JP4365975B2 - Punch for electric sintering - Google Patents

Punch for electric sintering Download PDF

Info

Publication number
JP4365975B2
JP4365975B2 JP2000062527A JP2000062527A JP4365975B2 JP 4365975 B2 JP4365975 B2 JP 4365975B2 JP 2000062527 A JP2000062527 A JP 2000062527A JP 2000062527 A JP2000062527 A JP 2000062527A JP 4365975 B2 JP4365975 B2 JP 4365975B2
Authority
JP
Japan
Prior art keywords
punch
sintering
powder
cylinder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062527A
Other languages
Japanese (ja)
Other versions
JP2001253779A (en
Inventor
満 上川
嘉明 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000062527A priority Critical patent/JP4365975B2/en
Publication of JP2001253779A publication Critical patent/JP2001253779A/en
Application granted granted Critical
Publication of JP4365975B2 publication Critical patent/JP4365975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は通電焼結加工用パンチの改良に関する。
【0002】
【従来の技術】
代表的な焼結法は、金属若しくはセラミックスの粉末にワックスなどのバインダを混ぜ、この混合体を成形型に入れて固めて圧粉成形体を造り、この圧粉成形体を焼結炉に入れ、融点よりは低温であるが十分に高温である焼結温度に保持することで、粉末同士を原子間結合することで一体化する特殊な処理法である。前記バインダは焼結炉内で蒸発させるため焼結品には残らない。
【0003】
上記製法は圧粉成形工程と焼結工程とを独立させているため各々の設備(造形プレス、焼結炉)が必要であることと工程が長くなることが課題である。これらの課題を克服するために、成形と焼結とを同時平行的に実施する技術の1つである通電焼結法が注目されている。
【0004】
通電焼結法は上下パンチを黒鉛で構成し、この黒鉛に通電することにより、放電やジュール熱(抵抗熱)を発生させるというものである。しかし、1000℃以上の高温で焼結するため、原料の焼結粉末とパンチを構成する黒鉛とが反応したり、焼結粉末が黒鉛に食い込むことがある。この様な反応もしくは食い込みはパンチを著しく消耗させるため好ましくない。
【0005】
この不具合を解消すべく提案されたのが、例えば▲1▼特開平11−12606号公報「通電焼結方法」や特開平10−17904号公報「通電焼結方法」である。
上記▲1▼は、同公報の図1に示される通り、上パンチ2(符号は公報記載の番号を流用する。以下同様。)と粉末材料Mとを電気絶縁層5で仕切り、下パンチ3と粉末材料Mとを電気絶縁層5で仕切るというものである。
上下パンチ2,3を黒鉛で構成すると粉末材料Mとの間でミクロ放電が発生する虞れがある。しかし、電気絶縁層5,5を介在させることにより、ミクロ放電の発生を防止することができ、パンチの消耗を抑えることができると説明されている。
【0006】
上記▲2▼は、同公報の図1に示される通り、上パンチ2と粉末材料Mとを炭素材プレート4で仕切り、下パンチ3と粉末材料Mとを炭素材プレート4で仕切るというものである。
炭素材プレート4,4は焼結作業毎に取替えるところの消耗品とする。この対策により、上下パンチ2,3の消耗を防止することができたと説明されている。
【0007】
【発明が解決しようとする課題】
上記▲1▼は、粉末材料Mの粉末間に発生する粉末間放電をも抑えてしまったため、新たな課題が発生する。すなわち、通電焼結法では粉末間放電が期待でき、この粉末間放電が発生すると、粉末を覆っている酸化膜などを放電エネルギーにより破壊することができる。酸化膜などが除去できれば原子間結合を促すことができ、粒子間結合が進み、良質な焼結品を容易に得ることができる。しかし、上記▲1▼では粉末間放電が起こらないので、このような通電焼結特有の利点を生かすことはできないことになる。
【0008】
上記▲2▼は、炭素材プレートが導電材であるから、粉末間放電を発生させることはできる。しかし、焼結作業毎に炭素材プレート4,4を取替えるのでは、この取替え作業が作業者の負担を増し、作業能率の低下を招き、焼結品のコストアップの要因となる。
【0009】
そこで、本発明の目的は通電焼結法において、消耗品の発生を伴わず、且つ粉末間放電の発生を促すことのできるパンチ構造を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために請求項1は、下パンチをセットしたダイスに、焼結粉末を充填し、上パンチをセットし、上下パンチで圧粉しつつ通電することで焼結品を得る通電焼結の際に使用する上パンチ及び/又は下パンチにおいて、このパンチは、焼結粉末に触れる第1パンチ部とこの第1パンチ部を押す第2パンチ部とこの第2パンチ部を押す第3パンチ部とを直列に並べた組みパンチであり、第1パンチ部は焼結粉末には反応せず導電性を有する材料で構成した高強度部材、第2パンチ部は黒鉛製部材、第3パンチ部は炭素繊維強化炭素製部材としたことを特徴とする。
【0011】
第1〜第3パンチ部を全て導電材料で構成したので、通電焼結特有の粉末間放電を発生させることができ、短い焼結時間で良質の焼結品を得ることができる。そして、焼結粉末に接する第1パンチ部は焼結粉末とは反応しないので、反応による消耗を心配する必要はなく、パンチの寿命を十分に延ばすことができる。
【0012】
請求項2では、高強度部材は導電性セラミックスで構成したことを特徴とする。
導電性セラミックスは、本来は絶縁物であるセラミックス粉末に、導電物質粉末(Ti(チタン)、Co(コバルト)などの金属粉末が好適)を混ぜたものであり、ジルコニアに導電性を付与した導電性ジルコニアや、窒化珪素に導電性を付与した導電性窒化珪素がその例である。
【0013】
第1パンチ部を導電性セラミックスとすることにより、次の作用及び効果を発揮させることができる。
【0014】
先ず、セラミックスは焼結粉末と反応する心配がない。
通常の絶縁性セラミックスでは電流が遮断されるが、本発明では第1パンチ部を導電性セラミックスにしたので電流が遮断されることが無く、粉末間放電を促すことができる。
また、導電性セラミックスは製作の際に放電加工が可能であり、製作コストが大幅に削減でき、かつ形状の自由度も大きくなり、複雑な形状の部品にも対応可能である。
【0015】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る通電焼結装置の原理図であり、通電焼結装置10は、下パンチ20L(Lは、LOWER、下を意味する。詳細構成は後述)と、ダイベース11と、下パンチ20Lに被せつつダイベース11に載せる3重円筒構造の通電焼結加工用ダイス30(詳細構成は後述)と、上パンチ20U(Uは、UPPER、上を意味する。詳細構成は後述)と、これらを囲う気密容器12と、この気密容器12の容器内ガスを排出する真空ポンプ13と、真空排気後の容器12内にアルゴンガス等の不活性ガスを吹込む不活性ガス吹込み管14と、上下パンチ20U,20L間に給電する電源15と、この電源15を制御する制御部16とからなる。
【0016】
下パンチ20Lは、焼結粉末31に触れる第1パンチ部21Lと第1パンチ部21Lを押上げる第2パンチ部22Lとこの第2パンチ部22Lを押上げる第3パンチ部23Lとを直列に並べた組みパンチである。
【0017】
そして、第1パンチ部21Lは焼結粉末31には反応せず導電性を有する材料で構成した高強度部材、第2パンチ部22Lは黒鉛製部材、第3パンチ部23Lは炭素繊維強化炭素製部材としたことを特徴とする。第3パンチ部23Lはプレスマシンのボルスターに取付ける又はボルスターそのものであってもよい。
【0018】
更に、第1パンチ部21Lは、導電性ジルコニアや、窒化珪素に導電性を付与した導電性窒化珪素に代表される導電セラミックスで構成することが望ましい。なお、本実施例では第1パンチ部21Lはいわゆる形彫りパンチである。
【0019】
同様に、上パンチ20Uは、焼結粉末31に触れる第1パンチ部21Uと第1パンチ部21Uを押下げる第2パンチ部22Uとこの第2パンチ部22Uを押下げる第3パンチ部23Uとを直列に並べた組みパンチである。
【0020】
そして、第1パンチ部21Uは焼結粉末31には反応せず導電性を有する材料で構成した高強度部材、第2パンチ部22Uは黒鉛製部材、第3パンチ部23Uは炭素繊維強化炭素製部材としたことを特徴とする。第3パンチ部23Uはプレスマシンのラムに取付けるまたはラムそのものであってもよい。
【0021】
更に、第1パンチ部21Uは、導電性ジルコニアや、窒化珪素に導電性を付与した導電性窒化珪素に代表される導電セラミックスで構成することが望ましい。なお、本実施例では第1パンチ部21Uはいわゆる形彫りパンチである。
【0022】
また、通電焼結加工用ダイス30(以下「ダイス30」と記す。)は、焼結粉末31に触れる内筒32とこの内筒32を囲う中間筒33とこの中間筒33を囲う外筒34とからなる3重円筒であり、前記内筒32は黒鉛製筒、前記中間筒33はセラミックス製筒、前記外筒34は炭素繊維強化炭素製筒とし、且つセラミックス製筒と炭素繊維強化炭素製筒との間に熱膨張を緩和するために所定の隙間35を設けたものである。
【0023】
この隙間35は数mm程度に設定する。しかし隙間35があるため、外筒34のみを持つと、中間筒33が外筒34から抜け落ちる可能性がある。そこで、外筒34から中間筒33に達するセラミックスピン36・・・(・・・は複数本を示す。以下同様。)を打込むとよい。これらのセラミックスピン36・・・の掛け止め作用により、ダイス30を安心して取扱うことができる。しかし、セラミックスピン36・・・は必須ではない。
【0024】
前記中間筒33はセラミックス製筒であるが、セラミックスには汎用の絶縁性セラミックスと特殊な導電性セラミックスとがあり、何れも使用可能である。
ただし、絶縁性セラミックスでは研削加工並びに研磨加工からなる機械加工で仕上げる。しかし、セラミックスは極めて硬いため機械加工時間が長くなり、加工コストが嵩む。
この点、導電性セラミックスは、通電性があるので放電加工で仕上げることができる。放電加工であれば、加工時間は短くて済み、仕上り形状も任意である。従って、型加工費を低減する上では、導電性セラミックスを採用することが望ましい。
【0025】
なお、導電性セラミックスは、本来は絶縁物であるセラミックス粉末に、導電物質粉末(Ti(チタン)、Co(コバルト)などの金属粉末が好適)を混ぜたものであり、ジルコニアに導電性を付与した導電性ジルコニアや、窒化珪素に導電性を付与した導電性窒化珪素がその例である。
【0026】
以上の構成からなる通電焼結装置並びにパンチの作用を次に説明する。
図1において、下方の第3パンチ部23Lに第2パンチ部22Lを組み合わせ、そこに上からダイス30を被せ、このダイス30をダイベース11に載せる。次に、ダイス30の内筒32に下の第1パンチ部21Lを落とし込み、そこへ焼結粉末31を充填し、上の第1パンチ部21Uを落とし込み、更に上パンチ20Uの第2パンチ部22Uを挿入する。ここまでの作業は密閉容器12の図示せぬ扉を開けて行う。そのため、密閉容器12内部は空気雰囲気となる。
【0027】
扉を閉じ、真空ポンプ13を始動して密閉容器12内部を真空にする。そして、容器12内部を真空のまま、若しくは不活性ガスを吹込み不活性ガス雰囲気にする如くに、焼結粉末の特性により雰囲気を決定する。すなわち、焼結粉末31の種類、処理条件により、真空のままで次の通電を開始する若しくは不活性ガス(例えばN2ガスやArガス)を吹込んだ後に次の通電を開始する。
【0028】
通電は連続通電と間欠通電(オンオフを繰り返すパルス通電)とがあるが、本実施例では後者のパルス通電を行う。
連続通電では大電流を流す続けるとワークが溶融してしまうので電流を抑える必要がある。これに対してパルス通電は、通電時間を短くすることで大電流を投入することができる。この大電流により、焼結粉末31の粉末間に放電プラズマ(このことを粉末間放電と言う)を発生させることができる。放電プラズマの高いエネルギーで粉末表面の酸化膜を破壊し除去することができ、焼結現象を促すことができるため、通常の焼結法よりも緻密な焼結品を得ることができる。
【0029】
また、放電プラズマを目的としたパルス通電は、粉末間に高いエネルギーを集中させるものであり、粉末全体の温度を上げる必要はない。この結果、焼結粉末31を比較的低温に保ちながら焼結を実施することができる。通常の焼結法は粉末全体を融点直下温度まで加熱必要があるが、パルス通電では全体を比較的低温に保てるため、投入電気エネルギーを節約することができる。
【0030】
前記通電は、上下パンチ20U,20Lで圧粉しつつ行うが、上下パンチ20U,20Lである程度加圧した後に通電を開始することは差支えない。
通電により上述した通りに焼結粉末31の粉末粒子間に放電プラズマが発生し、粒子表面が気化・溶融する。この粒子が移動を始め、放電衝撃圧力が加わり塑性変形する。このとき、形彫りパンチに相当する第1パンチ部21U,21Lで加圧されているから所望の形状の焼結品を得ることができる。
【0031】
次に、上下パンチ20U,20Lの作用を説明する。併せて、ダイス30の作用も説明する。
【0032】
パンチの作用説明:
第1パンチ部:
材質:導電性窒化珪素
径:100 mm
かさ密度:3.8 g/cm3
引張り強度:150 MPa
【0033】
第2パンチ部:
材質:黒鉛
径:100 mm
かさ密度:1.77 g/cm3
引張り強度:78 MPa
【0034】
第3パンチ部:
材質:炭素繊維強化炭素
径:100 mm
かさ密度:1.6 g/cm3
引張り強度:290 MPa
【0035】
第1パンチ部21U,21Lは窒化珪素であり、焼結粉末31とは反応しない。そして、導電性に富むので、焼結粉末31内での粉末間放電を促す作用を発揮する。第2パンチ部22U,22Lは焼結粉末31とは接触しないので安価な黒鉛を採用した。第3パンチ部23U,23Lは繰り返し使用が可能なように炭素繊維強化炭素を使用した。
第3パンチ部23U,23L、第2パンチ部22U,22Lともに導電性部材であるから、第1パンチ21U,21Lへの給電を妨げない。
【0036】
そして、第3パンチ部23U,23Lは極めて高価な炭素繊維強化炭素を採用し、第1パンチ部21U,21Lがやや高価な窒化珪素を採用したが、第2パンチ部22U,22Lは安価な黒鉛を採用したので、上下パンチ20U,20Lはトータルとしてはコスト低減を図ることができる。
【0037】
ダイスの作用説明:
内筒:
材質:黒鉛
外径:100 mm
かさ密度:1.77 g/cm3
引張り強度:78 MPa
線熱膨張係数:4.5×10-6-1
【0038】
中間筒:
材質:窒化珪素
内径:100 mm
外径:128 mm
かさ密度:3.8 g/cm3
引張り強度:150 MPa
線熱膨張係数:10.5×10-6-1
【0039】
外筒:
材質:炭素繊維強化炭素
内径:130 mm
かさ密度:1.6 g/cm3
引張り強度:290 MPa
線熱膨張係数:1.0×10-6-1
【0040】
例えば超硬合金を焼結するときの温度は、約1320℃に到達する。この温度で約10分保持して、焼結を行う。
熱膨張を考えたとき、外筒に対して中間筒は約10倍内径及び外径が拡大する可能性がある。また、中間筒に対して内筒は約1/2倍外径が拡大する。
【0041】
径D、周長さD・π、線熱膨張係数ζのリングを、始めの温度T1、終りの温度T2(ただしT1<T2)で膨張させると、周長さはD・π×ζ×(T1−T2)だけ増加し、D・π+D・π×ζ×(T1−T2)となる。これを径に換算する(πで割る)と、膨張後の径は、D+D×ζ×(T1−T2)=D(1+ζ×(T1−T2))となる。
【0042】
室温20℃、焼結温度1320℃と仮定すると、温度差は1300℃(=1300K)となる。
外筒の内径は、内径×(1+線熱膨張係数×温度差)=130×(1+1.0×10-6×1300)=131.7mmになる。
中間筒の外径は、無拘束状態であれば、外径×(1+線熱膨張係数×温度差)=128×(1+10.5×10-6×1300)=145.5mmになるはずである。
【0043】
しかし、中間筒(引張り強度:150 MPa)は、これより大幅に強度の大きな外筒(引張り強度:290 MPa)に拘束されるため十分には膨張し得ない。
外筒が中間筒で押されて内径は、(133.7+α)mmになるとすれば、中間筒の外径は次の様に増径すると推定できる。
中間筒(外径)は、室温で128mmであったものが、通電後に(3.7+α)mm増径して(131.7+α)mmになる。すなわち、拘束されるため145.5mmにはなり得ない。
【0044】
この拘束効果で、中間筒の内径は、ほぼ(3.7+α)mm増径して(103.7+α)mmになる。
内筒の外径は、無拘束状態であれば、外径×(1+線熱膨張係数×温度差)=100×(1+4.5×10-6×1300)=105.9mmになる。
【0045】
前記αが2mm程度であれば、加熱後の内筒の外径(105.9mm)と中間筒の内径(103.7+2=105.2mm)はよく近似する。
内筒の外径が若干勝るので、しまり嵌めとなるが、内筒に過大な熱応力を発生する心配はない。
一方、中間筒は外筒で伸びを拘束されるため熱応力は発生する。しかし、上述した通りに無拘束膨張量の1/4〜1/2に相当する量を膨張させた後に拘束したので、熱応力は十分に下げることができる。熱応力を下げることにより、外筒並びに中間筒の寿命を大幅に延ばすことができ、繰り返し使用回数を大幅に増加させることができる。
【0046】
この様に本実施例は、中間筒(セラミックス製筒)と外筒(炭素繊維強化炭素製筒)との間に熱膨張を緩和するために所定の隙間を設けたことを特徴とし、これにより、中間筒並びに外筒の傷みを抑えるようにしたものである。
隙間(図1の符号35)は、上記実施例では(130−128)/2=1で求められる1mmであった。この隙間は大きいほど熱応力を下げ中間筒並びに外筒の傷みを抑えることができる。しかし、内筒への拘束作用(バックアップ作用)が弱まる若しくは無くなるので過大な隙間は好ましくない。
また、隙間は、小さいほど中間筒並びに外筒の寿命が短くなる。
そこで、内筒への適度な拘束作用を発揮させつつ、中間筒並びに外筒の寿命を確保できる様な隙間を、構成要素の線熱膨張係数や焼結温度を考慮して、決定すればよい。
【0047】
内筒は原則として1焼結工程毎に新品と交換する。内筒は黒鉛製であるから、加工が容易であり、原料が容易に入手できるので、安価である。
これに対して、外筒は炭素繊維強化炭素製であるため、極めて高価であり、中間筒も窒化珪素製やジルコニア製であるため高価なものであり、いずれも寿命がくるまでは再使用する。
【0048】
以上に述べた通り、図1に示した第1パンチ部21U,21L、第2パンチ部22U,22L及び第3パンチ部23U,23Lからなる上下パンチ20U,20Lと、内筒32、中間筒33及び外筒34とらなるダイス30を組み合わせた通電焼結装置10において、第1パンチ部21U,21Lの両方若しくは少なくとも一方を導電性セラミックスとし、中間筒33をセラミックスにすることにより、粉末間放電による良質な焼結品が得られるとともに、くり返し使用による型費用の低減とが図れる。
【0049】
上下パンチ20U,20Lとダイス30を組み合わせた通電焼結装置10で焼結粉末を処理するとき、黒鉛製の内筒32は1焼結工程毎に新品と交換する必要があるため、第1パンチ部を黒鉛から導電性セラミックスに切替えた意味が無くなるように思われるが、その心配はない。図1で説明した通りに内筒32はごく単純な円筒スリーブであり、製造コストは低い。一方、第1パンチ部21U,21Lは型彫りパンチであり、製造コストは高い。高コストの第1パンチ部21U,21Lを繰り返し使用できるようにし、低コストの内筒32を消耗品とすれば、トータルとしての製造コストを下げることができる。従って、黒鉛製の内筒32に非黒鉛製の第1パンチ部21U,21Lを組み合わせることは、十分に意味のあることであると言える。
【0050】
尚、請求項1に記載した第1パンチ部は、導電性セラミックスと同質の材料であれば、種類を格別に限定するものではない。
【0051】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1では、第1〜第3パンチ部を全て導電材料で構成したので、通電焼結特有の粉末間放電を発生させることができ、短い焼結時間で良質の焼結品を得ることができる。
そして、焼結粉末に接する第1パンチ部は焼結粉末とは反応しないので、反応による消耗を心配する必要はなく、パンチの寿命を十分に延ばすことができる。
【0052】
請求項2では、高強度部材は導電性セラミックスで構成したことを特徴とし、第1パンチ部導電性セラミックスとすることにより、次の作用及び効果を発揮させることができる。
先ず、セラミックスは焼結粉末と反応する心配がない。
通常の絶縁性セラミックスでは電流が遮断されるが、本発明では第1パンチ部を導電性セラミックスにしたので電流が遮断されることが無く、粉末間放電を促すことができる。
また、導電性セラミックスは製作の際に放電加工が可能であり、製作コストが大幅に削減でき、かつ形状の自由度も大きくなり、複雑な形状の部品にも対応可能である。
【図面の簡単な説明】
【図1】本発明に係る通電焼結装置の原理図
【符号の説明】
10…通電焼結装置、20L…下パンチ、20U…上パンチ、21U,21L…第1パンチ部、22U,22L…第2パンチ部、23U,23L…第3パンチ部、30…通電焼結加工用ダイス、31…焼結粉末、32…内筒、33…中間筒、34…外筒、35…隙間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a punch for electric current sintering.
[0002]
[Prior art]
A typical sintering method is to mix a metal or ceramic powder with a binder such as wax, put this mixture in a mold and harden it to make a compacted compact, and place this compacted compact in a sintering furnace. It is a special treatment method in which the powders are integrated by interatomic bonding by maintaining the sintering temperature at a temperature lower than the melting point but sufficiently high. The binder does not remain in the sintered product because it is evaporated in the sintering furnace.
[0003]
Since the said manufacturing method makes the compacting process and the sintering process independent, it is a subject that each installation (modeling press, sintering furnace) is required, and a process becomes long. In order to overcome these problems, an electric current sintering method, which is one of techniques for simultaneously performing molding and sintering in parallel, has attracted attention.
[0004]
In the electric current sintering method, the upper and lower punches are made of graphite, and when electric current is passed through the graphite, discharge and Joule heat (resistance heat) are generated. However, since sintering is performed at a high temperature of 1000 ° C. or higher, the raw material sintered powder and the graphite constituting the punch may react or the sintered powder may bite into the graphite. Such a reaction or biting is not preferable because it significantly depletes the punch.
[0005]
In order to solve this problem, for example, (1) Japanese Patent Application Laid-Open No. 11-12606 “Electrical Sintering Method” and Japanese Patent Application Laid-Open No. 10-17904 “Electrical Sintering Method” are proposed.
In the above (1), as shown in FIG. 1 of the same publication, the upper punch 2 (the reference sign is the same as the number used in the publication; the same shall apply hereinafter) and the powder material M are partitioned by the electrical insulating layer 5, and the lower punch 3 And the powder material M are partitioned by the electrical insulating layer 5.
If the upper and lower punches 2 and 3 are made of graphite, micro discharge may occur between the powder material M. However, it is described that the presence of the electrical insulating layers 5 and 5 can prevent the occurrence of micro-discharge and suppress the consumption of the punch.
[0006]
The above (2) is that the upper punch 2 and the powder material M are partitioned by the carbon material plate 4 and the lower punch 3 and the powder material M are partitioned by the carbon material plate 4 as shown in FIG. is there.
The carbon material plates 4 and 4 are consumables to be replaced for each sintering operation. It is described that this measure prevents the upper and lower punches 2 and 3 from being consumed.
[0007]
[Problems to be solved by the invention]
Since the above (1) has suppressed the inter-powder discharge generated between the powders of the powder material M, a new problem arises. That is, in the electric current sintering method, discharge between powders can be expected, and when this discharge between powders occurs, the oxide film and the like covering the powder can be destroyed by discharge energy. If the oxide film or the like can be removed, interatomic bonding can be promoted, interparticle bonding proceeds, and a high-quality sintered product can be easily obtained. However, in the above (1), since the discharge between the powders does not occur, it is impossible to take advantage of such advantages specific to the electric current sintering.
[0008]
In (2) above, since the carbon material plate is a conductive material, discharge between powders can be generated. However, since the carbon material plates 4 and 4 are replaced for each sintering operation, this replacement operation increases the burden on the operator, causes a reduction in work efficiency, and increases the cost of the sintered product.
[0009]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a punch structure that is not accompanied by generation of consumables and can promote generation of discharge between powders in the electric current sintering method.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the first aspect of the present invention is to energize a sintered product by filling a die set with a lower punch with a sintered powder, setting an upper punch, and energizing while pressing with upper and lower punches. In the upper punch and / or the lower punch used for sintering, the punch includes a first punch part that touches the sintered powder, a second punch part that presses the first punch part, and a second punch part that presses the second punch part. 3 punch parts are arranged in series, the first punch part is a high-strength member made of a conductive material that does not react with the sintered powder, the second punch part is a graphite member, The punch portion is a carbon fiber reinforced carbon member.
[0011]
Since the first to third punch portions are all made of a conductive material, it is possible to generate a powder-to-powder discharge unique to current sintering, and to obtain a high-quality sintered product in a short sintering time. And since the 1st punch part which contact | connects sintered powder does not react with sintered powder, it is not necessary to worry about the consumption by reaction, and the lifetime of a punch can fully be extended.
[0012]
According to a second aspect of the present invention, the high-strength member is composed of conductive ceramics.
Conductive ceramics is a ceramic powder that is originally an insulating material mixed with conductive material powder (preferably metal powder such as Ti (titanium) and Co (cobalt)). Examples thereof include conductive zirconia and conductive silicon nitride obtained by imparting conductivity to silicon nitride.
[0013]
By making the first punch part a conductive ceramic, the following actions and effects can be exhibited.
[0014]
First, ceramics do not have to worry about reacting with the sintered powder.
In normal insulating ceramics, the current is interrupted, but in the present invention, the first punch portion is made of conductive ceramics, so that the current is not interrupted, and discharge between powders can be promoted.
In addition, the conductive ceramics can be subjected to electric discharge machining at the time of production, the production cost can be greatly reduced, the degree of freedom of the shape is increased, and it is possible to deal with parts having complicated shapes.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a principle view of an electric current sintering apparatus according to the present invention. An electric current sintering apparatus 10 includes a lower punch 20L (L is LOWER, lower, detailed configuration will be described later), a die base 11, and a lower A three-cylinder structure electric sintering die 30 (detailed configuration will be described later) placed on the die base 11 while covering the punch 20L, an upper punch 20U (U represents UPPER, and the detailed configuration will be described later), An airtight container 12 surrounding them, a vacuum pump 13 for discharging the gas in the airtight container 12, an inert gas blowing pipe 14 for blowing an inert gas such as argon gas into the container 12 after evacuation, and The power supply 15 feeds power between the upper and lower punches 20U and 20L, and the control unit 16 controls the power supply 15.
[0016]
The lower punch 20L includes a first punch part 21L that touches the sintered powder 31, a second punch part 22L that pushes up the first punch part 21L, and a third punch part 23L that pushes up the second punch part 22L in series. It is an assembly punch.
[0017]
The first punch portion 21L is a high-strength member made of a conductive material that does not react with the sintered powder 31, the second punch portion 22L is a graphite member, and the third punch portion 23L is made of carbon fiber reinforced carbon. It is a member. The third punch portion 23L may be attached to the bolster of the press machine or may be the bolster itself.
[0018]
Further, the first punch portion 21L is preferably made of conductive zirconia or conductive ceramics represented by conductive silicon nitride obtained by imparting conductivity to silicon nitride. In the present embodiment, the first punch portion 21L is a so-called sculpting punch.
[0019]
Similarly, the upper punch 20U includes a first punch part 21U that touches the sintered powder 31, a second punch part 22U that pushes down the first punch part 21U, and a third punch part 23U that pushes down the second punch part 22U. It is a combination punch arranged in series.
[0020]
The first punch portion 21U is a high-strength member made of a conductive material that does not react with the sintered powder 31, the second punch portion 22U is a graphite member, and the third punch portion 23U is made of carbon fiber reinforced carbon. It is a member. The third punch portion 23U may be attached to the ram of the press machine or the ram itself.
[0021]
Furthermore, the first punch portion 21U is preferably composed of conductive zirconia or conductive ceramics represented by conductive silicon nitride obtained by imparting conductivity to silicon nitride. In the present embodiment, the first punch portion 21U is a so-called engraving punch.
[0022]
In addition, an electric current sintering die 30 (hereinafter referred to as “die 30”) includes an inner cylinder 32 that touches the sintered powder 31, an intermediate cylinder 33 that surrounds the inner cylinder 32, and an outer cylinder 34 that surrounds the intermediate cylinder 33. The inner cylinder 32 is made of graphite, the intermediate cylinder 33 is made of ceramic, the outer cylinder 34 is made of carbon fiber reinforced carbon, and the ceramic cylinder and carbon fiber reinforced carbon are used. A predetermined gap 35 is provided between the cylinder and the cylinder to relieve thermal expansion.
[0023]
The gap 35 is set to about several mm. However, since there is a gap 35, if only the outer cylinder 34 is provided, the intermediate cylinder 33 may fall out of the outer cylinder 34. Therefore, it is preferable to drive in ceramic pins 36 (... indicates a plurality of pins, the same applies hereinafter) reaching the intermediate tube 33 from the outer tube 34. With the latching action of these ceramic pins 36..., The die 30 can be handled with peace of mind. However, the ceramic pins 36 are not essential.
[0024]
The intermediate cylinder 33 is a ceramic cylinder, and there are general-purpose insulating ceramics and special conductive ceramics, and any of them can be used.
However, in the case of insulating ceramics, it is finished by machining including grinding and polishing. However, since ceramics are extremely hard, the machining time becomes long and the processing cost increases.
In this respect, conductive ceramics can be finished by electrical discharge machining because of their electrical conductivity. In the case of electric discharge machining, the machining time is short and the finished shape is arbitrary. Therefore, it is desirable to use conductive ceramics in order to reduce mold processing costs.
[0025]
Conductive ceramics are a mixture of ceramic powder, which is originally an insulator, mixed with conductive material powders (preferably metal powders such as Ti (titanium) and Co (cobalt)), and impart conductivity to zirconia. Examples thereof include conductive zirconia and conductive silicon nitride obtained by imparting conductivity to silicon nitride.
[0026]
Next, the operation of the current sintering apparatus and punch having the above-described configuration will be described.
In FIG. 1, the second punch portion 22 </ b> L is combined with the lower third punch portion 23 </ b> L, and the die 30 is put on the second punch portion 22 </ b> L, and the die 30 is placed on the die base 11. Next, the lower first punch portion 21L is dropped into the inner cylinder 32 of the die 30, filled with the sintered powder 31, the upper first punch portion 21U is dropped, and the second punch portion 22U of the upper punch 20U is further dropped. Insert. The operation so far is performed by opening a door (not shown) of the sealed container 12. Therefore, the inside of the sealed container 12 is an air atmosphere.
[0027]
The door is closed, the vacuum pump 13 is started, and the inside of the sealed container 12 is evacuated. Then, the atmosphere is determined by the characteristics of the sintered powder so that the inside of the container 12 is kept in a vacuum or an inert gas is blown into an inert gas atmosphere. That is, depending on the type of the sintered powder 31 and the processing conditions, the next energization is started in a vacuum or the next energization is started after blowing an inert gas (for example, N 2 gas or Ar gas).
[0028]
The energization includes continuous energization and intermittent energization (pulse energization that repeatedly turns on and off). In this embodiment, the latter pulse energization is performed.
In continuous energization, if a large current continues to flow, the workpiece will melt, so it is necessary to suppress the current. On the other hand, in the pulse energization, a large current can be input by shortening the energization time. With this large current, discharge plasma (this is called inter-powder discharge) can be generated between the powders of the sintered powder 31. Since the oxide film on the powder surface can be destroyed and removed by the high energy of the discharge plasma and the sintering phenomenon can be promoted, a denser sintered product can be obtained than a normal sintering method.
[0029]
In addition, pulse energization for the purpose of discharge plasma concentrates high energy between powders, and it is not necessary to raise the temperature of the whole powder. As a result, the sintering can be performed while keeping the sintered powder 31 at a relatively low temperature. In the normal sintering method, the entire powder needs to be heated to a temperature just below the melting point. However, since the entire powder can be kept at a relatively low temperature by pulse energization, input electric energy can be saved.
[0030]
The energization is performed while compacting with the upper and lower punches 20U and 20L, but the energization may be started after pressurizing to some extent with the upper and lower punches 20U and 20L.
As described above, discharge plasma is generated between the powder particles of the sintered powder 31 by energization, and the particle surface is vaporized and melted. These particles begin to move and are plastically deformed by applying a discharge impact pressure. At this time, since the first punch portions 21U and 21L corresponding to the sculpture punch are pressed, a sintered product having a desired shape can be obtained.
[0031]
Next, the operation of the upper and lower punches 20U and 20L will be described. In addition, the operation of the die 30 will be described.
[0032]
Action description of punch:
First punch part:
Material: Conductive silicon nitride Diameter: 100 mm
Bulk density: 3.8 g / cm 3
Tensile strength: 150 MPa
[0033]
Second punch part:
Material: Graphite diameter: 100 mm
Bulk density: 1.77 g / cm 3
Tensile strength: 78 MPa
[0034]
Third punch part:
Material: Carbon fiber reinforced carbon diameter: 100 mm
Bulk density: 1.6 g / cm 3
Tensile strength: 290 MPa
[0035]
The first punch portions 21U and 21L are made of silicon nitride and do not react with the sintered powder 31. And since it is rich in electroconductivity, the effect | action which promotes the discharge between powders in the sintered powder 31 is exhibited. Since the second punch portions 22U and 22L are not in contact with the sintered powder 31, inexpensive graphite is used. The third punch portions 23U and 23L are made of carbon fiber reinforced carbon so that they can be used repeatedly.
Since the third punch portions 23U, 23L and the second punch portions 22U, 22L are both conductive members, power supply to the first punches 21U, 21L is not hindered.
[0036]
The third punch portions 23U and 23L employ extremely expensive carbon fiber reinforced carbon, and the first punch portions 21U and 21L employ slightly expensive silicon nitride, but the second punch portions 22U and 22L are inexpensive graphite. Therefore, the total cost of the upper and lower punches 20U and 20L can be reduced.
[0037]
Action explanation of dice:
Inner cylinder:
Material: Graphite outer diameter: 100 mm
Bulk density: 1.77 g / cm 3
Tensile strength: 78 MPa
Linear thermal expansion coefficient: 4.5 × 10 −6 K −1
[0038]
Intermediate tube:
Material: Silicon nitride Inner diameter: 100 mm
Outer diameter: 128 mm
Bulk density: 3.8 g / cm 3
Tensile strength: 150 MPa
Linear thermal expansion coefficient: 10.5 × 10 −6 K −1
[0039]
Outer cylinder:
Material: Carbon fiber reinforced carbon Inner diameter: 130 mm
Bulk density: 1.6 g / cm 3
Tensile strength: 290 MPa
Linear thermal expansion coefficient: 1.0 × 10 −6 K −1
[0040]
For example, the temperature at which cemented carbide is sintered reaches about 1320 ° C. Sintering is performed at this temperature for about 10 minutes.
When considering thermal expansion, there is a possibility that the inner cylinder and the outer diameter of the intermediate cylinder are expanded about 10 times with respect to the outer cylinder. Further, the outer diameter of the inner cylinder is enlarged by about 1/2 times that of the intermediate cylinder.
[0041]
When a ring having a diameter D, a peripheral length D · π, and a linear thermal expansion coefficient ζ is expanded at an initial temperature T1 and an end temperature T2 (where T1 <T2), the peripheral length is D · π × ζ × ( T1−T2) and increases to D · π + D · π × ζ × (T1−T2). When this is converted into a diameter (divided by π), the diameter after expansion is D + D × ζ × (T1−T2) = D (1 + ζ × (T1−T2)).
[0042]
Assuming that the room temperature is 20 ° C. and the sintering temperature is 1320 ° C., the temperature difference is 1300 ° C. (= 1300 K).
The inner diameter of the outer cylinder is inner diameter × (1 + linear thermal expansion coefficient × temperature difference) = 130 × (1 + 1.0 × 10 −6 × 1300) = 131.7 mm.
If the outer diameter of the intermediate tube is in an unconstrained state, it should be outer diameter × (1 + linear thermal expansion coefficient × temperature difference) = 128 × (1 + 10.5 × 10 −6 × 1300) = 145.5 mm. .
[0043]
However, since the intermediate cylinder (tensile strength: 150 MPa) is constrained by an outer cylinder (tensile strength: 290 MPa) that is significantly stronger than this, it cannot expand sufficiently.
If the outer cylinder is pushed by the intermediate cylinder and the inner diameter becomes (133.7 + α) mm, it can be estimated that the outer diameter of the intermediate cylinder is increased as follows.
The intermediate cylinder (outer diameter), which was 128 mm at room temperature, is increased by (3.7 + α) mm to (131.7 + α) mm after energization. That is, since it is restrained, it cannot be 145.5 mm.
[0044]
Due to this restraining effect, the inner diameter of the intermediate cylinder is increased by approximately (3.7 + α) mm to (103.7 + α) mm.
If the outer diameter of the inner cylinder is in an unconstrained state, the outer diameter × (1 + linear thermal expansion coefficient × temperature difference) = 100 × (1 + 4.5 × 10 −6 × 1300) = 105.9 mm.
[0045]
If α is about 2 mm, the outer diameter (105.9 mm) of the inner cylinder after heating and the inner diameter (103.7 + 2 = 105.2 mm) of the intermediate cylinder are well approximated.
Since the outer diameter of the inner cylinder is slightly superior, it is a tight fit, but there is no concern of generating excessive thermal stress on the inner cylinder.
On the other hand, since the intermediate cylinder is restrained from being stretched by the outer cylinder, thermal stress is generated. However, as described above, since the amount corresponding to 1/4 to 1/2 of the unconstrained expansion amount is expanded and then constrained, the thermal stress can be sufficiently reduced. By reducing the thermal stress, the lifespan of the outer cylinder and the intermediate cylinder can be greatly extended, and the number of repeated use can be greatly increased.
[0046]
As described above, this embodiment is characterized in that a predetermined gap is provided between the intermediate cylinder (ceramics cylinder) and the outer cylinder (carbon fiber reinforced carbon cylinder) to relieve thermal expansion. The damage to the intermediate cylinder and the outer cylinder is suppressed.
The gap (reference numeral 35 in FIG. 1) was 1 mm obtained by (130−128) / 2 = 1 in the above embodiment. The larger the gap, the lower the thermal stress and the less damage to the intermediate cylinder and the outer cylinder. However, an excessive gap is not preferable because the restraining action (backup action) on the inner cylinder is weakened or eliminated.
Further, the smaller the gap, the shorter the life of the intermediate cylinder and the outer cylinder.
Therefore, it is only necessary to determine a gap that can ensure the life of the intermediate cylinder and the outer cylinder while exhibiting an appropriate restraining action on the inner cylinder in consideration of the linear thermal expansion coefficient and the sintering temperature of the constituent elements. .
[0047]
As a rule, the inner cylinder is replaced with a new one for each sintering process. Since the inner cylinder is made of graphite, it is easy to process and the raw materials are easily available, so it is inexpensive.
On the other hand, since the outer cylinder is made of carbon fiber reinforced carbon, it is extremely expensive, and the intermediate cylinder is also expensive because it is made of silicon nitride or zirconia, and both are reused until the end of their lives.
[0048]
As described above, the upper and lower punches 20U and 20L including the first punch portions 21U and 21L, the second punch portions 22U and 22L, and the third punch portions 23U and 23L, the inner cylinder 32, and the intermediate cylinder 33 shown in FIG. In the electric current sintering apparatus 10 in which the die 30 that forms the outer cylinder 34 is combined, both or at least one of the first punch portions 21U and 21L is made of conductive ceramics, and the intermediate cylinder 33 is made of ceramics, thereby causing discharge between powders. A high-quality sintered product can be obtained, and the mold cost can be reduced by repeated use.
[0049]
When the sintered powder is processed by the electric current sintering apparatus 10 combining the upper and lower punches 20U, 20L and the die 30, the graphite inner cylinder 32 needs to be replaced with a new one for each sintering process. There seems to be no point in switching the part from graphite to conductive ceramics, but there is no concern. As described with reference to FIG. 1, the inner cylinder 32 is a very simple cylindrical sleeve, and its manufacturing cost is low. On the other hand, the first punch portions 21U and 21L are die-cutting punches, and the manufacturing cost is high. If the high-cost first punch portions 21U and 21L can be used repeatedly and the low-cost inner cylinder 32 is a consumable, the total manufacturing cost can be reduced. Therefore, it can be said that combining the non-graphite first punch portions 21U and 21L with the graphite inner cylinder 32 is sufficiently meaningful.
[0050]
In addition, if the 1st punch part described in Claim 1 is the same material as electroconductive ceramics, a kind will not be limited exceptionally.
[0051]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In claim 1, since all of the first to third punch portions are made of a conductive material, it is possible to generate a powder-to-powder discharge peculiar to current sintering, and to obtain a high-quality sintered product in a short sintering time. it can.
And since the 1st punch part which contact | connects sintered powder does not react with sintered powder, it is not necessary to worry about the consumption by reaction, and the lifetime of a punch can fully be extended.
[0052]
According to a second aspect of the present invention, the high-strength member is made of conductive ceramics. By using the first punch portion conductive ceramics, the following actions and effects can be exhibited.
First, ceramics do not have to worry about reacting with the sintered powder.
In normal insulating ceramics, the current is interrupted, but in the present invention, the first punch portion is made of conductive ceramics, so that the current is not interrupted, and discharge between powders can be promoted.
In addition, the conductive ceramics can be subjected to electric discharge machining at the time of production, the production cost can be greatly reduced, the degree of freedom of the shape is increased, and it is possible to deal with parts having complicated shapes.
[Brief description of the drawings]
FIG. 1 is a principle diagram of an electric current sintering apparatus according to the present invention.
DESCRIPTION OF SYMBOLS 10 ... Current sintering apparatus, 20L ... Lower punch, 20U ... Upper punch, 21U, 21L ... 1st punch part, 22U, 22L ... 2nd punch part, 23U, 23L ... 3rd punch part, 30 ... Current sintering process Dies for use, 31 ... sintered powder, 32 ... inner cylinder, 33 ... intermediate cylinder, 34 ... outer cylinder, 35 ... gap.

Claims (2)

下パンチをセットしたダイスに、焼結粉末を充填し、上パンチをセットし、上下パンチで圧粉しつつ通電することで焼結品を得る通電焼結の際に使用する上パンチ及び/又は下パンチにおいて、
このパンチは、焼結粉末に触れる第1パンチ部とこの第1パンチ部を押す第2パンチ部とこの第2パンチ部を押す第3パンチ部とを直列に並べた組みパンチであり、
前記第1パンチ部は前記焼結粉末には反応せず導電性を有する材料で構成した高強度部材、前記第2パンチ部は黒鉛製部材、前記第3パンチ部は炭素繊維強化炭素製部材としたことを特徴とする通電焼結加工用パンチ。
Fill the die set with the lower punch with the sintered powder, set the upper punch, and energize while pressing with the upper and lower punches to obtain a sintered product. In the lower punch,
This punch is a combined punch in which a first punch part that touches the sintered powder, a second punch part that presses the first punch part, and a third punch part that presses the second punch part are arranged in series.
The first punch part is a high-strength member made of a conductive material that does not react with the sintered powder, the second punch part is a graphite member, and the third punch part is a carbon fiber reinforced carbon member. This is a punch for electric current sintering.
前記高強度部材は導電性セラミックスで構成したことを特徴とする請求項1記載の通電焼結加工用パンチ。2. The punch for electro-sintering according to claim 1, wherein the high-strength member is made of conductive ceramics.
JP2000062527A 2000-03-07 2000-03-07 Punch for electric sintering Expired - Fee Related JP4365975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062527A JP4365975B2 (en) 2000-03-07 2000-03-07 Punch for electric sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062527A JP4365975B2 (en) 2000-03-07 2000-03-07 Punch for electric sintering

Publications (2)

Publication Number Publication Date
JP2001253779A JP2001253779A (en) 2001-09-18
JP4365975B2 true JP4365975B2 (en) 2009-11-18

Family

ID=18582531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062527A Expired - Fee Related JP4365975B2 (en) 2000-03-07 2000-03-07 Punch for electric sintering

Country Status (1)

Country Link
JP (1) JP4365975B2 (en)

Also Published As

Publication number Publication date
JP2001253779A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
US6371746B1 (en) Method of electronic sintering method and mold for use in the method
WO2005073418A1 (en) Tungsten based sintered compact and method for production thereof
JP6403421B2 (en) Sintering apparatus and sintering method
JP4271817B2 (en) Electric sintering die
JP2008095196A (en) Electric sintering device
JP4365975B2 (en) Punch for electric sintering
JP2023080196A (en) Chamber
JP2000128648A (en) Production of sintered body
JPH07216409A (en) Electric discharge plasma sintering method and device therefor
JP4475615B2 (en) Spark plasma sintering method and apparatus
JP2006249462A (en) Method for producing electrode, and electrode
JP2011011927A (en) Method for producing hafnium carbide sintered compact
JP2014001427A (en) Method of manufacturing sintered component
JPH10251057A (en) Sintering method of calcium phosphate ceramic material
JPH11335707A (en) Die for electric discharge plasma sintering
JP2014011251A (en) Manufacturing method of electrostatic chuck
JPH1017904A (en) Energized sintering method
JP2000016873A (en) Sintering with discharge plasma
JP3160584B2 (en) Electric sintering method
JP2002235104A (en) Manufacturing method for composite body
JP4859041B2 (en) Mold equipment
WO2022095111A1 (en) Manufacturing method for mandrel part, mandrel part, and textile machinery applying same
JP5670708B2 (en) Electrode for short arc discharge lamp and method for manufacturing the same
US7393193B1 (en) Techniques for making a metallic product utilizing electric current in a consolidation process
JPH1111961A (en) Production of quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees