JP4363197B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4363197B2
JP4363197B2 JP2004016768A JP2004016768A JP4363197B2 JP 4363197 B2 JP4363197 B2 JP 4363197B2 JP 2004016768 A JP2004016768 A JP 2004016768A JP 2004016768 A JP2004016768 A JP 2004016768A JP 4363197 B2 JP4363197 B2 JP 4363197B2
Authority
JP
Japan
Prior art keywords
amount
deviation
fuel
current direction
common rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004016768A
Other languages
Japanese (ja)
Other versions
JP2004293540A (en
Inventor
隆行 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004016768A priority Critical patent/JP4363197B2/en
Priority to DE200410011439 priority patent/DE102004011439B4/en
Publication of JP2004293540A publication Critical patent/JP2004293540A/en
Application granted granted Critical
Publication of JP4363197B2 publication Critical patent/JP4363197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、ディーゼルエンジンのコモンレール式燃料噴射制御装置に関し、詳しくは、コモンレールの燃料圧力を制御する燃料供給ポンプの学習制御に関する。   The present invention relates to a common rail fuel injection control device for a diesel engine, and more particularly to learning control of a fuel supply pump that controls the fuel pressure of a common rail.

近年、ディーゼルエンジン用の燃料噴射システムとしてコモンレール式燃料噴射制御装置が注目されている。コモンレール式燃料噴射制御装置は、各気筒に共通のコモンレールに高圧燃料を蓄圧し、コモンレールに接続した噴射弁から各気筒に所定のタイミングで燃料を噴射するもので、吐出量可変の燃料供給ポンプからコモンレールに圧送される高圧燃料の量を制御することによって、コモンレール圧力をフィードバック制御している。   In recent years, a common rail fuel injection control device has attracted attention as a fuel injection system for diesel engines. A common rail fuel injection control device accumulates high-pressure fuel in a common rail common to each cylinder, and injects fuel into each cylinder from an injection valve connected to the common rail at a predetermined timing. The common rail pressure is feedback controlled by controlling the amount of high pressure fuel pumped to the common rail.

燃料供給ポンプとしては、吸入時に吐出量を決定する吸入調量型の燃料供給ポンプが好適に用いられる。かかる燃料供給ポンプは、電磁駆動式の吸入調量弁で加圧室内に吸入される燃料の量を制御し、吸入調量弁から加圧室へ至る流路に逆止弁を配置して、加圧開始時より圧送終了時まで加圧室への流路が閉鎖される構成となっている。この構成では、吸入調量弁が高圧の燃料圧力を受けないため、従来のプレストローク制御を行う燃料供給ポンプよりも電磁弁を小型にできる利点がある。   As the fuel supply pump, an intake metering type fuel supply pump that determines a discharge amount at the time of inhalation is preferably used. Such a fuel supply pump controls the amount of fuel sucked into the pressurizing chamber with an electromagnetically driven suction metering valve, and arranges a check valve in the flow path from the suction metering valve to the pressurizing chamber, The flow path to the pressurizing chamber is closed from the start of pressurization to the end of pumping. In this configuration, since the intake metering valve does not receive a high fuel pressure, there is an advantage that the solenoid valve can be made smaller than the conventional fuel supply pump that performs prestroke control.

ここで、コモンレールを目標圧力に制御するには、燃料供給ポンプによる吐出量の制御を精度よく行うことが要求される。吸入調量弁の制御は、例えば、弁体の位置制御によってなされ、通電量に応じて弁体のリフト量を変化させ、流路の開口面積を変化させて流入速度を調整している。ところが、この場合、調量特性が、吸入調量弁の開口部形状や、弁体を付勢するばね部材のばね力のバラツキといった機差の影響を受けやすいことから、実機の印加電流−吐出量特性とマップに投入される中央特性との間にズレを生じ、コモンレール圧力の制御性が低下する問題があった。   Here, in order to control the common rail to the target pressure, it is required to accurately control the discharge amount by the fuel supply pump. The intake metering valve is controlled by, for example, position control of the valve body, and the inflow speed is adjusted by changing the lift amount of the valve body according to the energization amount and changing the opening area of the flow path. However, in this case, the metering characteristics are easily affected by machine differences such as the shape of the opening of the intake metering valve and the spring force of the spring member that biases the valve body. There is a problem that the controllability of the common rail pressure is lowered due to a deviation between the quantity characteristic and the central characteristic input to the map.

これに対し、学習制御によって調量特性のバラツキを吸収する方法が提案されている。例えば、特許文献1には、機差によるバラツキの影響が、主に実際の吸入開始電流値のズレとして表れることに着目し、吸入量ゼロが保証される電流から徐々に変化させて、実際の吸入開始電流値を算出する方法が開示されている。
特開2001−82230号公報
On the other hand, a method of absorbing variation in the metering characteristic by learning control has been proposed. For example, in Patent Document 1, paying attention to the fact that the influence of variation due to machine differences appears mainly as a deviation of the actual suction start current value, gradually changing from the current at which the suction amount is guaranteed to be zero, A method for calculating an inhalation start current value is disclosed.
JP 2001-82230 A

しかしながら、上記方法は、印加電流−吐出量特性の電流方向のズレについて補正を行うもので、傾き成分については未処置であった。これは、機差の影響が主に電流方向に表れるとしているためであるが、より高精度な制御特性を実現するためには、傾きのズレが無視できないものとなる。なお、この点について、特許文献1には、2つの安定した運転状態における印加電流と吐出量の関係を表す2つの式から傾き補正係数を算出する方法が記載されている。ところが、2つの運転状態におけるエンジン回転数が異なると、傾き補正係数も同じにはならないと考えられ、エンジン回転数による傾き成分のズレ量変化を考慮していない上記従来方法では、傾き補正を必ずしも正確に行えるものではなかった。   However, the above method corrects the deviation in the current direction of the applied current-discharge amount characteristic, and the slope component is not treated. This is because the influence of machine difference mainly appears in the current direction, but in order to realize more accurate control characteristics, the deviation of the inclination cannot be ignored. In this regard, Patent Document 1 describes a method of calculating an inclination correction coefficient from two expressions representing a relationship between an applied current and a discharge amount in two stable operation states. However, if the engine speeds in the two operating states are different, it is considered that the slope correction coefficient is not the same. In the above conventional method that does not consider the change in the amount of deviation of the slope component due to the engine speed, the slope correction is not necessarily performed. It wasn't accurate.

本発明は上記実情に鑑みてなされたものであり、特に吸入調量弁の印加電流−吐出量特性の傾き方向のバラツキを学習補正することにより、燃料供給ポンプの機差による特性のバラツキを吸収し、燃料供給ポンプの吐出量を高精度に制御して、コモンレール圧力制御における圧力応答性を向上させることにある。   The present invention has been made in view of the above circumstances, and in particular, by absorbing and correcting the variation in the inclination direction of the applied current-discharge amount characteristic of the intake metering valve, the characteristic variation due to the difference in the fuel supply pump is absorbed. Then, the discharge amount of the fuel supply pump is controlled with high accuracy to improve the pressure responsiveness in the common rail pressure control.

請求項1の発明において、燃料噴射制御装置は、内燃機関に噴射するための高圧燃料が蓄圧されるコモンレールと、吸入調量弁により調量された燃料を加圧して上記コモンレールに送出する燃料供給ポンプと、上記吸入調量弁の駆動を制御することにより上記コモンレールの圧力を制御する制御手段を備えており、上記制御手段は、アイドル回転域の複数の運転条件において、上記吸入調量弁の実際の印加電流−吐出量特性と予め設定された中央特性との電流方向のズレ量をそれぞれ算出する電流方向学習手段と、該電流方向学習手段において算出された電流方向のズレ量を内燃機関の回転数を基に補正する回転補正手段と、回転補正後の上記電流方向のズレ量と対応する吐出量に基づいて印加電流−吐出量特性線の傾きを補正する補正手段を有している。   In the first aspect of the present invention, the fuel injection control device includes a common rail that stores high-pressure fuel to be injected into the internal combustion engine, and a fuel supply that pressurizes the fuel metered by the intake metering valve and sends the fuel to the common rail. And a control means for controlling the pressure of the common rail by controlling the drive of the pump and the suction metering valve. The control means is configured to control the suction metering valve in a plurality of operating conditions in an idle rotation range. Current direction learning means for calculating a current direction deviation amount between an actual applied current-discharge amount characteristic and a preset central characteristic, and the current direction deviation amount calculated by the current direction learning means Rotation correction means for correcting based on the number of rotations, and correction means for correcting the inclination of the applied current-discharge amount characteristic line based on the discharge amount corresponding to the shift amount in the current direction after the rotation correction It has.

上記吸入調量弁の機差により印加電流−吐出量特性の傾きにバラツキが生じると、指令電流に対して所望の吐出量が得られず、コモンレール圧力の制御性が低下する。印加電流−吐出量特性の傾きを補正するには、定常安定回転域の少なくとも2点における印加電流と吐出量の関係が分かればよく、上記制御手段は、まず、アイドル回転域の複数の運転条件において、印加電流−吐出量特性の電流方向のズレ量をそれぞれ学習する。ただし、回転数が異なるとズレ量も異なるため、予め知られるズレ量と回転数の関係を基に補正を行う。これにより、回転数成分を取り除き、傾きズレ成分だけ抽出することができるので、補正後のズレ量の比率と対応する吐出量の差から傾きズレ量を算出できる。これを用いて、傾きズレを精度よく補正することで、燃料供給ポンプの調量精度が向上し、コモンレール圧力の圧力応答性を大幅に向上することができる。   If the slope of the applied current-discharge amount characteristic varies due to the difference between the intake metering valves, a desired discharge amount cannot be obtained with respect to the command current, and the controllability of the common rail pressure decreases. In order to correct the slope of the applied current-discharge amount characteristic, the relationship between the applied current and the discharge amount at at least two points in the steady stable rotation region should be known. , The shift amount in the current direction of the applied current-discharge amount characteristic is learned. However, since the amount of deviation differs when the rotational speed is different, correction is performed based on the relationship between the known amount of deviation and the rotational speed. Thereby, since the rotational speed component can be removed and only the inclination deviation component can be extracted, the inclination deviation amount can be calculated from the difference between the corrected deviation amount ratio and the corresponding discharge amount. By using this to correct the tilt deviation accurately, the metering accuracy of the fuel supply pump can be improved, and the pressure responsiveness of the common rail pressure can be greatly improved.

この時上記電流方向学習手段は、上記複数の運転条件として、通常アイドル運転時およびアイドルアップ運転時における電流方向のズレ量を算出する。学習条件は、機関の運転が安定しているアイドル運転時であることを前提とし、まず、通常の温間アイドル運転時において電流方向の学習を行った後、アイドルアップさせて同じ噴射圧力で電流の学習を行うことで、複数の安定した運転条件において、電流方向の学習を行うことができる。 At this time, the current direction learning means calculates the amount of deviation in the current direction during normal idle operation and idle up operation as the plurality of operation conditions. The learning conditions are based on the assumption that the engine is in stable idling. First, after learning the current direction in normal warm idling, the engine is idled up and the current is injected at the same injection pressure. By performing this learning, it is possible to learn the current direction under a plurality of stable operating conditions.

具体的には、上記電流方向学習手段は、通常温間アイドル運転時の電流方向のズレ量Aを算出した後、強制的にアイドルアップさせて、強制アイドルアップ運転時の電流方向のズレ量Bを算出する。上記回転数補正手段では、予め算出されたズレ量と回転数の関係から、上記強制アイドルアップ運転時の電流方向のズレ量Bを、通常温間アイドル運転時の電流方向のズレ量B’に変換する。これにより、通常アイドル運転での2つのズレ量A、B’が求められ、これらズレ量A、B’を用いて傾きのズレ量を算出することができる。 Specifically, the current direction learning means calculates a current direction deviation amount A during normal warm idle operation, and then forcibly idles up, and a current direction deviation amount B during forced idle up operation. Is calculated. In the rotation speed correction means, the deviation B in the current direction during the forced idle up operation is changed to the deviation B ′ in the current direction during the normal warm idle operation from the relationship between the deviation amount and the rotation speed calculated in advance. Convert. Thereby, two deviation amounts A and B ′ in the normal idle operation are obtained, and the deviation amount of the inclination can be calculated using these deviation amounts A and B ′.

請求項において、上記補正手段は、上記ズレ量A、B’と、対応する吐出量A、Bに基づいて通常アイドル運転時の印加電流−吐出量特性線の傾きのズレ量を算出するとともに、これを基に全回転域における傾きを補正する。傾きのズレ量は機関の回転数との相関があることが考えられるので、この関係を予め算出しておき、全回転域に展開することで、機関回転数の全域において傾きのズレを学習補正することができる。 In claim 2 , the correction means calculates the deviation amount of the slope of the applied current-discharge amount characteristic line during the normal idle operation based on the deviation amounts A and B ′ and the corresponding discharge amounts A and B. Based on this, the inclination in the entire rotation range is corrected. Since it is conceivable that the amount of deviation in the slope has a correlation with the engine speed, this relationship is calculated in advance and deployed in the entire engine speed range to correct the learning error in the whole engine speed range. can do.

請求項は上記課題を解決するための他の発明であり、燃料噴射制御装置は、内燃機関に噴射するための高圧燃料が蓄圧されるコモンレールと、吸入調量弁により調量された燃料を加圧して上記コモンレールに送出する燃料供給ポンプと、上記吸入調量弁の駆動を制御することにより上記コモンレールの圧力を制御する制御手段を備えている。上記制御手段は、現在の運転条件が予め設定された複数の回転領域のいずれに属するかを判定する領域判定手段と、各回転領域において、上記吸入調量弁への印加電流に対する実際の吐出量と予め設定された中央特性値とのズレ量を算出するズレ量算出手段と、該ズレ量算出手段において算出された複数のズレ量に基づいて、各回転領域における印加電流−吐出量特性線の傾きを補正する補正手段を有している。 Claim 3 is another invention for solving the above-mentioned problem, and the fuel injection control device includes a common rail for accumulating high-pressure fuel to be injected into the internal combustion engine, and fuel metered by the intake metering valve. A fuel supply pump that pressurizes and sends the fuel to the common rail, and a control means for controlling the pressure of the common rail by controlling the drive of the suction metering valve. The control means includes an area determination means for determining which of a plurality of preset rotation areas the current operating condition belongs to, and an actual discharge amount with respect to an applied current to the suction metering valve in each rotation area A deviation amount calculating means for calculating a deviation amount between the predetermined center characteristic value and a preset central characteristic value, and an applied current-discharge amount characteristic line in each rotation region based on a plurality of deviation amounts calculated by the deviation amount calculating means. Correction means for correcting the inclination is provided.

上記吸入調量弁の機差により印加電流−吐出量特性の傾きにバラツキが生じると、指令電流に対して所望の吐出量が得られず、コモンレール圧力の制御性が低下する。上記制御手段は、まず、実際の吐出量と中央特性値とのズレ量を算出して多数サンプリングし、これらズレ量を例えば統計的に直線近似することにより,実特性の傾きを算出する。ただし、回転数が異なると特性も異なるため、これに先立って複数の回転領域に分割し、それぞれについて傾きの補正を行なうことで、全運転領域において燃料供給ポンプの調量精度が向上し、コモンレール圧力の圧力応答性を大幅に向上することができる。   If the slope of the applied current-discharge amount characteristic varies due to the difference between the intake metering valves, a desired discharge amount cannot be obtained with respect to the command current, and the controllability of the common rail pressure decreases. The control means first calculates a deviation amount between the actual discharge amount and the central characteristic value, samples a large number of samples, and calculates the inclination of the actual characteristic by, for example, statistically linearly approximating these deviation amounts. However, since the characteristics are different at different rotation speeds, dividing into a plurality of rotation areas prior to this, and correcting the inclination for each, the metering accuracy of the fuel supply pump is improved in the entire operation area, and the common rail The pressure responsiveness of the pressure can be greatly improved.

請求項において、上記ズレ量算出手段は、現在の運転条件が急加速・ 急減速・ フリーアクセル時を除く走行条件である時に、各回転領域の代表回転数における中央特性を用いて上記ズレ量を算出する。 5. The deviation amount calculation means according to claim 4, wherein the deviation amount calculation means uses the center characteristic at the representative rotation speed in each rotation region when the current operation condition is a traveling condition excluding sudden acceleration / deceleration / free accelerator. Is calculated.

具体的には、学習精度を保てる上記走行条件であることを前提とし、各回転領域においては、上記ズレ量を代表回転数でのズレ量とみなすことにより、容易に精度よい傾き補正が可能となる。   Specifically, on the premise that the driving conditions are such that the learning accuracy can be maintained, in each rotation region, the above-described deviation amount is regarded as the deviation amount at the representative number of rotations, so that accurate inclination correction can be easily performed. Become.

請求項において、上記補正手段は、各運転領域における上記ズレ量を多点サンプリングし、直線近似することにより、印加電流−吐出量特性線の傾きズレ量を算出する。 According to a fifth aspect of the present invention, the correction means calculates an inclination shift amount of the applied current-discharge amount characteristic line by performing multipoint sampling of the shift amount in each operation region and linear approximation.

上記ズレ量を多点サンプリングし、統計的手法等を用いて直線近似することにより、各回転領域における印加電流−吐出量特性を知ることができる。この際、サンプリング数が多ければ、直線近似によりリーク量や噴射量バラツキの影響を消去できるので、精度よく傾きズレ量を算出できる。   The applied current-discharge amount characteristic in each rotation region can be known by sampling the deviation amount at multiple points and performing linear approximation using a statistical method or the like. At this time, if the number of samplings is large, the influence of the leakage amount and the injection amount variation can be eliminated by linear approximation, so that the inclination deviation amount can be calculated with high accuracy.

請求項において、上記ズレ量算出手段は、上記コモンレールの圧力制御におけるフィードバック量を基に上記ズレ量を算出する。 In claim 6, the displacement amount calculation means calculates the shift amount based on the amount of feedback in the pressure control of the common rail.

目標とするコモンレール圧力と実際の圧力の差分を基にフィードバック制御している場合、このフィードバック量が中央特性からのズレに相当するので、これを用いて容易に上記ズレ量を算出できる。   When feedback control is performed based on the difference between the target common rail pressure and the actual pressure, the feedback amount corresponds to the deviation from the central characteristic, and thus the deviation amount can be easily calculated.

請求項において、上記制御手段は、各回転領域で上記吸入調量弁の実際の印加電流−吐出量特性と予め設定された中央特性との電流方向のズレ量を算出する電流方向学習手段を有している。
8. The control means according to claim 7, wherein the control means includes current direction learning means for calculating a deviation amount in a current direction between an actual applied current-discharge amount characteristic of the suction metering valve and a preset central characteristic in each rotation region. Have.

多点サンプリングによる傾き学習に際しては、予め電流方向の機差学習を完了させておくことで、傾き方向のズレを精度よく検出し、補正を行うことができる。   In the inclination learning by multi-point sampling, the machine direction learning in the current direction is completed in advance, so that the deviation in the inclination direction can be accurately detected and corrected.

以下、本発明の第1の実施形態を図1〜7により説明する。図1は本発明を適用したディーゼルエンジンのコモンレール式燃料噴射制御装置の全体構成を示す図で、高圧燃料が蓄圧されるコモンレール1と、該コモンレール1にそれぞれ接続されてエンジンの各気筒(図略)に燃料を噴射するための複数の燃料噴射弁2と、燃料噴射弁2の駆動を制御するとともに、燃料供給ポンプ4からコモンレール1への高圧燃料の供給を制御する制御手段としての電子制御ユニット(以下、ECUという)3を有している。なお、図1には、4気筒エンジンの1つに対応する燃料噴射弁2のみを示しているが、他の気筒についても同様の構成となっている。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the overall configuration of a common rail fuel injection control device for a diesel engine to which the present invention is applied. And a plurality of fuel injection valves 2 for injecting fuel, and an electronic control unit as control means for controlling the driving of the fuel injection valves 2 and controlling the supply of high-pressure fuel from the fuel supply pump 4 to the common rail 1 (Hereinafter referred to as ECU) 3. 1 shows only the fuel injection valve 2 corresponding to one of the four-cylinder engines, the other cylinders have the same configuration.

燃料供給ポンプ4は、燃料タンクTからフィルタFを介して吸入される低圧燃料を高圧に加圧し、加圧された燃料を高圧流路11を介してコモンレール1に圧送供給する。コモンレール1の圧力は圧力センサSによって検出され、ECU3は、コモンレール1の圧力が所定の噴射圧力となるように、燃料供給ポンプ4からの吐出量を制御する。なお、コモンレール1は減圧弁13を介して燃料タンクTに至る低圧流路12へ連通し、必要に応じてコモンレール1圧力を減圧制御可能となっているとともに、高圧流路11を安全弁14を介して低圧流路12へ連通してコモンレール1圧力が所定圧を超えて高くならないようにしている。   The fuel supply pump 4 pressurizes the low-pressure fuel sucked from the fuel tank T through the filter F to a high pressure, and supplies the pressurized fuel to the common rail 1 via the high-pressure channel 11. The pressure of the common rail 1 is detected by the pressure sensor S, and the ECU 3 controls the discharge amount from the fuel supply pump 4 so that the pressure of the common rail 1 becomes a predetermined injection pressure. The common rail 1 communicates with a low pressure passage 12 that reaches the fuel tank T via a pressure reducing valve 13 so that the pressure of the common rail 1 can be controlled to be reduced if necessary, and the high pressure passage 11 is connected with a safety valve 14. Thus, the common rail 1 pressure is communicated with the low pressure flow path 12 so that the pressure does not exceed a predetermined pressure.

図2に燃料供給ポンプ4構成の一例を示す。図中、ポンプハウジング41の上面にはシリンダヘッド5が固定され、シリンダヘッド5内にプランジャ51を往復摺動自在に支持している。プランジャ51の上方には、プランジャ51の端面とシリンダヘッド5の内壁面とで形成される燃料の加圧室52が設けられ、逆止弁53を経て低圧燃料が流入するようになしてある。   FIG. 2 shows an example of the configuration of the fuel supply pump 4. In the figure, a cylinder head 5 is fixed to the upper surface of a pump housing 41, and a plunger 51 is supported in the cylinder head 5 so as to be slidable back and forth. Above the plunger 51, a fuel pressurizing chamber 52 formed by the end surface of the plunger 51 and the inner wall surface of the cylinder head 5 is provided, and low pressure fuel flows through a check valve 53.

ポンプハウジング41内にはエンジンの1/2の回転と同期して回転駆動されるドライブシャフト42が挿通配置され、その外周にカム44が一体にかつ偏心して設けられている。カム44の外周には、外形が四角形状のシュー45がブッシュ46を介して摺動自在に保持され、シュー45の上端面にプランジャ51と一体のプレート部材54が、スプリング55の付勢力によって押圧されている。これにより、カム44の回転に伴い、プランジャ51が上下動して加圧室52内の燃料を加圧することが可能となる。なお、図示しないが、カム44の下方にも同様の構成の加圧室が設けられ、ドライブシャフト42の回転により吸入、圧送が交互に行われるように構成されている。   A drive shaft 42 that is rotationally driven in synchronization with a half rotation of the engine is inserted in the pump housing 41, and a cam 44 is provided integrally and eccentrically on the outer periphery thereof. A shoe 45 having a rectangular outer shape is slidably held on the outer periphery of the cam 44 via a bush 46, and a plate member 54 integral with the plunger 51 is pressed against the upper end surface of the shoe 45 by the biasing force of the spring 55. Has been. As a result, the plunger 51 moves up and down with the rotation of the cam 44 to pressurize the fuel in the pressurizing chamber 52. Although not shown, a pressurizing chamber having a similar configuration is provided below the cam 44, and suction and pressure feeding are alternately performed by the rotation of the drive shaft.

加圧室52へは、燃料溜まり71の燃料が、吸入調量弁6を経て吸入される。燃料溜まり71へは、図1の燃料タンクTから供給されフィードポンプ7で所定の低圧に加圧された燃料が、燃料流路73を通って供給される。吸入調量弁6は、ハウジング61内に摺動自在に保持されて、逆止弁53へ至る燃料流路72と燃料溜まり71との間を開閉する弁体62と、弁体82を駆動するコイル63を有している。コイル63の印加電流はECU3によって制御され、電流値に応じてテーパ状の弁体62のリフト量を変化させるようになっている。   The fuel in the fuel reservoir 71 is sucked into the pressurizing chamber 52 through the suction metering valve 6. Fuel supplied from the fuel tank T of FIG. 1 and pressurized to a predetermined low pressure by the feed pump 7 is supplied to the fuel reservoir 71 through the fuel flow path 73. The intake metering valve 6 is slidably held in the housing 61, and drives the valve body 82 that opens and closes between the fuel flow path 72 leading to the check valve 53 and the fuel reservoir 71, and the valve body 82. A coil 63 is provided. The applied current of the coil 63 is controlled by the ECU 3, and the lift amount of the tapered valve body 62 is changed according to the current value.

吸入調量弁6の弁体62は、コイル63へ通電しない状態で、スプリングのバネ力によって開弁方向(図の右方)へ付勢されて、燃料流路72と燃料溜まり71とを連通させる構成となっている。コイル63に通電すると、弁体62が閉弁方向(図の左方)へ移動し、印加電流値に応じて弁開度が変化する。従って、ECU3によってコイル63への印加電流を制御し、開口面積を調整して流入速度を変化させることにより、加圧室52内への燃料の吸入量を制御することができる。   The valve element 62 of the intake metering valve 6 is energized in the valve opening direction (rightward in the figure) by the spring force of the spring without energizing the coil 63, and communicates the fuel flow path 72 and the fuel reservoir 71. It is the composition which makes it. When the coil 63 is energized, the valve element 62 moves in the valve closing direction (leftward in the figure), and the valve opening changes according to the applied current value. Therefore, the amount of fuel sucked into the pressurizing chamber 52 can be controlled by controlling the current applied to the coil 63 by the ECU 3 and adjusting the opening area to change the inflow speed.

逆止弁53は、燃料流路72と加圧室52の間に配設され、加圧室52方向へのみ燃料を流入させる。逆止弁53の弁体56は、通常状態では、スプリングのバネ力によって閉弁方向(図の上方)へ付勢されており、吸入調量弁6から燃料流路72を経て低圧燃料が流入すると、燃料の圧力で弁体56が開弁して、加圧室52に燃料が吸入される。加圧中は、弁体56が燃料の圧力で閉弁する。加圧された燃料は、吐出弁57より吐出され、図1に示す高圧流路11からコモンレール1に供給される。   The check valve 53 is disposed between the fuel flow path 72 and the pressurizing chamber 52 and allows fuel to flow only in the direction of the pressurizing chamber 52. The valve body 56 of the check valve 53 is normally biased in the valve closing direction (upward in the drawing) by the spring force of the spring, and low pressure fuel flows from the intake metering valve 6 through the fuel flow path 72. Then, the valve body 56 is opened by the pressure of the fuel, and the fuel is sucked into the pressurizing chamber 52. During pressurization, the valve body 56 is closed by the fuel pressure. The pressurized fuel is discharged from the discharge valve 57 and supplied to the common rail 1 from the high-pressure channel 11 shown in FIG.

ECU3には、圧力センサSの他、アクセル開度センサ、エンジン回転数センサ、水温センサ等、エンジンの運転状態を検出するための図示しない各種センサが接続されている。ECU3は、これらセンサからの信号に基づいて、エンジン状態に応じた最適な噴射時期や噴射量等を決定して各燃料噴射弁2を駆動する。また、ECU3は、圧力センサSにより検出されるコモンレール1の圧力が、噴射圧力に相当する目標圧力に追従するように、燃料供給ポンプ4からの吐出量を算出し、吸入調量弁6を駆動して、コモンレール圧力をフィードバック制御する。   In addition to the pressure sensor S, various sensors (not shown) for detecting the operating state of the engine, such as an accelerator opening sensor, an engine speed sensor, and a water temperature sensor, are connected to the ECU 3. Based on the signals from these sensors, the ECU 3 determines the optimal injection timing, injection amount, etc. according to the engine state, and drives each fuel injection valve 2. Further, the ECU 3 calculates the discharge amount from the fuel supply pump 4 so that the pressure of the common rail 1 detected by the pressure sensor S follows the target pressure corresponding to the injection pressure, and drives the intake metering valve 6. The common rail pressure is feedback controlled.

図3に、ECU3において実行されるコモンレール圧力制御処理のフローチャートを示す。まず、ステップ101において、ECU3は、上述した各種センサの検出信号からエンジン回転数およびアクセル開度を算出する。ステップ102では、算出したエンジン回転数とアクセル開度、噴射量等から、目標コモンレール圧力を算出し、続くステップ103で、圧力センサSからの信号を基に実コモンレール圧力を算出する。そして、ステップ104で、算出された目標コモンレール圧力と実コモンレール圧力の差分に相当する燃料量に、予測される燃料リーク量や噴射量等を考慮して、燃料供給ポンプ4からの必要吐出量を算出する。ステップ105では、ステップ104で算出した必要吐出量を、吐出量Qと回転数NEをパラメータとする2次元マップ(I−Qベースマップ)を用いて、吸入調量弁6のコイル63への印加電流Iに変換する。   FIG. 3 shows a flowchart of the common rail pressure control process executed in the ECU 3. First, in step 101, the ECU 3 calculates the engine speed and the accelerator opening from the detection signals of the various sensors described above. In step 102, the target common rail pressure is calculated from the calculated engine speed, accelerator opening, injection amount, etc., and in step 103, the actual common rail pressure is calculated based on the signal from the pressure sensor S. Then, in step 104, the required amount of discharge from the fuel supply pump 4 is set in consideration of the fuel leak amount and the injection amount that are predicted to the fuel amount corresponding to the difference between the calculated target common rail pressure and actual common rail pressure. calculate. In step 105, the required discharge amount calculated in step 104 is applied to the coil 63 of the intake metering valve 6 using a two-dimensional map (IQ base map) using the discharge amount Q and the rotational speed NE as parameters. Convert to current I.

ここで、吸入調量弁6の弁部形状やばね力のバラツキといった機差の影響等により、燃料供給ポンプ4の実際の調量特性(実特性)が、I−Qベースマップから大きくずれると、吸入調量弁6への指令電流値Iに対して目標とする吐出量Qが得られず、コモンレール1の圧力制御性が低下してしまう。そこで、本実施形態(発明)では、燃料供給ポンプ4の駆動に先立ってI−Q特性の傾き方向のズレ係数を算出し、これを基にI−Qベースマップ全域の傾きズレを補正する。この傾きズレ係数を算出するための処理の一例を図4のフローチャートで説明する。   Here, if the actual metering characteristics (actual characteristics) of the fuel supply pump 4 deviate significantly from the IQ base map due to the influence of machine differences such as the shape of the valve portion of the intake metering valve 6 and variations in spring force. Therefore, the target discharge amount Q cannot be obtained with respect to the command current value I to the intake metering valve 6, and the pressure controllability of the common rail 1 is deteriorated. Therefore, in the present embodiment (invention), the deviation coefficient in the inclination direction of the IQ characteristic is calculated prior to driving of the fuel supply pump 4, and the inclination deviation in the entire IQ base map is corrected based on this coefficient. An example of the process for calculating the inclination deviation coefficient will be described with reference to the flowchart of FIG.

図4において、制御手段であるECU3は、まず、ステップ201で、I−Q特性の傾き方向の学習が可能な運転条件かどうかを判定する。学習条件は、例えば、通常の温間アイドル運転時で、かつ圧力補正積分項の値(=ベースI−Qからのズレ量)が一定値以上である場合とする。温間アイドル時の判定は、上述した各種センサ、例えばエンジン回転数センサと水温センサの検出信号から行うことができる。また、ベースI−Qからのズレ量が一定以上でないと学習しないのは、調量精度が学習の必要のないレベルにある燃料供給ポンプ4まで学習するのを防止するためである。ステップ201が肯定判定された場合には、ステップ202へ進む。   In FIG. 4, the ECU 3, which is a control means, first determines in step 201 whether or not the operating condition allows learning of the inclination direction of the IQ characteristic. The learning condition is, for example, a normal warm idling operation and a case where the value of the pressure correction integral term (= the amount of deviation from the base IQ) is a certain value or more. The determination at the time of warm idling can be made from the detection signals of the various sensors described above, for example, the engine speed sensor and the water temperature sensor. Further, the reason why the learning is not performed unless the amount of deviation from the base IQ is equal to or greater than a certain value is to prevent learning to the fuel supply pump 4 whose metering accuracy is at a level that does not require learning. If an affirmative determination is made in step 201, the process proceeds to step 202.

ステップ202では、通常温間アイドル時 (例えば、NE=600rpm)における電流方向の学習を実施する。これを図5(a)に基づいて説明する。図5(a)において、実線はマップに投入される中央特性であり、点線の実際の燃料供給ポンプ4の調量特性(実特性:電流方向学習前)に対して、電流方向および傾き方向のズレを有しているものとする。この場合、例えば、上述した図3のコモンレール圧力制御において、目標コモンレール圧力(噴射圧力)と実コモンレール圧力を基に算出される必要吐出量が、吐出量A (例えば、Q=15mm3 /st)である時、マップ中央特性を基に吸入調量弁6を駆動すると、吐出量Aに対応するマップ投入値I0 では、実際の吐出量は0となってしまう。 In step 202, learning of the current direction during normal warm idling (for example, NE = 600 rpm) is performed. This will be described with reference to FIG. In FIG. 5 (a), the solid line is the central characteristic that is input to the map, and the current direction and the inclination direction of the actual metering characteristic (actual characteristic: before learning the current direction) of the actual fuel supply pump 4 indicated by the dotted line It shall have a deviation. In this case, for example, in the above-described common rail pressure control of FIG. 3, the required discharge amount calculated based on the target common rail pressure (injection pressure) and the actual common rail pressure is the discharge amount A (for example, Q = 15 mm 3 / st). When the intake metering valve 6 is driven based on the map center characteristic, the actual discharge amount becomes 0 at the map input value I0 corresponding to the discharge amount A.

そこで、まず、この吐出量Aにおける電流方向の学習を行って、実特性と中央特性の電流方向のズレ量 (マップ投入値I0 と電流値IA の差)を算出し、学習量Aを得る。具体的には、例えば周知のPID手法等を用い、実吐出量が吐出量Aに一致するように、未学習状態での積分項の値(=ベースI−Qからのズレ分)を徐々に減少させていき、その分を電流値に変換して総変化量を学習量Aとする。この学習量Aを用いて、マップ中央特性の電流方向の補正を行うことができるが、図5(a)の破線に電流方向学習後(温間アイドル時)として示すように、傾き方向のズレは解消されない。このため、温間アイドル時とアイドルアップ時の釣り合い吐出量の差を利用して、各々の電流方向の学習量を基に、傾きのズレを補正する。   Therefore, first, learning of the current direction in the discharge amount A is performed, and a deviation amount between the actual characteristic and the central characteristic in the current direction (difference between the map input value I0 and the current value IA) is calculated to obtain the learning amount A. Specifically, for example, using a known PID method, the value of the integral term in the unlearned state (= deviation from the base IQ) is gradually increased so that the actual discharge amount matches the discharge amount A. The amount of decrease is converted into a current value, and the total amount of change is set as a learning amount A. The learning direction A can be used to correct the current direction of the map center characteristic. However, as shown in the broken line in FIG. Is not resolved. For this reason, the deviation of the inclination is corrected based on the learning amount in each current direction using the difference in the balance discharge amount between the warm idling time and the idling up time.

すなわち、ステップ203において、アイドルアップ時の電流方向の学習を行うために、強制的にエンジン回転数を上昇させ、強制アイドルアップ運転(通常温間アイドル時と同じ噴射圧力)状態とする。   That is, in step 203, in order to learn the current direction at the time of idling up, the engine speed is forcibly increased to enter a forced idling up operation (the same injection pressure as during normal warm idling).

次に、ステップ204では、図5(b)に基づいて、強制アイドルアップ時 (例えば、NE=1000rpm)における電流方向の学習を実施する。図5(b)において、実線は中央特性、破線は電流方向学習後 (温間アイドル時)のI−Q特性線であり、強制アイドルアップ時において、目標コモンレール圧力(噴射圧力)を維持するための必要吐出量を、吐出量B (例えば、Q=30mm3 /st)とした時、この吐出量Bにおける電流方向の学習を同様の方法で行って、電流方向のズレ量を算出する。一点鎖線は、電流方向学習後 (強制アイドルアップ時)のI−Q特性線であり、電流方向学習後 (温間アイドル時)との電流方向のズレ量を学習量Bとする。 Next, in step 204, learning of the current direction at the time of forced idle up (for example, NE = 1000 rpm) is performed based on FIG. In FIG. 5B, the solid line is the center characteristic, and the broken line is the IQ characteristic line after learning the current direction (during warm idling) to maintain the target common rail pressure (injection pressure) during forced idling up. When the required discharge amount is set to a discharge amount B (for example, Q = 30 mm 3 / st), learning of the current direction at this discharge amount B is performed by the same method to calculate the shift amount in the current direction. The alternate long and short dash line is an IQ characteristic line after learning the current direction (during forced idle up), and the amount of deviation in the current direction after learning the current direction (during warm idling) is taken as the learning amount B.

ステップ205では、ステップ204で算出した学習量Bを、回転補正テーブル1を用いて学習量B’に変換する。通常温間アイドル時と強制アイドルアップ時のエンジン回転数は異なり、エンジン回転数によって電流方向のズレ量も異なるため、学習量Bをそのまま利用することはできない。ただし、電流方向のズレ量とエンジン回転数には一定の相関があると考えられるため、この関係を予め実験等により把握しておき、これを基に作成した回転補正テーブル1を用いて、強制アイドルアップ時の学習量Bを通常温間アイドル時の学習量B’に変換することができる。図6(a)は、NE=600rpmを基準とする補正テーブルの内容を示すもので、回転数と回転補正係数は、例えば図6(b)のような比例関係にある。従って、得られた学習量Bにこの回転補正係数を乗じることで、学習量B’を得ることができ、電流方向のズレ量から回転数成分を除去し、傾きのズレ成分のみを抽出することが可能となる。なお、図6(b)は回転数と回転補正係数の関係の一例を示すもので、比例関係でなくても相関があればよい。   In step 205, the learning amount B calculated in step 204 is converted into a learning amount B ′ using the rotation correction table 1. The engine speed during normal warm idling is different from that during forced idling, and the amount of deviation in the current direction varies depending on the engine speed. Therefore, the learning amount B cannot be used as it is. However, since it is considered that there is a certain correlation between the amount of deviation in the current direction and the engine speed, this relationship is grasped in advance through experiments and the like, and the rotation correction table 1 created based on this relationship is used to force The learning amount B at the time of idle-up can be converted into the learning amount B ′ at the time of idling during normal temperature. FIG. 6A shows the contents of the correction table based on NE = 600 rpm, and the rotation speed and the rotation correction coefficient are in a proportional relationship as shown in FIG. 6B, for example. Therefore, the learning amount B ′ can be obtained by multiplying the obtained learning amount B by this rotation correction coefficient, and the rotation number component is removed from the deviation amount in the current direction, and only the deviation component of the inclination is extracted. Is possible. FIG. 6B shows an example of the relationship between the rotation speed and the rotation correction coefficient, and it is sufficient that there is a correlation even if it is not a proportional relationship.

次いで、ステップ206では、学習量Aと学習量B’により通常アイドル回転数における傾きズレ量を算出する。図7(a)のように、学習量B’が判明すれば、電流方向学習後(通常温間アイドル時)のI−Q特性線上の2点が判明することになり、図7(b)に示すように、既知のマップ投入特性と、学習量B’、吐出量Aおよび吐出量Bから特性線の傾きが一意に決まる。つまり、マップ中央特性からの傾きズレ量を求めることができる。ここで、傾きズレ量は、例えば指令電流値に対する吐出量ズレを計算する形としても(指令電流値I(mA)に対し吐出量が所定量C(mm3 /st)だけ多い側にズレているので指令吐出量が上記所定量C(mm3 /st)少なくする)、あるいは、中央特性値 (MAP投入値) に対して、所定の補正係数を用いて比率計算をするようにしてもよい。 Next, at step 206, the amount of inclination deviation at the normal idle speed is calculated from the learning amount A and the learning amount B ′. As shown in FIG. 7 (a), if the learning amount B ′ is found, two points on the IQ characteristic line after learning the current direction (normally at the time of idling) are found, and FIG. 7 (b). As shown in FIG. 4, the slope of the characteristic line is uniquely determined from the known map input characteristic, the learning amount B ′, the discharge amount A, and the discharge amount B. That is, the amount of tilt deviation from the map center characteristic can be obtained. Here, the inclination deviation amount is calculated, for example, by calculating the discharge amount deviation with respect to the command current value (the discharge amount is deviated by a predetermined amount C (mm 3 / st) from the command current value I (mA). The command discharge amount may be reduced by the predetermined amount C (mm 3 / st)), or the ratio may be calculated using a predetermined correction coefficient for the central characteristic value (MAP input value). .

さらに、ステップ207で、ステップ206で算出したズレ量を基に、全回転域における傾きズレ量を算出する。傾きズレ量と回転数においても、基本的に前述の回転補正テーブル1と同じ関係が成り立つと考えられ、同様の回転補正テーブル2を用いて、補正を行うことができる。ただし、回転補正テーブル1の方が、より狭い回転数範囲で精度よい補正が求められるので、アイドル回転数からアイドルアップ回転数程度の回転領域に限定して回転補正テーブル1の回転数ピッチを細かく取り、より詳細な補正が行えるようにしてもよい。ここでは、例えば、傾きズレ係数を下記式のように定義し、アイドル回転数における傾きズレ係数から、回転補正テーブル2を用いて全回転域での傾きズレ係数を算出する。
傾きズレ係数=実特性の傾き/中央特性の傾き
Further, in step 207, an inclination deviation amount in the entire rotation region is calculated based on the deviation amount calculated in step 206. It is considered that the same relationship as that of the above-described rotation correction table 1 is basically established with respect to the tilt deviation amount and the rotation speed, and correction can be performed using the same rotation correction table 2. However, since the rotation correction table 1 requires more accurate correction within a narrower rotation speed range, the rotation speed pitch of the rotation correction table 1 is finely limited only to the rotation region from the idle rotation speed to the idle-up rotation speed. However, more detailed correction may be performed. Here, for example, the inclination deviation coefficient is defined as the following equation, and the inclination deviation coefficient in the entire rotation range is calculated using the rotation correction table 2 from the inclination deviation coefficient at the idle rotation speed.
Inclination coefficient = Actual characteristic inclination / Center characteristic inclination

このようにして算出した傾きズレ係数を、上記図3のフローチャートにおけるI−Qベースマップに適用し、全回転域における傾きを補正することで、燃料供給ポンプ4の調量精度を高めることができる。   By applying the slope deviation coefficient calculated in this way to the IQ base map in the flowchart of FIG. 3 described above and correcting the slope in the entire rotation range, the metering accuracy of the fuel supply pump 4 can be improved. .

以上のように、本実施形態では、通常アイドル時と強制アイドルアップ時の電流方向の学習量(学習量Aと学習量B)の比率と、釣り合い吐出量(吐出量Aと吐出量B)から、比例計算により傾きズレ量を容易に算出できる。そして、この算出に際して、学習量のエンジン回転数に基づく補正を行うことで、傾きズレをより厳密に算出することが可能で、学習補正の精度が向上する。よって、吸入調量弁の機差等によるバラツキを吸収し、高精度な圧力制御が可能になる。   As described above, in the present embodiment, from the ratio of the learning amount (learning amount A and learning amount B) in the current direction during normal idle and forced idle up, and the balanced discharge amount (discharge amount A and discharge amount B). The amount of tilt deviation can be easily calculated by proportional calculation. In this calculation, by performing correction based on the learning amount based on the engine speed, it is possible to more accurately calculate the inclination deviation, and the accuracy of learning correction is improved. Therefore, it is possible to absorb variations due to machine differences of the intake metering valve and to perform highly accurate pressure control.

次に、本発明の第2の実施形態を図8〜12により説明する。本実施形態においても、コモンレール式燃料噴射制御装置の全体構成および燃料噴射ポンプ4構成は、上述した第1の実施形態と同様である(図1、2参照)。第1の実施形態とは、コモンレール1の燃料圧力をフィードバック制御する際に、燃料供給ポンプ4の機差によるバラツキを吸収するための学習補正の方法が異なっており、以下、この相違点を中心に、制御手段としてのECU3による学習制御について説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. Also in this embodiment, the overall configuration of the common rail fuel injection control device and the configuration of the fuel injection pump 4 are the same as those in the first embodiment described above (see FIGS. 1 and 2). The feedback control of the fuel pressure of the common rail 1 differs from the first embodiment in the learning correction method for absorbing the variation due to the machine difference of the fuel supply pump 4, and this difference will be mainly described below. Next, learning control by the ECU 3 as the control means will be described.

図8は、ECU3において実行されるコモンレール圧力制御処理のフローチャートである。ECU3は、まず、ステップ301において、上述した各種センサの検出信号からエンジン回転数およびアクセル開度を算出し、ステップ302で、噴射量および予測される燃料リーク量を算出するとともに、ステップ303で、エンジン回転数とアクセル開度、噴射量等から、目標コモンレール圧力を算出する。続くステップ304では、圧力センサSからの信号を基に実コモンレール圧力を算出し、ステップ305で、算出された目標コモンレール圧力と実コモンレール圧力の差分に相当する燃料量を、周知のPID手法等によりフィードバック演算する。ステップ306では、このフィードバック量を、ステップ302で算出した噴射量や燃料リーク量に加算して、燃料供給ポンプ4からの必要吐出量を算出する。そして、ステップ307において、ステップ306で算出した必要吐出量を、吐出量Qと回転数NEをパラメータとするI−Qベースマップ、傾きズレ係数補正テーブルを用いて、吸入調量弁6のコイル63への印加電流Iに変換する。   FIG. 8 is a flowchart of a common rail pressure control process executed in the ECU 3. First, in step 301, the ECU 3 calculates the engine speed and the accelerator opening from the detection signals of the various sensors described above. In step 302, the ECU 3 calculates the injection amount and the predicted fuel leak amount. The target common rail pressure is calculated from the engine speed, accelerator opening, injection amount, and the like. In the subsequent step 304, the actual common rail pressure is calculated based on the signal from the pressure sensor S. In step 305, the fuel amount corresponding to the difference between the calculated target common rail pressure and the actual common rail pressure is calculated by a known PID method or the like. Calculate feedback. In step 306, this feedback amount is added to the injection amount and fuel leak amount calculated in step 302 to calculate the required discharge amount from the fuel supply pump 4. In step 307, the coil 63 of the intake metering valve 6 is calculated using the IQ base map, which uses the discharge amount Q and the rotational speed NE as parameters, and the inclination deviation coefficient correction table. Converted to an applied current I to the.

図9に、傾きズレ係数補正テーブルに格納される傾きズレ係数を算出するための傾き学習処理のフローチャートを示す。上記第1の実施形態において詳述した通り、吸入調量弁6の弁部形状やばね力のバラツキといった機差の影響等で、図10のように、燃料供給ポンプ4の実特性がマップに投入される中央特性に対して異なった傾きを持つと、吸入調量弁6への印加電流Iに対して目標とする吐出量Qが得られなくなる。一方、本実施形態のように、目標コモンレール圧力と実コモンレール圧力の差分をPID補償器によりフィードバックしているような制御では、図10のズレ量は、上記ステップ305で算出されるフィードバック量(例えば、積分項の値)で表現することが可能である。ただし、このフィードバック量は、I−Q傾きだけでなく、運転状態や燃料温度のバラツキの影響を受ける。このため、図11(a)のように、同じ印加電流値でも特性がバラつくおそれがある。そこで、本実施形態では、このズレ量を多点サンプリングし、例えば統計的に直線近似することで、バラツキ成分を除去し、実際の特性 (その個体固有の傾き)を把握する。   FIG. 9 shows a flowchart of an inclination learning process for calculating an inclination deviation coefficient stored in the inclination deviation coefficient correction table. As described in detail in the first embodiment, the actual characteristics of the fuel supply pump 4 are shown in a map as shown in FIG. 10 due to the influence of machine differences such as the shape of the valve portion of the intake metering valve 6 and the variation in spring force. If the gradient is different with respect to the applied central characteristic, the target discharge amount Q cannot be obtained with respect to the applied current I to the suction metering valve 6. On the other hand, in the control in which the difference between the target common rail pressure and the actual common rail pressure is fed back by the PID compensator as in the present embodiment, the deviation amount in FIG. 10 is the feedback amount calculated in step 305 (for example, , Integral term value). However, this feedback amount is affected not only by the IQ slope but also by variations in operating conditions and fuel temperature. For this reason, as shown in FIG. 11A, there is a possibility that the characteristics may vary even with the same applied current value. Therefore, in the present embodiment, this deviation amount is sampled at multiple points, and for example, statistically linear approximation is performed to remove the variation component and grasp the actual characteristic (individual slope).

図9において、ECU3は、まず、ステップ401で、I−Q特性の傾き方向の学習が可能な運転条件かどうかを判定する。学習条件は、学習精度を保てる走行条件であればよく、バラツキが生じやすい急加速・急減速運転やフリーアクセル運転時等を除く条件とすることが望ましい。ここでは、例えば、積分量の学習精度が出やすい緩加速条件とする。ステップ201が肯定判定された場合には、ステップ402へ進み、ステップ401が否定判定された場合には、そのまま終了する。   In FIG. 9, the ECU 3 first determines in step 401 whether or not the operating condition allows learning of the inclination direction of the IQ characteristic. The learning condition may be a traveling condition that can maintain the learning accuracy, and is preferably a condition that does not include sudden acceleration / deceleration operation or free accelerator operation that easily causes variation. Here, for example, a slow acceleration condition that facilitates learning of the integration amount is set. If the determination in step 201 is affirmative, the process proceeds to step 402. If the determination in step 401 is negative, the process ends.

ステップ402では、現在の運転条件から回転方向の領域を判定する。運転条件としては、図8のステップ301で算出した回転数を用い、図12のように回転数方向に複数に分割された領域のいずれに入るかを判断する。これは、過渡状態では、吐出量レベルと同時に回転数も上昇し、回転数が異なると、上記図10の中央特性(MAP投入値)も変化するからであり、領域毎に多点サンプリングを行って、傾きズレを算出する。領域数は、回転領域が異なることによる学習値ズレが許容できる範囲となるように、内燃機関の最大回転数等に応じて適宜設定され、例えば、領域幅が500回転から1000回転程度となるように全運転領域を区画すればよい。ここで、各領域の中央回転数を代表回転数とし、代表回転数におけるI−Q特性を各領域の中央特性とする。   In step 402, the region in the rotational direction is determined from the current operating conditions. As the operating condition, the rotational speed calculated in step 301 of FIG. 8 is used to determine which of the regions divided into a plurality of parts in the rotational speed direction as shown in FIG. This is because in the transient state, the rotational speed increases simultaneously with the discharge amount level, and if the rotational speed is different, the central characteristic (MAP input value) in FIG. 10 also changes, and multipoint sampling is performed for each region. To calculate the tilt deviation. The number of regions is appropriately set according to the maximum number of rotations of the internal combustion engine so that the learning value deviation due to the different rotation regions is acceptable. For example, the region width is about 500 to 1000 rotations. The entire operation area may be partitioned. Here, the central rotational speed of each region is the representative rotational speed, and the IQ characteristic at the representative rotational speed is the central characteristic of each region.

ステップ403では、印加電流値に対する実際の吐出量と中央特性値とのズレ量を算出する。図11(a)に示すように、中央特性値からのズレ量は、目標コモンレール圧に追従するように圧力フィードバックを実行した時のフィードバック量に相当し、このフィードバック量を多点サンプリングして直線近似すれば、実際の特性を知ることができる。ここで、ズレ量=積分項 (+微分項+比例項)とし、積分項のみではズレ量を表現しきれない場合(車両状態によっては積分項の演算が追いつかない)、ズレ量に微分項+比例項を含めてもよい。   In step 403, a deviation amount between the actual discharge amount and the central characteristic value with respect to the applied current value is calculated. As shown in FIG. 11A, the amount of deviation from the central characteristic value corresponds to the amount of feedback when pressure feedback is executed so as to follow the target common rail pressure. If approximated, actual characteristics can be known. Here, deviation amount = integral term (+ derivative term + proportional term), and if the integral amount alone cannot express the deviation amount (the integral term cannot catch up depending on the vehicle condition), the differential term + A proportional term may be included.

ステップ404では、学習を終了してもよいかどうかを判定する。学習終了条件は、例えば、一定走行距離を満足するかどうかとし、傾きズレ係数の算出に必要なサンプリング数が確保できる走行距離、例えば5000kmの走行で学習終了とする。ステップ404が肯定判定された場合には、ステップ405へ進み、ステップ404が否定判定された場合には、ステップ402以降を繰り返す。   In step 404, it is determined whether or not the learning can be ended. The learning end condition is, for example, whether or not a certain travel distance is satisfied, and the learning ends when the travel distance that can secure the number of samplings necessary for calculating the inclination deviation coefficient, for example, a travel of 5000 km. If an affirmative determination is made in step 404, the process proceeds to step 405. If a negative determination is made in step 404, step 402 and subsequent steps are repeated.

ステップ405では、回転領域毎の多点サンプリングデータを基に、傾きズレ係数を算出する。同一領域内におけるズレ量は、図12に示した代表回転数(領域の中央回転数)におけるズレ量と考える。図11(a)の各点は、これらズレ量に基づく実際の運転時のI−Q特性(フィードバック前特性)値で、これを公知の統計的手法等を用いて直線近似することで、実際のI−Q特性線を推定できることが分かる。フィードバック前特性値は、純粋なI−Q傾きだけでなく、リーク量や噴射量バラツキ、積分項の誤差値等の影響を受けるが、多点プロットすることで、エラー成分を消去することができる。このようにして、実際の特性(その個体固有の傾き)を算出し、中央特性からの傾きズレを求めることができる。具体的には、中央特性線が例えばy=ax、実際のI−Q特性線が例えばy=bxで近似される時、これらの傾きの比:b/aをこの領域の傾きズレ係数とすればよい。   In step 405, an inclination deviation coefficient is calculated based on the multipoint sampling data for each rotation area. The amount of deviation in the same region is considered as the amount of deviation in the representative rotational speed (the central rotational speed of the region) shown in FIG. Each point in FIG. 11A is an IQ characteristic (pre-feedback characteristic) value during actual operation based on these deviation amounts, and is obtained by linearly approximating this using a known statistical method or the like. It can be seen that the IQ characteristic line can be estimated. The characteristic value before feedback is affected not only by the pure IQ slope, but also by the leak amount, injection amount variation, error value of the integral term, etc., but error components can be eliminated by multi-point plotting. . In this way, the actual characteristic (inclination unique to the individual) can be calculated, and the inclination deviation from the central characteristic can be obtained. Specifically, when the center characteristic line is approximated by, for example, y = ax and the actual IQ characteristic line is approximated by, for example, y = bx, the ratio of these slopes: b / a is used as the slope deviation coefficient of this region. That's fine.

続くステップ406では、ステップ405で算出した傾きズレ係数の値を、傾きズレ係数補正テーブルに格納し、傾き学習処理を終了する。   In the subsequent step 406, the value of the inclination deviation coefficient calculated in step 405 is stored in the inclination deviation coefficient correction table, and the inclination learning process is terminated.

以上のように、図8の圧力制御処理において、毎回目標コモンレール圧に追従するようにフィードバックを行ない(図11(a)の矢印部分)、毎回のフィードバック量 (学習量)をECU3に記憶させて統計処理することによっても、傾き方向のズレを算出できる。この際、多点学習量を演算することで、バラツキ成分を吸収して固有の傾きを算出することが可能であり、運転領域を回転方向に分割し、各領域で傾きズレを算出することで、回転領域が異なることによる演算誤差を小さくすることができる。もしくは、フィードバック量をECU3に記憶させる際に、同時に回転情報を記憶させてもよい。その結果、全回転領域において精度の高い学習値が得られる。   As described above, in the pressure control process of FIG. 8, feedback is performed so as to follow the target common rail pressure every time (arrow portion in FIG. 11A), and the feedback amount (learning amount) is stored in the ECU 3 each time. The deviation in the tilt direction can also be calculated by statistical processing. At this time, by calculating the multipoint learning amount, it is possible to calculate the inherent inclination by absorbing the variation component, and by dividing the operation area in the rotation direction and calculating the inclination deviation in each area. The calculation error due to the different rotation regions can be reduced. Alternatively, the rotation information may be stored at the same time when the feedback amount is stored in the ECU 3. As a result, a highly accurate learning value is obtained in the entire rotation region.

そして、中央特性(マップ投入値)に対する学習量(傾きズレ係数)を領域毎に予めECU3に記憶させて、次回運転時より反映することにより、全回転領域において精度よくコモンレール圧力の制御を実現できる。図11(b)は、本実施形態の補正による効果を示す図である。補正前の図11(a)では、中央特性と実際の特性との間にズレがあるため、毎回のフィードバック量が大きくなるが、補正後は、学習値反映後の特性を基に圧力制御を行なうことで、フィードバック補正量を小さくすることができる。   Then, the learning amount (inclination deviation coefficient) with respect to the central characteristic (map input value) is stored in the ECU 3 in advance for each region and reflected from the next operation so that the common rail pressure can be accurately controlled in the entire rotation region. . FIG. 11B is a diagram illustrating the effect of the correction according to the present embodiment. In FIG. 11A before correction, since there is a gap between the center characteristic and the actual characteristic, the feedback amount increases every time. However, after correction, the pressure control is performed based on the characteristic after reflecting the learning value. By doing so, the feedback correction amount can be reduced.

なお、本実施形態による補正を実施するに際しては、電流方向の機差学習は完了していることを前提とする。この電流方向の学習方法については、従来知られる方法等を採用することができる。   Note that when performing the correction according to the present embodiment, it is assumed that the machine direction learning in the current direction has been completed. As this current direction learning method, a conventionally known method or the like can be employed.

本発明の燃料噴射制御装置の全体構成図である。It is a whole block diagram of the fuel-injection control apparatus of this invention. 燃料供給ポンプの全体断面図である。It is a whole sectional view of a fuel supply pump. 第1の実施形態のECUによるコモンレール圧力制御のフローチャートを示す図である。It is a figure which shows the flowchart of common rail pressure control by ECU of 1st Embodiment. 第1の実施形態のECUによる傾きズレ係数の算出処理のフローチャートを示す図である。It is a figure which shows the flowchart of the calculation process of the inclination shift coefficient by ECU of 1st Embodiment. 第1の実施形態を説明するための図で、(a)は温間アイドル時の、(b)は強制アイドルアップ時の電流方向の学習方法を示す図である。It is a figure for demonstrating 1st Embodiment, (a) is a figure which shows the learning method of the current direction at the time of warm idle, and (b) at the time of forced idle up. 第1の実施形態を説明するための図で、(a)は電流方向のズレ量を回転補正するための回転補正テーブル、(b)は回転数と回転補正係数の関係を示す図である。2A and 2B are diagrams for explaining the first embodiment, in which FIG. 1A is a rotation correction table for rotationally correcting a deviation amount in a current direction, and FIG. 2B is a diagram illustrating a relationship between a rotation speed and a rotation correction coefficient. (a)、(b)は温間アイドル時の傾きズレ量の算出方法を説明するための図である。(A), (b) is a figure for demonstrating the calculation method of the inclination gap | deviation amount at the time of warm idle. 第2の実施形態のECUによるコモンレール圧力制御のフローチャートを示す図である。It is a figure which shows the flowchart of common rail pressure control by ECU of 2nd Embodiment. 第2の実施形態のECUによる傾きズレ係数の算出処理のフローチャートを示す図である。It is a figure which shows the flowchart of the calculation process of the inclination shift coefficient by ECU of 2nd Embodiment. 実特性と中央特性とのズレ量を示す図である。It is a figure which shows the deviation | shift amount of an actual characteristic and a center characteristic. 第2の実施形態の効果を説明するための図で、(a)は補正前、(b)は補正後の特性とフィードバック量の関係を示す図である。It is a figure for demonstrating the effect of 2nd Embodiment, (a) is before correction | amendment, (b) is a figure which shows the relationship between the characteristic after correction | amendment, and feedback amount. 第2の実施形態における運転領域の分割方法を説明するための図である。It is a figure for demonstrating the division | segmentation method of the driving | operation area | region in 2nd Embodiment.

符号の説明Explanation of symbols

1 コモンレール
2 燃料噴射弁
3 ECU(制御手段)
4 燃料供給ポンプ
5 逆止弁
6 吸入調量弁
S 燃料圧センサ
T 燃料タンク
1 common rail 2 fuel injection valve 3 ECU (control means)
4 Fuel supply pump 5 Check valve 6 Suction metering valve S Fuel pressure sensor T Fuel tank

Claims (7)

内燃機関に噴射するための高圧燃料が蓄圧されるコモンレールと、吸入調量弁により調量された燃料を加圧して上記コモンレールに送出する燃料供給ポンプと、上記吸入調量弁の駆動を制御することにより上記コモンレールの圧力を制御する制御手段を備え、上記制御手段が、アイドル回転域の複数の運転条件において、上記吸入調量弁の実際の印加電流−吐出量特性と予め設定された中央特性との電流方向のズレ量をそれぞれ算出する電流方向学習手段と、該電流方向学習手段において算出された電流方向のズレ量を内燃機関の回転数を基に補正する回転補正手段と、回転補正後の上記電流方向のズレ量と対応する吐出量に基づいて印加電流−吐出量特性線の傾きを補正する補正手段を有し、
上記電流方向学習手段が、上記複数の運転条件としての、通常温間アイドル運転時の電流方向のズレ量Aと、強制アイドルアップ運転時の電流方向のズレ量Bを算出するものであり、上記回転補正手段が、予め算出されたズレ量と回転数の関係から、上記強制アイドルアップ運転時の電流方向のズレ量Bを、通常アイドル運転時の電流方向のズレ量B’に変換するものであることを特徴とする内燃機関の燃料噴射制御装置。
A common rail for accumulating high-pressure fuel for injection into an internal combustion engine, a fuel supply pump that pressurizes fuel metered by a suction metering valve and sends it to the common rail, and controls the drive of the suction metering valve And a control means for controlling the pressure of the common rail, and the control means is configured to set an actual applied current-discharge amount characteristic of the suction metering valve and a preset central characteristic under a plurality of operating conditions in an idle rotation range. Current direction learning means for calculating the current direction deviation amount with respect to each other, rotation correction means for correcting the current direction deviation amount calculated by the current direction learning means based on the rotational speed of the internal combustion engine, and after rotation correction the current direction of the shift amount and the applied based on a corresponding discharge current amount - have a correcting means for correcting the inclination of the discharge amount characteristic line,
The current direction learning means calculates a current direction deviation amount A during normal warm idle operation and a current direction deviation amount B during forced idle up operation as the plurality of operation conditions, The rotation correction means converts the displacement amount B in the current direction during the forced idle up operation into the displacement amount B ′ in the current direction during the normal idle operation, based on the relationship between the displacement amount and the rotational speed calculated in advance. the fuel injection control device for an internal combustion engine, characterized in that.
上記補正手段が、上記ズレ量A、B’と、対応する吐出量A、Bに基づいて通常温間アイドル運転時の印加電流−吐出量特性線の傾きズレ量を算出するとともに、該傾きズレ量を基に全回転域における傾きを補正する請求項1記載の内燃機関の燃料噴射制御装置。 The correction means calculates the deviation amount of the applied current-discharge amount characteristic line during the normal warm idle operation based on the deviation amounts A and B ′ and the corresponding discharge amounts A and B, and the inclination deviation. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the inclination in the entire rotation range is corrected based on the amount . 内燃機関に噴射するための高圧燃料が蓄圧されるコモンレールと、吸入調量弁により調量された燃料を加圧して上記コモンレールに送出する燃料供給ポンプと、上記吸入調量弁の駆動を制御することにより上記コモンレールの圧力を制御する制御手段を備え、上記制御手段が、現在の運転条件が予め設定された複数の回転領域のいずれに属するかを判定する領域判定手段と、各回転領域において、上記吸入調量弁への印加電流に対する実際の吐出量と予め設定された中央特性値とのズレ量を算出するズレ量算出手段と、該ズレ量算出手段において算出された複数のズレ量に基づいて、各回転領域における印加電流−吐出量特性線の傾きを補正する補正手段を有することを特徴とする内燃機関の燃料噴射制御装置。 A common rail for accumulating high-pressure fuel for injection into an internal combustion engine, a fuel supply pump that pressurizes fuel metered by a suction metering valve and sends it to the common rail, and controls the drive of the suction metering valve Control means for controlling the pressure of the common rail thereby, the control means in which to determine which of the plurality of rotation areas preset the current operating conditions belong to each rotation area, A deviation amount calculating means for calculating a deviation amount between an actual discharge amount with respect to an applied current to the suction metering valve and a preset central characteristic value, and a plurality of deviation amounts calculated by the deviation amount calculating means. An internal combustion engine fuel injection control device comprising correction means for correcting an inclination of an applied current-discharge amount characteristic line in each rotation region . 上記ズレ量算出手段は、現在の運転条件が急加速・ 急減速・ フリーアクセル時を除く走行条件である時に、各回転領域の代表回転数における中央特性を用いて上記ズレ量を算出する請求項3記載の内燃機関の燃料噴射制御装置。 The deviation amount calculating means calculates the deviation amount by using a central characteristic at a representative rotation speed in each rotation region when a current operation condition is a traveling condition excluding sudden acceleration / deceleration / free accelerator. A fuel injection control device for an internal combustion engine according to claim 3. 上記補正手段が、各回転領域において上記ズレ量を多点サンプリングし、直線近似することにより、各回転領域における印加電流−吐出量特性線の傾きズレ量を算出する請求項3または4記載の内燃機関の燃料噴射制御装置。 The internal combustion engine according to claim 3 or 4, wherein the correction means calculates an inclination deviation amount of an applied current-discharge amount characteristic line in each rotation region by sampling the deviation amount in each rotation region at a plurality of points and performing linear approximation. Engine fuel injection control device. 上記ズレ量算出手段は、上記コモンレールの圧力制御におけるフィードバック量を基に上記ズレ量を算出する請求項3ないし5のいずれか記載の内燃機関の燃料噴射制御装置。 6. The fuel injection control device for an internal combustion engine according to claim 3, wherein the deviation amount calculating means calculates the deviation amount based on a feedback amount in the pressure control of the common rail . 上記制御手段は、各回転領域において、上記吸入調量弁の実際の印加電流−吐出量特性と予め設定された中央特性との電流方向のズレ量を算出する電流方向学習手段を有している請求項3ないし6のいずれか記載の内燃機関の燃料噴射制御装置。 The control means includes current direction learning means for calculating a deviation amount in the current direction between the actual applied current-discharge amount characteristic of the suction metering valve and a preset central characteristic in each rotation region. The fuel injection control device for an internal combustion engine according to any one of claims 3 to 6 .
JP2004016768A 2003-03-10 2004-01-26 Fuel injection control device for internal combustion engine Expired - Fee Related JP4363197B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004016768A JP4363197B2 (en) 2003-03-10 2004-01-26 Fuel injection control device for internal combustion engine
DE200410011439 DE102004011439B4 (en) 2003-03-10 2004-03-09 Control system for fuel injection of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063119 2003-03-10
JP2004016768A JP4363197B2 (en) 2003-03-10 2004-01-26 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004293540A JP2004293540A (en) 2004-10-21
JP4363197B2 true JP4363197B2 (en) 2009-11-11

Family

ID=32964928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016768A Expired - Fee Related JP4363197B2 (en) 2003-03-10 2004-01-26 Fuel injection control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4363197B2 (en)
DE (1) DE102004011439B4 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501776B2 (en) * 2005-05-20 2010-07-14 株式会社デンソー Control device for fuel supply system
JP2006336482A (en) * 2005-05-31 2006-12-14 Denso Corp Fuel injection device for internal combustion engine
JP4424275B2 (en) * 2005-07-14 2010-03-03 株式会社デンソー Fuel injection control device for internal combustion engine
JP4577165B2 (en) * 2005-09-08 2010-11-10 株式会社デンソー Abnormality diagnosis device for fuel injection device
JP4265659B2 (en) 2007-01-29 2009-05-20 株式会社デンソー Fuel injection pressure control device
JP4621951B2 (en) * 2007-05-28 2011-02-02 株式会社デンソー COMMON RAIL TYPE FUEL INJECTION DEVICE AND METHOD FOR COMPENSATION OF PRESSURE CHARACTERISTICS OF HIGH PRESSURE PUMP
JP4650458B2 (en) * 2007-06-27 2011-03-16 株式会社デンソー Supply pump controller
JP5218260B2 (en) * 2009-05-07 2013-06-26 株式会社デンソー Fuel injection control device
JP5310464B2 (en) * 2009-10-14 2013-10-09 株式会社デンソー Fuel injection device
DE102009046783A1 (en) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Method and device for controlling a quantity control valve
JP5511406B2 (en) * 2010-01-27 2014-06-04 ボッシュ株式会社 Metering valve drive control method and common rail fuel injection control device in common rail fuel injection control device
JP5584098B2 (en) * 2010-11-15 2014-09-03 ボッシュ株式会社 Pump discharge flow rate learning control processing device and accumulator fuel injection control device
JP5760695B2 (en) * 2011-05-27 2015-08-12 株式会社デンソー Accumulated fuel injection system
JP5895822B2 (en) * 2012-11-09 2016-03-30 株式会社デンソー Discharge correction device for flow control valve
CN111984053B (en) * 2020-08-24 2022-07-29 三一重机有限公司 Current compensation method and device for pressure reducing valve, electronic equipment and storage medium
CN115288869A (en) * 2022-09-19 2022-11-04 一汽解放汽车有限公司 Variable injection rate system, injection method and engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240673B2 (en) * 1999-09-09 2009-03-18 株式会社デンソー Fuel injection device

Also Published As

Publication number Publication date
DE102004011439B4 (en) 2015-03-26
JP2004293540A (en) 2004-10-21
DE102004011439A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4363197B2 (en) Fuel injection control device for internal combustion engine
JP4434097B2 (en) Accumulated fuel injection control device
JP4492664B2 (en) Fuel supply amount estimation device and fuel pressure injection system
US7664592B2 (en) Fuel injection control apparatus
US20070051340A1 (en) Fuel injection system monitoring abnormal pressure in inlet of fuel pump
EP2128416A1 (en) A method and system for controlling a high pressure pump, particularly for a diesel engine fuel injection system
JPH1089090A (en) Hydraulic actuation type electronic controlled fuel injection device, oil viscosity measuring device, and oil viscosity measuring method
JP4466499B2 (en) Fuel injection control device for internal combustion engine
JP2009138593A (en) Accumulating type fuel injection device
JP3901073B2 (en) Accumulated fuel injection system
JP2000282929A (en) Fuel injection device
JP4424275B2 (en) Fuel injection control device for internal combustion engine
JP2005256703A (en) Accumulator fuel injection device
JP4513895B2 (en) Fuel injection system control device
JP4407427B2 (en) Fuel injection control device for internal combustion engine
JP3982516B2 (en) Fuel injection device for internal combustion engine
JP5294510B2 (en) Control device and control method for fuel injection device
JP4955601B2 (en) Method for driving pressure control solenoid valve in common rail fuel injection control device and common rail fuel injection control device
JP4329653B2 (en) Accumulated fuel injection system
JP2005325779A (en) Accumulator fuel injection device for diesel engine
JP7419143B2 (en) Fuel injection control device and control method for the fuel injection control device
JP6345415B2 (en) Accumulated fuel injection control device and control method of accumulator fuel injection control device
JPH11257191A (en) Variable displacement high-pressure pump
JP5760695B2 (en) Accumulated fuel injection system
JP4214907B2 (en) Accumulated fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees