52 is measured by the temperature detector 55, and the measured value is input to the sand layer temperature calculator 54 to obtain the rate of temperature change per unit time of the sand layer portion 52. On the other hand, the temperature of the free board unit 53 is measured by the temperature detector 56, and the measured value is input to the free board unit temperature calculator 57. The reference temperature of the free board unit 53 input to the calculator 57 in advance and the reference temperature Temperature with measured value A deviation, and controls the fuel flow rate based on the temperature deviation in temperature change rate and the freeboard portion 53 of the sand layer 52.

特許文献2の「流動床式焼却炉の燃焼制御方法およびその装置」は、フリーボード部を砂層温度とは別個に独立して制御することを目的とし、図6に示すように、下水汚泥を焼却対象とし、炉体61の内部に砂層部62とフリーボード部63の燃焼領域を形成した流動床式焼却炉において、砂層部62の上部に配置した砂層上部バーナ64を操作してフリーボード部温度を制御し、砂層部62の下部に配置した砂層下部バーナ65を操作して砂層温度を制御するものである。   Patent Document 2 “Combustion Control Method and Apparatus for Fluidized Bed Incinerator” aims to control the freeboard section independently of the sand layer temperature, and, as shown in FIG. In a fluidized bed incinerator in which a combustion region of the sand layer portion 62 and the free board portion 63 is formed inside the furnace body 61, the free board portion is operated by operating the sand layer upper burner 64 disposed above the sand layer portion 62. The temperature is controlled, and the sand layer temperature is controlled by operating the sand layer lower burner 65 disposed below the sand layer portion 62.

特許文献3の「加圧流動層複合発電システムとその制御方法および制御装置」は、蒸気温度に基づいて燃料量を操作する系と層温に基づいて層高を操作する系との間に関連性を持たせ層温によっても燃料量を操作するものであり、図7に示すように、関数発生器74から発生する燃料量設定値76に基づいて燃料量目標値78を生成し、この燃料量目標値78にしたがって燃料量指令値79を生成し、この燃料量指令値79によって燃料供給ラインへの石炭の投入量を操作し、この操作量を実際の蒸気温度と設定値との偏差がゼロとなるように制御器72からの出力によって補正する。さらに関数発生器81から発生する層高設定値を実際の層温と設定値との偏差に応じて加算器82で補正し、補正された層高指令値83に基づいて層高を操作する。そして負荷の変化に伴って層高が上昇する操作が行われたときには、条件判定器84からの切替信号85に応答して実際の層温と設定値との偏差に応じた信号を制御器86から加算器87に出力して燃料量指令値88を補正するものである。
特開平11−94224号公報、「流動床式焼却炉の燃焼制御方法」 特開2001−74222号公報、「流動床式焼却炉の燃焼制御方法およびその装置」 特開平11−44410号公報、「加圧流動層複合発電システムとその制御方法および制御装置」
The "pressurized fluidized bed combined power generation system and its control method and control apparatus" in Patent Document 3 relate to a system that operates the fuel amount based on the steam temperature and a system that operates the bed height based on the bed temperature. As shown in FIG. 7, the fuel amount target value 78 is generated based on the fuel amount setting value 76 generated from the function generator 74, and the fuel amount is controlled by the layer temperature. A fuel quantity command value 79 is generated according to the quantity target value 78, and the amount of coal input to the fuel supply line is manipulated by this fuel quantity command value 79, and the deviation between the actual steam temperature and the set value is determined as the manipulated quantity. Correction is made by the output from the controller 72 so that it becomes zero. Further, the bed height set value generated from the function generator 81 is corrected by the adder 82 according to the deviation between the actual bed temperature and the set value, and the bed height is manipulated based on the corrected bed height command value 83. When an operation for increasing the bed height with a change in load is performed, the controller 86 outputs a signal corresponding to the deviation between the actual bed temperature and the set value in response to the switching signal 85 from the condition determiner 84. Is output to the adder 87 to correct the fuel amount command value 88.
JP-A-11-94224, “Combustion Control Method for Fluidized Bed Incinerator” Japanese Patent Laid-Open No. 2001-74222, “Combustion Control Method and Apparatus for Fluidized Bed Incinerator” Japanese Patent Application Laid-Open No. 11-44410, “Pressurized Fluidized Bed Combined Power Generation System, Control Method and Control Device”

上述した特許文献1、2の流動床式焼却炉では、廃棄物は流動層の上面に供給するが、別個に流動層内に燃料を供給する燃料供給系を備え、燃料供給系から供給する燃料の燃焼熱で流動層内の温度を制御するようになっている。そのため、層内温度の制御に可燃性廃棄物以外の燃料を必要とする問題点がある。   In the fluidized bed incinerators of Patent Documents 1 and 2 described above, the waste is supplied to the upper surface of the fluidized bed, but is provided with a fuel supply system that supplies fuel separately into the fluidized bed, and is supplied from the fuel supply system. The temperature in the fluidized bed is controlled by the combustion heat. Therefore, there exists a problem which requires fuels other than combustible waste for control of the temperature in a layer.

また、特許文献3の加圧流動層複合発電システムでは、石炭を燃料とし、層温に基づいて層高を操作する系を備えるため、流動層内の温度を制御することができるが、可燃性廃棄物を燃料とするのは困難である。   Moreover, in the pressurized fluidized bed combined power generation system of patent document 3, since the system which uses coal as a fuel and operates bed height based on bed temperature can control the temperature in a fluidized bed, it is combustible. It is difficult to use waste as fuel.

さらに、流動床式焼却炉と蒸気発生器(ボイラ等)とを組み合わせる場合、従来、廃棄物の燃料流量は、主蒸気条件(温度、圧力)を制御しており、層温度は制御していない。従って、層温度は投入された廃棄物の流量や発熱量と、火炉の設計条件(冷却量)等から一義的に決まり、成り行きとなる。   Furthermore, when combining a fluidized bed incinerator and a steam generator (boiler, etc.), the fuel flow rate of waste has conventionally controlled the main steam conditions (temperature, pressure), but not the bed temperature. . Accordingly, the layer temperature is uniquely determined from the flow rate and heat generation amount of the input waste, the design conditions (cooling amount) of the furnace, and the like, and is the result.

また、特許文献3のように層高を上下させることで、層内温度を変化させることは可能であるが、層高を上下させるための火炉からのベッド材の排出および供給に時間がかかることから、層内温度制御の応答性が低い問題点がある。   In addition, it is possible to change the temperature in the layer by raising and lowering the layer height as in Patent Document 3, but it takes time to discharge and supply the bed material from the furnace for raising and lowering the layer height. Therefore, there is a problem that the responsiveness of the temperature control in the layer is low.

一方、バイオマスのうち、パーム油工場から排出されるパーム滓(エンプティフルーツバンチ、ファイバ、シェルの混在物)を燃料とする場合、パーム滓自体の発熱量は十分高いにもかかわらず、発熱量の変動が大きい問題点がある。例えば、貯蔵場に貯蔵してあるパーム滓が雨で濡れると、燃料(パーム滓)の発熱量が低下し、層温も低下する。また逆に、燃料が乾燥し発熱量が上昇すると層温も上昇する。   On the other hand, in the case of biomass using palm cocoon (a mixture of empty fruit bunches, fibers, and shells) discharged from a palm oil factory as fuel, the calorific value of the palm cocoon itself is high enough, There are problems with large fluctuations. For example, when a palm cocoon stored in a storage area gets wet with rain, the calorific value of the fuel (palm cocoon) decreases and the layer temperature also decreases. Conversely, when the fuel dries and the calorific value increases, the layer temperature also increases.

またその他のバイオマス燃料の場合でも、異なる性状を持った数種類の燃料を混合燃焼する場合、混合燃焼比率が変わると層温が変わる。特に揮発分はフリーボードで燃焼しやすいため、揮発分が多くなると層温が低下し、揮発分が少なくなると層温が上昇する。   In the case of other biomass fuels, when several types of fuels having different properties are mixed and burned, the layer temperature changes when the mixed combustion ratio changes. In particular, since the volatile matter easily burns on the free board, the layer temperature decreases when the volatile content increases, and the layer temperature increases when the volatile content decreases.

バイオマス燃料の灰成分にNaやKなどの低融点化合物を形成しうる元素を多量に含む場合、層温が上昇し、灰の融点を超えるとベッド材中にアグロメと呼ぶ塊が生成され、流動不良を引き起こす。   When the ash component of biomass fuel contains a large amount of elements that can form low melting point compounds such as Na and K, the bed temperature rises, and when the melting point of the ash is exceeded, a mass called agglomerate is generated in the bed material and flows. Cause defects.

また逆に、層温が低下し、燃料が良好な燃焼を維持するための温度を下回ると、自燃焼が進行せず、燃焼不良を引き起こす。   Conversely, when the bed temperature is lowered and the fuel falls below the temperature for maintaining good combustion, the self-combustion does not proceed, resulting in poor combustion.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、発熱量の変動する可燃性廃棄物を燃料として可燃性廃棄物以外の燃料をほとんど必要とせずに層内温度を所望の温度範囲に制御でき、かつ主蒸気圧力と主蒸気温度を保持したまま負荷指令に応じて燃焼量を制御できるバブリング流動層燃焼炉とその層内温度制御方法を提供することにある。   The present invention has been made to solve such problems. That is, the object of the present invention is to control the in-layer temperature within a desired temperature range using a combustible waste whose calorific value fluctuates as a fuel and almost no fuel other than the combustible waste, and the main steam pressure and An object of the present invention is to provide a bubbling fluidized bed combustion furnace capable of controlling the amount of combustion according to a load command while maintaining the main steam temperature, and a method for controlling the temperature inside the bed.

第1の発明によれば、粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備え前記燃料制御装置は、流動層内の温度を検出する層温検出手段を有し、検出された層温が所望の温度範囲になるように層内燃料供給手段を制御し流動層内に直接供給する燃料の層内供給量を調節し、前記燃料制御装置は、前記蒸気発生手段で発生した水蒸気の圧力と温度を検出する圧力検出手段と温度検出手段とを備え、前記検出された水蒸気の圧力と温度が所定の条件となるように層上燃料供給手段を制御し前記上面に供給する前記燃料の量を調節する、ことを特徴とするバブリング流動層燃焼炉が提供される。
第2の発明によれば、粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備え、前記燃料制御装置は、前記蒸気発生手段で発生した水蒸気の圧力と温度を検出する圧力検出手段と温度検出手段と、流動層内の温度を検出する層温検出手段とを備え、前記検出された水蒸気の圧力と温度が所定の条件となるように燃料の総供給量を算出し、前記検出された流動層内の温度を前記所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を決定し、前記総供給量から前記層内供給量が減算された量を、流動層の上面に供給する燃料の層上供給量として決定する、ことを特徴とするバブリング流動層燃焼炉が提供される。
According to the first aspect of the present invention, a fluidized bed in which particles are fluidized with fluidizing air and fuel is burned in and above the fluidized bed, and a solid or liquid combustible waste is directly supplied into the fluidized bed as fuel. Fuel supply means, on-layer fuel supply means for supplying solid or liquid combustible waste as fuel to the upper surface of the fluidized bed from above, and steam generating means for generating water vapor by heat generated in the fluidized bed And controlling the in-bed temperature to a desired temperature range while maintaining the pressure and temperature of the water vapor generated by the steam generating means, and according to a load command, A fuel control device that controls the amount of fuel supplied to the upper surface and the amount of fuel supplied to the upper surface by the upper layer fuel supply means, and the fuel control device detects the temperature in the fluidized bed Has layer temperature detection means , The detected bed temperature is adjusted intralayer supply amount of intra-layer fuel supply means controls the directly supplied fuel to the fluidized bed to the desired temperature range, the fuel control device, the steam generating unit Pressure detecting means and temperature detecting means for detecting the pressure and temperature of the water vapor generated in step 1, and controlling the on-layer fuel supply means so that the detected pressure and temperature of the water vapor are in a predetermined condition. There is provided a bubbling fluidized bed combustion furnace characterized by adjusting the amount of the fuel to be supplied.
According to the second aspect of the present invention, a fluidized bed in which particles are fluidized with fluidizing air and fuel is burned in and above the fluidized bed, and a solid or liquid combustible waste is directly supplied into the fluidized bed as fuel. Fuel supply means, on-layer fuel supply means for supplying solid or liquid combustible waste as fuel to the upper surface of the fluidized bed from above, and steam generating means for generating water vapor by heat generated in the fluidized bed And controlling the in-bed temperature to a desired temperature range while maintaining the pressure and temperature of the water vapor generated by the steam generating means, and according to a load command, A fuel control device that controls the amount of fuel supplied to the upper surface and the amount of fuel supplied to the upper surface by the upper-layer fuel supply means, and the fuel control device uses water vapor generated by the steam generation means. With the pressure of Pressure detection means for detecting the temperature, temperature detection means, and bed temperature detection means for detecting the temperature in the fluidized bed, and the total fuel supply so that the detected water vapor pressure and temperature are in a predetermined condition. An amount of fuel is calculated, and an in-layer supply amount of fuel to be directly supplied into the fluidized bed is determined so as to maintain the detected temperature in the fluidized bed within the desired temperature range, and the in-layer supply amount is determined from the total supply amount. There is provided a bubbling fluidized bed combustion furnace characterized in that an amount obtained by subtracting the supply amount is determined as an on-bed supply amount of fuel supplied to the upper surface of the fluidized bed.

本発明の構成によれば、層内燃料供給手段により流動層内に直接投入した場合と、層上燃料供給手段により層上に供給した場合とでは、層内燃焼率が異なるので、燃料制御装置により、層内燃料供給手段と層上燃料供給手段を制御することにより、必要な蒸気条件を保ちながら、最適な層温度、ひいては最適な流動状態と燃焼状態に維持することが可能となる。   According to the configuration of the present invention, the in-layer combustion rate differs between the case where the fuel is supplied directly into the fluidized bed by the in-layer fuel supply means and the case where the fuel is supplied onto the bed by the upper-layer fuel supply means. Thus, by controlling the in-layer fuel supply means and the upper-layer fuel supply means, it becomes possible to maintain the optimum bed temperature, and hence the optimum flow state and combustion state, while maintaining the necessary steam conditions.

また、層内燃料供給手段により流動層内に直接投入した場合は層内での燃焼率が高いので、燃料の層内供給量の調節により検出された層温を所望の温度範囲に維持することができる。 In addition, when the fuel is supplied directly into the fluidized bed by the in- layer fuel supply means, the combustion rate in the bed is high, so that the bed temperature detected by adjusting the amount of fuel supplied in the bed should be maintained within the desired temperature range. It is Ru can.

また、第3の発明によれば、第1の発明のバブリング流動層燃焼炉の層内温度制御方法であって、層内温度を所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を調節し、かつ主蒸気圧力と主蒸気温度を保持するように流動層の上面に供給する燃料の層上供給量を調節する、ことを特徴とするバブリング流動層燃焼炉の層内温度制御方法が提供される。 Further , according to the third invention, there is provided a method for controlling the temperature in the bed of the bubbling fluidized bed combustion furnace according to the first invention, wherein the temperature in the bed is directly supplied into the fluidized bed so as to maintain a desired temperature range. A bubbling fluidized bed combustion furnace characterized by adjusting the amount of fuel supplied in the layer and adjusting the amount of fuel supplied to the upper surface of the fluidized bed so as to maintain the main steam pressure and the main steam temperature. An in-layer temperature control method is provided.

この方法によれば、燃料を流動層内に直接投入した場合は層内での燃焼率が高いので、燃料の層内供給量の調節により検出された層温を所望の温度範囲に維持することができる。   According to this method, when the fuel is directly injected into the fluidized bed, the combustion rate in the bed is high, so that the bed temperature detected by adjusting the amount of fuel supplied in the bed can be maintained within a desired temperature range. Can do.

一方、この層内供給量の調節により、流動層上部のフリーボード部の温度が変化し、負荷指令により主蒸気圧力と主蒸気温度も変化するが、本発明の方法によれば、この変動に追従して層上供給量を調節するので、主蒸気圧力と主蒸気温度を保持することができる。   On the other hand, the temperature of the freeboard section at the upper part of the fluidized bed changes due to the adjustment of the supply amount in the bed, and the main steam pressure and the main steam temperature also change according to the load command. The amount of supply on the layer is adjusted to follow the main steam pressure and main steam temperature.

また、第4の発明によれば、粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備えるバブリング流動層燃焼炉の層内温度制御方法であって、主蒸気圧力と主蒸気温度を保持するように燃料の総供給量を算出し、層内温度を所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を決定し、総供給量から層内供給量を減算して流動層の上面に供給する燃料の層上供給量を決定する、ことを特徴とするバブリング流動層燃焼炉の層内温度制御方法が提供される。
According to the fourth aspect of the present invention, a fluidized bed in which particles are fluidized with fluidizing air and fuel is combusted inside and above the fluidized bed, and solid or liquid combustible waste is directly supplied into the fluidized bed as fuel. In-layer fuel supply means, on-layer fuel supply means for supplying solid or liquid combustible waste as fuel from above to the upper surface of the fluidized bed, and steam for generating water vapor by heat generated in the fluidized bed The flow by the in-layer fuel supply means so as to control the in-layer temperature within a desired temperature range while maintaining the pressure and temperature of the water vapor generated by the steam generation means and according to a load command. And a fuel control device for controlling the amount of fuel supplied into the bed and the amount of fuel supplied to the upper surface by the upper layer fuel supply means. Te, main steam Calculate the total fuel supply so as to maintain the pressure and main steam temperature, determine the fuel supply directly into the fluidized bed so as to maintain the bed temperature in the desired temperature range, There is provided a method for controlling the temperature in a bed of a bubbling fluidized bed combustion furnace, characterized in that the amount of fuel supplied to the upper surface of the fluidized bed is determined by subtracting the amount of feed in the bed from the amount supplied.

この方法によれば、層内温度を所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を決定するので、層温を所望の温度範囲に維持することができる。   According to this method, since the in-bed supply amount of the fuel directly supplied into the fluidized bed is determined so as to maintain the in-bed temperature in a desired temperature range, the bed temperature can be maintained in the desired temperature range. .

また、主蒸気圧力と主蒸気温度を保持するように燃料の総供給量を算出し、総供給量から層内供給量を減算して流動層の上面に供給する燃料の層上供給量を決定するので、主蒸気圧力と主蒸気温度を保持したまま負荷指令に応じて燃焼量を制御できる。   Also, calculate the total fuel supply to maintain the main steam pressure and main steam temperature, and subtract the in-bed supply from the total supply to determine the fuel supply above the fluidized bed. Therefore, the combustion amount can be controlled according to the load command while maintaining the main steam pressure and the main steam temperature.

上述したように本発明のバブリング流動層燃焼炉とその層内温度制御方法は、発熱量の変動する可燃性廃棄物を燃料として可燃性廃棄物以外の燃料をほとんど必要とせずに層内温度を所望の温度範囲に制御でき、かつ主蒸気圧力と主蒸気温度を保持したまま負荷指令に応じて燃焼量を制御できる、等の優れた効果を有する。   As described above, the bubbling fluidized bed combustion furnace and the in-situ temperature control method according to the present invention use the combustible waste whose calorific value fluctuates as the fuel, and the temperature in the in-situ layer is hardly required without using any fuel other than the combustible waste. It has an excellent effect that it can be controlled within a desired temperature range and the combustion amount can be controlled according to the load command while maintaining the main steam pressure and the main steam temperature.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to a common part and the overlapping description is abbreviate | omitted.

図1は、ある燃料(この例ではコーヒー滓)を流動層の層内と層上に供給した場合の層内と層上の燃焼割合を示す図である。ここで「層内燃焼率」とは、燃料の発熱による総入熱のうち、流動層の温度上昇に寄与する熱量の割合をいう。一方、フリーボードの温度上昇に寄与する熱量の割合を「フリーボード燃焼率」とする。層内燃焼率+フリーボード燃焼率=1となる。   FIG. 1 is a diagram showing a combustion ratio in a bed and on a bed when a certain fuel (coffee mash in this example) is supplied into and on a bed of a fluidized bed. Here, the “in-bed combustion rate” refers to the ratio of the amount of heat that contributes to the temperature rise of the fluidized bed in the total heat input due to the heat generated by the fuel. On the other hand, the ratio of the amount of heat that contributes to the temperature rise of the free board is defined as the “free board burning rate”. In-layer combustion rate + freeboard combustion rate = 1.

この図から、層内燃焼率は、燃料を流動層の層内に直接供給した方が、燃料を流動層の層上に供給した場合よりも高く、逆にフリーボード燃焼率は、燃料を流動層の層上に供給した場合の方が高くなることがわかる。この傾向は、燃料の種類にかかわらず流動層燃焼では一般的と考えることができる。   From this figure, the in-bed combustion rate is higher when the fuel is supplied directly into the fluidized bed than when the fuel is supplied onto the fluidized bed, and conversely, the freeboard combustion rate flows through the fuel. It turns out that it becomes higher when it supplies on the layer of a layer. This tendency can be considered common in fluidized bed combustion regardless of the type of fuel.

発熱量の変動する可燃性廃棄物を燃料とする場合、燃料の発熱量が大きく変化しても、流動不良にも燃焼不良にもならず、常に最適な流動状態と燃焼状態を保つためには、常に最適な層温度に制御できることが望ましい。   When combustible waste with fluctuating calorific value is used as fuel, even if the calorific value of the fuel changes greatly, neither flow failure nor combustion failure will occur. It is desirable to always be able to control the optimum layer temperature.

本発明は、燃料であっても、図1に示したように、流動層内に直接投入した場合と、層上に供給した場合とでは、層内燃焼率が異なることに着目し、燃料層内供給系統と燃料層上供給系統を併設し、層温と主蒸気条件を制御することで、必要な蒸気条件を保ちながら、最適な層温度、ひいては最適な流動状態と燃焼状態に維持するものである。   In the present invention, even if it is a fuel, as shown in FIG. 1, it is noted that the in-bed combustion rate differs between when it is directly fed into the fluidized bed and when it is supplied onto the bed. An internal supply system and a supply system above the fuel layer are provided, and the layer temperature and main steam conditions are controlled to maintain the optimum layer temperature, and thus the optimum fluid state and combustion state, while maintaining the necessary steam conditions. It is.

図2は、本発明のバブリング流動層燃焼炉の全体構成図である。この図に示すように、本発明のバブリング流動層燃焼炉10は、流動層12、層内燃料供給手段14、層上燃料供給手段16、蒸気発生手段18、および燃料制御装置20を備える。   FIG. 2 is an overall configuration diagram of the bubbling fluidized bed combustion furnace of the present invention. As shown in this figure, a bubbling fluidized bed combustion furnace 10 of the present invention includes a fluidized bed 12, an in-layer fuel supply means 14, an upper layer fuel supply means 16, a steam generation means 18, and a fuel control device 20.

流動層12は、耐熱粒子(例えば平均粒径1mm程度の珪砂)を流動用空気で流動させその内部および上部(フリーボード部13)で燃料1を燃焼させる流動層であり、流動層燃焼炉11の内部に形成される。   The fluidized bed 12 is a fluidized bed in which heat-resistant particles (for example, silica sand having an average particle diameter of about 1 mm) are flowed with flowing air, and the fuel 1 is combusted inside and above (freeboard portion 13). Formed inside.

層内燃料供給手段14は、流動層12内に燃料1(例えばパーム滓)を直接供給する燃料供給手段(例えば空気輸送やスクリュウコンベア)であり、燃料制御装置20からの制御信号により燃料の層内供給量を可変に調節できる。   The in-layer fuel supply means 14 is a fuel supply means (for example, pneumatic transport or screw conveyor) that directly supplies the fuel 1 (for example, palm straw) into the fluidized bed 12, and a fuel layer is generated by a control signal from the fuel control device 20. The internal supply amount can be variably adjusted.

層上燃料供給手段16は、流動層12の上面に燃料1を供給する燃料供給手段(例えばホッパーやスクリュウコンベア)であり、燃料制御装置20からの制御信号により燃料の層内供給量を可変に調節できる。   The upper layer fuel supply means 16 is a fuel supply means (for example, a hopper or a screw conveyor) for supplying the fuel 1 to the upper surface of the fluidized bed 12, and the supply amount of fuel in the layer can be changed by a control signal from the fuel control device 20. Can be adjusted.

蒸気発生手段18は、この例では、流動層燃焼炉11の炉壁を構成する水管壁を有する蒸気ドラム18aと、蒸気ドラム18aで発生した飽和蒸気2を加熱して過熱蒸気にする過熱器18bとを備え、流動層で発生した熱で水蒸気(この場合、過熱蒸気3)を発生させる。   In this example, the steam generating means 18 includes a steam drum 18a having a water pipe wall constituting the furnace wall of the fluidized bed combustion furnace 11, and a superheater that heats the saturated steam 2 generated by the steam drum 18a to superheated steam. 18b, and steam (in this case, superheated steam 3) is generated by the heat generated in the fluidized bed.

また本発明のバブリング流動層燃焼炉10において、過熱蒸気3は、蒸気タービン22に供給され発電機23を駆動して発電する。また流動層燃焼炉11を出た排ガス4はサイクロン24で灰5を回収された後に排気される。   In the bubbling fluidized bed combustion furnace 10 of the present invention, the superheated steam 3 is supplied to the steam turbine 22 to drive the generator 23 to generate power. The exhaust gas 4 exiting the fluidized bed combustion furnace 11 is exhausted after the ash 5 is recovered by the cyclone 24.

燃料制御装置20は、流動層12内の温度を検出する層温検出手段20a(例えば温度センサ)と、蒸気発生手段18で発生した水蒸気の圧力と温度を検出する圧力検出手段20b(例えば圧力センサ)と温度検出手段20c(例えば温度センサ)とを備える。この燃料制御装置20は、層温検出手段20aで検出された層温が所望の温度範囲になるように層内燃料供給手段14を制御して流動層12内に直接供給する燃料1の層内供給量を調節すると共に負荷指令に応じて燃焼量を制御する。   The fuel control device 20 includes a bed temperature detection means 20a (for example, a temperature sensor) that detects the temperature in the fluidized bed 12, and a pressure detection means 20b (for example, a pressure sensor) that detects the pressure and temperature of water vapor generated by the steam generation means 18. ) And temperature detection means 20c (for example, a temperature sensor). The fuel control device 20 controls the in-layer fuel supply means 14 so that the bed temperature detected by the bed temperature detection means 20a falls within a desired temperature range, and directly supplies the fluid 1 into the fluidized bed 12. The amount of combustion is controlled in accordance with the load command while adjusting the supply amount.

上述したように、本発明では、燃料について、層上に供給する系統と層内に供給する系統とを併設する。すなわち流動層燃焼炉11において、フリーボード部13に燃料を供給する燃料層上供給系統(層上燃料供給手段16)と流動層12内に燃料を供給する燃料層内供給系統(層内燃料供給手段14)を併設し、主蒸気条件(主蒸気温度、主蒸気圧力、等)および層温を監視しながら、各々が最適な状態になるように、一つの燃料供給ラインから、燃料層上供給系統と燃料層内供給系統へ燃料を分配して流動層燃焼炉11に供給する。   As described above, in the present invention, a system for supplying fuel on a layer and a system for supplying fuel in the layer are provided side by side. That is, in the fluidized bed combustion furnace 11, an on-fuel layer supply system (upper-layer fuel supply means 16) that supplies fuel to the freeboard unit 13 and an in-fuel layer supply system (in-layer fuel supply) that supplies fuel into the fluidized bed 12 Means 14) are provided, and the main steam condition (main steam temperature, main steam pressure, etc.) and the bed temperature are monitored, and the fuel is supplied onto the fuel bed from one fuel supply line so that each is in an optimum state. Fuel is distributed to the system and the supply system in the fuel layer and supplied to the fluidized bed combustion furnace 11.

図3は、本発明の方法の第1実施形態を示す図である。この第1方法では、主蒸気条件(主蒸気圧力と主蒸気温度)および層内温度を監視し、燃料の層内供給量と層上供給量を調節する。   FIG. 3 is a diagram showing a first embodiment of the method of the present invention. In this first method, main steam conditions (main steam pressure and main steam temperature) and in-bed temperature are monitored, and the in-layer supply amount and the on-layer supply amount of fuel are adjusted.

すなわち図3において、マスタ101より発せられた負荷指令が関数発生器102により層上燃料流量指令へと変換される。一方、マスタ101より発せられた負荷指令が関数発生器103により、主蒸気圧力指令へ変換され、比較器108にて、主蒸気圧力計測値109との偏差を計算し、制御器107にて補正信号へと変換され、加算器106にて、層上燃料流量指令が補正される。   That is, in FIG. 3, the load command issued from the master 101 is converted into an upper fuel flow command by the function generator 102. On the other hand, the load command issued from the master 101 is converted into the main steam pressure command by the function generator 103, the deviation from the main steam pressure measurement value 109 is calculated by the comparator 108, and corrected by the controller 107. The signal is converted into a signal, and the adder 106 corrects the upper fuel flow rate command.

同様に、マスタ101より発せられた負荷指令が関数発生器104により、主蒸気温度指令へ変換され、比較器112にて、主蒸気温度計測値113との偏差を計算し、制御器111にて補正信号へと変換され、加算器110にて、層上燃料流量指令が補正される。   Similarly, the load command issued from the master 101 is converted into a main steam temperature command by the function generator 104, the deviation from the main steam temperature measurement value 113 is calculated by the comparator 112, and the controller 111 The signal is converted into a correction signal, and the adder 110 corrects the fuel flow command on the upper layer.

そして、最終的に層上燃料流量指令119となる。   Then, the upper layer fuel flow rate command 119 is finally obtained.

一方、マスタ101より発せられた負荷指令が関数発生器105により、層内燃料流量指令へと変換され、比較器116にて、層温設定値117と層温計測値118との偏差を計算し、制御器115にて補正信号へと変換され、加算器114にて、層内燃料流量指令が補正される。そして、最終的に層内燃料流量指令120となる。   On the other hand, the load command issued from the master 101 is converted into an in-layer fuel flow command by the function generator 105, and the comparator 116 calculates the deviation between the set layer temperature 117 and the measured layer temperature 118. The controller 115 converts the signal into a correction signal, and the adder 114 corrects the in-layer fuel flow rate command. Finally, the in-layer fuel flow command 120 is obtained.

図4は、本発明の方法の第2実施形態を示す図である。この第2方法では、主蒸気条件(主蒸気圧力と主蒸気温度)および層内温度を監視し、燃料の総供給量と層内供給量及び層上供給量をそれぞれ調節する。   FIG. 4 is a diagram showing a second embodiment of the method of the present invention. In the second method, the main steam condition (main steam pressure and main steam temperature) and the temperature in the bed are monitored, and the total fuel supply amount, the bed supply amount, and the bed supply amount are adjusted, respectively.

すなわち図4において、マスタ201より発せられた負荷指令が関数発生器202により総燃料流量指令へと変換される。一方、マスタ201より発せられた負荷指令が関数発生器203により、主蒸気圧力指令へ変換され、比較器208にて、主蒸気圧力計測値209との偏差を計算し、制御器207にて補正信号へと変換され、加算器206にて、総燃料流量指令が補正される。   That is, in FIG. 4, the load command issued from the master 201 is converted into a total fuel flow rate command by the function generator 202. On the other hand, the load command issued from the master 201 is converted into the main steam pressure command by the function generator 203, the deviation from the main steam pressure measurement value 209 is calculated by the comparator 208, and corrected by the controller 207. The signal is converted into a signal, and the adder 206 corrects the total fuel flow rate command.

同様に、マスタ201より発せられた負荷指令が関数発生器204により、主蒸気温度指令へ変換され、比較器212にて、主蒸気温度計測値213との偏差を計算し、制御器211にて補正信号へと変換され、加算器210にて、総燃料流量指令が補正される。   Similarly, the load command issued from the master 201 is converted into the main steam temperature command by the function generator 204, the deviation from the main steam temperature measurement value 213 is calculated by the comparator 212, and the controller 211 The signal is converted to a correction signal, and the adder 210 corrects the total fuel flow rate command.

一方、マスタ201より発せられた負荷指令が関数発生器205により、層内/層上燃料分配率へと変換され、乗算器215により総燃料流量指令と乗算されることで、層上燃料流量指令に変換される。また、層内/層上燃料分配率は、比較器214で1より減ぜられ、乗算器216により総燃料流量指令と乗算されることで、層内燃料流量指令に変換される。   On the other hand, the load command issued from the master 201 is converted into the in-layer / upper layer fuel distribution ratio by the function generator 205, and multiplied by the total fuel flow rate command by the multiplier 215, whereby the upper layer fuel flow rate command is obtained. Is converted to Further, the in-layer / upper-layer fuel distribution ratio is reduced from 1 by the comparator 214 and is multiplied by the total fuel flow command by the multiplier 216 to be converted into the in-layer fuel flow command.

一方、比較器218にて、層温設定値219と層温計測値220との偏差を計算し、制御器217にて補正流量へと変換され、加算器221にて層上燃料流量指令が、比較器222にて層内燃料流量指令が、それぞれ補正される。そして、最終的に層上燃料流量指令223、層内燃料流量指令224となる。   On the other hand, the comparator 218 calculates the deviation between the bed temperature set value 219 and the bed temperature measurement value 220, and the controller 217 converts the deviation into a corrected flow rate. The comparator 222 corrects the in-layer fuel flow rate command. Finally, the upper layer fuel flow command 223 and the in-layer fuel flow command 224 are obtained.

図3又は図4に示した方法で、主蒸気条件および層温とも最適な状態とすることが可能となる。   With the method shown in FIG. 3 or FIG. 4, it is possible to achieve an optimum state for both the main steam condition and the layer temperature.

本発明では、燃料の発熱量が大きく変化する場合を想定している。燃料の発熱量は、例えば雨ざらしになった場合などは低下するし、乾燥された場合などは増加する。また、発熱量の異なる数種の燃料を混合燃焼する場合、その混合燃焼比率が変わると、燃料全体の発熱量も変わってくる。従ってある層温度、主蒸気流量(主蒸気圧力)で静定している状態から、燃料の発熱量が低下した場合、層温が低下し、主蒸気圧力も低下してくる。   In the present invention, it is assumed that the calorific value of the fuel changes greatly. The calorific value of the fuel decreases, for example, when it is raining, and increases when it is dried. In addition, when several types of fuel having different calorific values are mixed and burned, the calorific value of the whole fuel also changes when the mixed combustion ratio changes. Therefore, when the calorific value of the fuel decreases from a state where the temperature is constant at a certain layer temperature and main steam flow rate (main steam pressure), the layer temperature decreases and the main steam pressure also decreases.

このような場合、従来技術では、主蒸気圧力を維持するため燃料量は増加するが層温は増加しない。   In such a case, in the prior art, the fuel amount increases to maintain the main steam pressure, but the bed temperature does not increase.

これに対して本発明では、例えば図3に示す構成により、層温を最適温度とするよう層内供給燃料量が増加し、さらに主蒸気圧力、温度が所定の条件となるように、層上供給燃料量が調整される。   On the other hand, in the present invention, for example, by the configuration shown in FIG. 3, the amount of fuel supplied in the layer is increased so that the layer temperature becomes the optimum temperature, and the main steam pressure and temperature are set to predetermined conditions. The amount of fuel supplied is adjusted.

また図4に示す構成により、主蒸気圧力、温度が所定の条件となるように、総燃料流量が設定され、層内/層上燃料分配率により、層内燃料流量、層上燃料流量に分配され、さらに層温が最適温度となるように、各燃料流量が微調整される。   In addition, with the configuration shown in FIG. 4, the total fuel flow rate is set so that the main steam pressure and temperature are in the predetermined conditions, and the fuel flow rate is divided into the fuel flow rate in the stratum and the fuel flow rate in the stratum according to the fuel distribution rate in the stratum. Further, each fuel flow rate is finely adjusted so that the layer temperature becomes the optimum temperature.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.

層内と層上の燃焼割合を示す図である。It is a figure which shows the combustion ratio in a layer and on a layer. 本発明のバブリング流動層燃焼炉の全体構成図である。It is a whole block diagram of the bubbling fluidized bed combustion furnace of this invention. 本発明の方法の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the method of this invention. 本発明の方法の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the method of this invention. 特許文献1の「流動床式焼却炉の燃焼制御方法」の模式図である。1 is a schematic diagram of “Combustion control method of fluidized bed incinerator” in Patent Document 1. FIG. 特許文献2の「流動床式焼却炉の燃焼制御方法およびその装置」の模式図である。FIG. 3 is a schematic diagram of “Combustion control method and apparatus of fluidized bed incinerator” of Patent Document 2. 特許文献3の「加圧流動層複合発電システムとその制御方法および制御装置」の模式図である。FIG. 3 is a schematic diagram of “Pressurized fluidized bed combined power generation system and control method and control apparatus” of Patent Document 3.

符号の説明Explanation of symbols

1 燃料、2 飽和蒸気、3 水蒸気(過熱蒸気)、4 排ガス、5 灰、
10 バブリング流動層燃焼炉、11 流動層燃焼炉、12 流動層、13 フリーボード部、
14 層内燃料供給手段、16 層上燃料供給手段、
18 蒸気発生手段、18a 蒸気ドラム、18b 過熱器、
20 燃料制御装置、20a 層温検出手段、20b 圧力検出手段、
20c 温度検出手段、22 蒸気タービン、23 発電機

1 fuel, 2 saturated steam, 3 steam (superheated steam), 4 exhaust gas, 5 ash,
10 Bubbling fluidized bed combustion furnace, 11 Fluidized bed combustion furnace, 12 Fluidized bed, 13 Free board part,
14 layer fuel supply means, 16 layer upper fuel supply means,
18 Steam generating means, 18a Steam drum, 18b Superheater,
20 fuel control device, 20a layer temperature detecting means, 20b pressure detecting means,
20c temperature detection means, 22 steam turbine, 23 generator

Claims (4)

粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備え
前記燃料制御装置は、流動層内の温度を検出する層温検出手段を有し、検出された層温が所望の温度範囲になるように層内燃料供給手段を制御し流動層内に直接供給する燃料の層内供給量を調節し、
前記燃料制御装置は、前記蒸気発生手段で発生した水蒸気の圧力と温度を検出する圧力検出手段と温度検出手段とを備え、前記検出された水蒸気の圧力と温度が所定の条件となるように層上燃料供給手段を制御し前記上面に供給する前記燃料の量を調節する、ことを特徴とするバブリング流動層燃焼炉。
A fluidized bed in which particles are flowed with fluidizing air and fuel is burned in and above the fluidized bed, in-bed fuel supply means for directly supplying solid or liquid combustible waste as fuel into the fluidized bed, and solid or liquid On-bed fuel supply means for supplying flammable waste as fuel to the upper surface from above the fluidized bed, steam generating means for generating water vapor with heat generated in the fluidized bed, and generated by the steam generating means The amount of the fuel supplied into the fluidized bed by the in-layer fuel supply means so as to control the temperature in the layer to a desired temperature range while maintaining the pressure and temperature of the steam, and according to a load command, A fuel control device for controlling the amount of fuel supplied to the upper surface by the upper layer fuel supply means ,
The fuel control device has a bed temperature detecting means for detecting the temperature in the fluidized bed, and controls the fuel supply means in the bed so that the detected bed temperature falls within a desired temperature range and directly supplies it to the fluidized bed. Adjust the fuel supply in the stratum
The fuel control device includes pressure detection means and temperature detection means for detecting the pressure and temperature of water vapor generated by the steam generation means, and the layer is arranged so that the detected pressure and temperature of the water vapor are in a predetermined condition. A bubbling fluidized bed combustion furnace characterized by controlling an upper fuel supply means and adjusting an amount of the fuel supplied to the upper surface .
粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備え
前記燃料制御装置は、前記蒸気発生手段で発生した水蒸気の圧力と温度を検出する圧力検出手段と温度検出手段と、流動層内の温度を検出する層温検出手段とを備え、前記検出された水蒸気の圧力と温度が所定の条件となるように燃料の総供給量を算出し、前記検出された流動層内の温度を前記所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を決定し、前記総供給量から前記層内供給量が減算された量を、流動層の上面に供給する燃料の層上供給量として決定する、ことを特徴とするバブリング流動層燃焼炉。
A fluidized bed in which particles are flowed with fluidizing air and fuel is burned in and above the fluidized bed, in-bed fuel supply means for directly supplying solid or liquid combustible waste as fuel into the fluidized bed, and solid or liquid On-bed fuel supply means for supplying flammable waste as fuel to the upper surface from above the fluidized bed, steam generating means for generating water vapor with heat generated in the fluidized bed, and generated by the steam generating means The amount of the fuel supplied into the fluidized bed by the in-layer fuel supply means so as to control the temperature in the layer to a desired temperature range while maintaining the pressure and temperature of the steam, and according to a load command, A fuel control device for controlling the amount of fuel supplied to the upper surface by the upper layer fuel supply means ,
The fuel control device includes pressure detection means and temperature detection means for detecting the pressure and temperature of water vapor generated by the steam generation means, and a bed temperature detection means for detecting the temperature in the fluidized bed, and the detected temperature is detected. Fuel that is supplied directly into the fluidized bed so as to calculate the total amount of fuel supplied so that the pressure and temperature of the water vapor are in a predetermined condition, and to maintain the detected temperature in the fluidized bed within the desired temperature range Bubbling flow, characterized in that an in- layer supply amount is determined, and an amount obtained by subtracting the in-layer supply amount from the total supply amount is determined as an on-layer supply amount of fuel to be supplied to the upper surface of the fluidized bed. Layer combustion furnace.
請求項に記載のバブリング流動層燃焼炉の層内温度制御方法であって、
層内温度を所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を調節し、かつ主蒸気圧力と主蒸気温度を保持するように流動層の上面に供給する燃料の層上供給量を調節する、ことを特徴とするバブリング流動層燃焼炉の層内温度制御方法。
A method for controlling the temperature in a bed of a bubbling fluidized bed combustion furnace according to claim 1 ,
The amount of fuel supplied directly into the fluidized bed is adjusted so as to maintain the temperature in the desired temperature range, and is supplied to the upper surface of the fluidized bed so as to maintain the main steam pressure and the main steam temperature. A method for controlling a temperature in a bed of a bubbling fluidized bed combustion furnace, characterized by adjusting a supply amount of fuel on a bed.
粒子を流動用空気で流動させその内部および上部で燃料を燃焼させる流動層と、固体または液体の可燃性廃棄物を燃料として前記流動層内に直接供給する層内燃料供給手段と、固体または液体の可燃性廃棄物を燃料として流動層の上面よりも上方からこの上面に供給する層上燃料供給手段と、流動層で発生した熱で水蒸気を発生させる蒸気発生手段と、該蒸気発生手段で発生した水蒸気の圧力と温度を保持したまま層内温度を所望の温度範囲に制御するように、かつ負荷指令に応じて、前記層内燃料供給手段による前記流動層内への前記燃料の供給量と前記層上燃料供給手段による前記上面への前記燃料の供給量とを制御する燃料制御装置と、を備えるバブリング流動層燃焼炉の層内温度制御方法であって、
主蒸気圧力と主蒸気温度を保持するように燃料の総供給量を算出し、層内温度を所望の温度範囲に維持するように流動層内に直接供給する燃料の層内供給量を決定し、総供給量から層内供給量を減算して流動層の上面に供給する燃料の層上供給量を決定する、ことを特徴とするバブリング流動層燃焼炉の層内温度制御方法。
A fluidized bed in which particles are flowed with fluidizing air and fuel is burned in and above the fluidized bed, in-bed fuel supply means for directly supplying solid or liquid combustible waste as fuel into the fluidized bed, and solid or liquid On-bed fuel supply means for supplying flammable waste as fuel to the upper surface from above the fluidized bed, steam generating means for generating water vapor with heat generated in the fluidized bed, and generated by the steam generating means The amount of the fuel supplied into the fluidized bed by the in-layer fuel supply means so as to control the temperature in the layer to a desired temperature range while maintaining the pressure and temperature of the steam, and according to a load command, A fuel control device for controlling the amount of fuel supplied to the upper surface by the upper layer fuel supply means, and a method for controlling the temperature in the bed of a bubbling fluidized bed combustion furnace,
Calculate the total fuel supply to maintain the main steam pressure and main steam temperature, and determine the in-bed supply of fuel to be supplied directly into the fluidized bed to maintain the in-bed temperature in the desired temperature range. A method for controlling the temperature inside the bed of a bubbling fluidized bed combustion furnace, wherein the amount of fuel supplied to the upper surface of the fluidized bed is determined by subtracting the amount of feed within the bed from the total amount supplied.
JP2003386495A 2003-11-17 2003-11-17 Bubbling fluidized bed combustion furnace and its temperature control method Expired - Fee Related JP4366711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386495A JP4366711B2 (en) 2003-11-17 2003-11-17 Bubbling fluidized bed combustion furnace and its temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386495A JP4366711B2 (en) 2003-11-17 2003-11-17 Bubbling fluidized bed combustion furnace and its temperature control method

Publications (2)

Publication Number Publication Date
JP2005147534A JP2005147534A (en) 2005-06-09
JP4366711B2 true JP4366711B2 (en) 2009-11-18

Family

ID=34694166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386495A Expired - Fee Related JP4366711B2 (en) 2003-11-17 2003-11-17 Bubbling fluidized bed combustion furnace and its temperature control method

Country Status (1)

Country Link
JP (1) JP4366711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944018B (en) * 2012-11-23 2015-10-28 广东开能环保能源有限公司 A kind of dangerous waste incineration and afterheat generating system thereof
CN110260356B (en) * 2019-07-15 2020-08-18 白海波 Energy-saving control method of fluidized bed boiler

Also Published As

Publication number Publication date
JP2005147534A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US6430914B1 (en) Combined cycle power generation plant and method of operating such a plant
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP5642657B2 (en) Fuel gasification system, control method and control program therefor, and fuel gasification combined power generation system including fuel gasification system
JP5316913B2 (en) Combustion furnace temperature control method and apparatus for gasification equipment
JP4366711B2 (en) Bubbling fluidized bed combustion furnace and its temperature control method
JP2009229042A (en) Circulating fluidized bed gasifier and air flow rate control method and device therefor
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
JP5151921B2 (en) Combined power generation method and apparatus using two-column gasifier
JP6697312B2 (en) Wet biomass incinerator system and method of operating wet biomass incinerator
JP2010025491A (en) Fuel supply control device of combustion furnace boiler
CN115479276A (en) Control device, waste incineration facility, control method, and program
JP5359384B2 (en) Operation control method and operation control device for circulating fluidized bed boiler
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JPH10232014A (en) Freeboard temperature control method of fluidized incinerator
TWI795721B (en) Control device, control method, and program-recorded recording medium
JP6223104B2 (en) Waste gasification melting furnace and operation method thereof
JP5298793B2 (en) Pressure control method and apparatus for gasification equipment
JP7265671B2 (en) Stoker type waste power generation system and method for stabilizing waste power generation amount
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JP2005308259A (en) Fluidized bed partial combustion furnace operating method
JPH04273911A (en) Combustion control method of refuse incinerator
WO2021001941A1 (en) Ground flare
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP2023048608A (en) Fluidized bed type sludge incineration furnace, and automatic combustion control method for fluidized bed type sludge incineration furnace
JP5264301B2 (en) Sludge incineration method using fluidized bed incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees