JP4358033B2 - Crystal growth equipment - Google Patents

Crystal growth equipment Download PDF

Info

Publication number
JP4358033B2
JP4358033B2 JP2004154588A JP2004154588A JP4358033B2 JP 4358033 B2 JP4358033 B2 JP 4358033B2 JP 2004154588 A JP2004154588 A JP 2004154588A JP 2004154588 A JP2004154588 A JP 2004154588A JP 4358033 B2 JP4358033 B2 JP 4358033B2
Authority
JP
Japan
Prior art keywords
unit
growing
weighing
crystal
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154588A
Other languages
Japanese (ja)
Other versions
JP2005335983A (en
Inventor
友也 岩橋
孝友 佐々木
勇介 森
史朗 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004154588A priority Critical patent/JP4358033B2/en
Publication of JP2005335983A publication Critical patent/JP2005335983A/en
Application granted granted Critical
Publication of JP4358033B2 publication Critical patent/JP4358033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、いわゆるナトリウムフラックス法を用いて窒化ガリウムの単結晶を育成するために特に好適に用いられる結晶育成装置に関する。   The present invention relates to a crystal growth apparatus particularly preferably used for growing a gallium nitride single crystal using a so-called sodium flux method.

現在、窒化ガリウム(GaN)系デバイスは、同種の基板上に作製することが望ましいが、その基板が存在しない為、主としてサファイアなどの異種基板を用いて、MOCVD法(有機金属化学気相成長法)や、MBE法(分子線結晶成長法)等を用いて育成が行なわれている。しかしながら、サファイア等の基板とGaNとの格子定数や熱膨張係数が大きく異なる為、GaN系デバイス内部に多くの格子欠陥が発生する。このため、GaN系デバイスの特性(寿命、発光効率等)が低下するという問題点がある。   At present, gallium nitride (GaN) -based devices are preferably fabricated on the same type of substrate, but since the substrate does not exist, the MOCVD method (metal organic chemical vapor deposition method) is mainly used using a different substrate such as sapphire. ), MBE method (molecular beam crystal growth method) or the like. However, since the lattice constant and the thermal expansion coefficient of a sapphire substrate and GaN differ greatly, many lattice defects are generated inside the GaN-based device. For this reason, there exists a problem that the characteristics (a lifetime, luminous efficiency, etc.) of a GaN-type device fall.

この問題点を解決するには、GaN基板上に、GaN系のデバイスを作製するホモエピタキシャル成長が望ましい。そこで、従来では、その基板となるGaN単結晶を得るために、ガリウムと窒素ガスとを直接反応させることが行なわれている(たとえば、非特許文献1参照)。しかしながら、この方法では、約1300〜1600℃、約10000−1700気圧という過酷な条件を必要とする。   In order to solve this problem, homoepitaxial growth for producing a GaN-based device on a GaN substrate is desirable. Therefore, conventionally, in order to obtain a GaN single crystal serving as the substrate, gallium and nitrogen gas are directly reacted (see, for example, Non-Patent Document 1). However, this method requires severe conditions of about 1300 to 1600 ° C. and about 10,000 to 1700 atm.

一方、1997年に、ナトリウムフラックス中でGaN単結晶を育成する技術が開発された(たとえば、特許文献1参照)。以下、これをナトリウムフラックス法という。この方法によれば、育成温度が約600〜800℃と大幅に下げられるとともに、育成圧力も約45気圧と大幅に下げることができる。その後も、たとえば特許文献2で示すように、窒素ガスをアンモニアに置換えることで反応速度を向上させたり、特許文献3で示すように、窒素ガスを窒素を含む気体と不活性気体との混合気体とすることで、アルカリ金属の蒸発を抑えつつ、窒素溶解度の制御性を向上させるなどの改良が行われている。
J. Phys. chem. Solids, 1998, 56, 639 米国特許公報第5868837号明細書 特開2002−293696号公報 特開2003−238296号公報
On the other hand, in 1997, a technique for growing a GaN single crystal in a sodium flux was developed (see, for example, Patent Document 1). Hereinafter, this is called a sodium flux method. According to this method, the growth temperature can be greatly reduced to about 600 to 800 ° C., and the growth pressure can be greatly reduced to about 45 atmospheres. After that, for example, as shown in Patent Document 2, the reaction rate is improved by substituting nitrogen gas with ammonia, or as shown in Patent Document 3, nitrogen gas is mixed with a gas containing nitrogen and an inert gas. By using gas, improvements such as improving the controllability of nitrogen solubility while suppressing evaporation of alkali metals have been made.
J. et al. Phys. chem. Solids, 1998, 56, 639 US Pat. No. 5,868,837 JP 2002-293696 A JP 2003-238296 A

ところが、このナトリウムフラックス法のフラックス成分である金属Naは、空気中の酸素や水分で容易に酸化し、このフラックス成分が酸化したり、育成部に酸素や水分が入り込んだりすると、結晶の成長を阻害する。上述の育成方法では、前述の育成方法のように直接反応させる場合に比べて、育成圧力を大幅に下げることができたとはいえ、秤量部において、前記金属Naを、たとえば油に浸漬されて保存されている状態から、前記油を落し、酸化している表面を削って、前記III族金属と秤量するにあたって、その際に酸化を防いでも、育成部に搬入する際に酸化してしまい、黒く着色した結晶しか得られないという問題がある。   However, the metal Na, which is a flux component of this sodium flux method, is easily oxidized by oxygen and moisture in the air. If this flux component is oxidized or oxygen or moisture enters the growing part, crystal growth will occur. Inhibit. In the above-described growth method, the growth pressure can be greatly reduced as compared with the case where the reaction is performed directly as in the above-described growth method, but the metal Na is immersed in oil and stored in the weighing unit, for example. From the state where the oil is dropped, the oxidized surface is shaved and weighed with the Group III metal, and even if it is prevented from oxidation at that time, it will be oxidized when it is brought into the growing section, resulting in blackening There is a problem that only colored crystals can be obtained.

また、育成部の加熱容器(るつぼ)に材料を補充しようとすると、高温高圧の雰囲気を解除しなければならず、実質的に連続した育成は困難であり、得られる結晶も、るつぼの底に堆積した僅かな塊にしかならないという問題もある。   In addition, when trying to replenish the heating vessel (crucible) of the growing section, the atmosphere of high temperature and high pressure must be released, and it is difficult to grow substantially continuously, and the resulting crystals are also attached to the bottom of the crucible. There is also a problem that only a small amount of accumulated mass is formed.

本発明の目的は、高品質で大きな結晶を育成することができる結晶育成装置を提供することである。   An object of the present invention is to provide a crystal growth apparatus capable of growing large crystals with high quality.

本発明の結晶育成装置は、アルカリ金属またはアルカリ土類金属の少なくとも1つとIII族金属とを含む出発原料の質量を計測する秤量部と、前記出発原料を溶融して成る混合融液に窒素原子を含ませた融液を反応させてIII族窒化物の結晶を成長させる育成部とを備えた結晶育成装置において、前記秤量部は、脱酸素雰囲気中で秤量を行うとともに、該秤量部と前記育成部との間に、内部を、秤量中の環境に適合させて前記秤量部から出発原料を受入れ、育成中の環境に適合させて前記育成部へ前記出発原料を受渡す雰囲気調整部を介在することを特徴とする。   The crystal growth apparatus of the present invention includes a weighing unit for measuring the mass of a starting material containing at least one of an alkali metal or an alkaline earth metal and a group III metal, and a nitrogen atom in a mixed melt obtained by melting the starting material. A crystal growth apparatus comprising a growth unit that causes a group III nitride crystal to grow by reacting a melt containing the same, wherein the weighing unit weighs in a deoxygenated atmosphere, and the weighing unit and the weighing unit Intervene between the growth unit and the atmosphere adjustment unit that adapts the interior to the environment being weighed and accepts the starting material from the weighing unit, and delivers the starting material to the growing unit according to the environment that is being grown It is characterized by doing.

上記の構成によれば、ナトリウム(Na)などのアルカリ金属またはカルシウム(Ca)などのアルカリ土類金属の少なくとも1つと、ガリウム(Ga)などのIII族金属とを含む出発原料を溶融して成る混合融液に窒素原子を含ませた融液と、種結晶とを反応させて、または前記融液中に析出した結晶を種として、窒化ガリウム(GaN)などのIII族窒化物の単結晶を得るようにした結晶育成装置において、アルカリ金属またはアルカリ土類金属が、たとえば油に浸漬されて保存されている状態から、前記油を落し、酸化している表面を削って、前記III族金属と秤量する常温の前記秤量部と、育成中には高温高圧、たとえば、いわゆるナトリウム(Na)フラックス法では、約600〜800℃、約45気圧にもなる前記育成部との間に、雰囲気調整部を介在する。さらに、前記秤量部は、脱酸素雰囲気中で秤量を行う。そして、前記雰囲気調整部は、その内部を、前記秤量中の脱酸素雰囲気の環境に適合させて前記出発原料を受入れ、前記育成中の環境に適合させて前記出発原料を受渡す。   According to the above configuration, the starting material containing at least one of an alkali metal such as sodium (Na) or an alkaline earth metal such as calcium (Ca) and a group III metal such as gallium (Ga) is melted. A single crystal of a group III nitride such as gallium nitride (GaN) is prepared by reacting a melt containing nitrogen atoms with a mixed melt and a seed crystal, or using a crystal precipitated in the melt as a seed. In the crystal growth device obtained, the alkali metal or alkaline earth metal is immersed in the oil and stored, for example, the oil is dropped, the oxidized surface is shaved, and the group III metal and There is an atmosphere between the weighing part at room temperature to be weighed and the growing part at a high temperature and high pressure during growth, for example, the so-called sodium (Na) flux method, which is about 600 to 800 ° C. and about 45 atm. Interposed a gas adjustment section. Further, the weighing unit performs weighing in a deoxygenated atmosphere. And the said atmosphere adjustment part accepts the said starting material by adapting the inside to the environment of the deoxygenation atmosphere in the said weighing, and delivers the said starting material according to the said environment under growing.

したがって、出発原料や育成部分を大気にさらすことなく出発原料を搬入できることで、フラックス成分のNaやCaの酸化や、育成部に大気中の酸素や水分が混入することを防ぐことができ、酸素によって結晶成長が阻害されることはない。これによって、高品質な結晶を育成できるとともに、得られる結晶の収率も増加することができる。   Therefore, by allowing the starting material to be carried in without exposing the starting material and the growing part to the atmosphere, it is possible to prevent the oxidation of the flux components Na and Ca and the mixing of oxygen and moisture in the atmosphere into the growing part. The crystal growth is not hindered. This makes it possible to grow high quality crystals and increase the yield of the crystals obtained.

空気中で秤量した場合、黒く着色した結晶が得られていたが、たとえば装置全体を酸素濃度20%以下かつ、水分濃度30%以下で密閉すると、透明の結晶が得られ、収率が10倍以上になり、成長速度の増加を実現でき、またGaNを育成するために必要な最低圧力が低下し、プロセスを簡略化することができる。   When weighed in air, black colored crystals were obtained. However, for example, when the entire apparatus was sealed at an oxygen concentration of 20% or less and a moisture concentration of 30% or less, transparent crystals were obtained, and the yield was 10 times. As described above, the growth rate can be increased, and the minimum pressure required for growing GaN can be reduced, thereby simplifying the process.

また、連続した育成が可能であり、育成部では、出発原料に窒素原子を含ませた混合融液を貯留する加熱容器から種結晶を引き上げてゆくことで、大きな塊を得ることができる。   Further, continuous growth is possible, and in the growth section, a large lump can be obtained by pulling up the seed crystal from a heating container that stores a mixed melt containing nitrogen atoms in the starting material.

また、本発明の結晶育成装置では、前記雰囲気調整部は、前記秤量部側および育成部側のそれぞれに設けられ、該雰囲気調整部の内部とそれらの秤量部および育成部の内部とを連通/遮断する耐熱・耐圧蓋と、窒素原子を含むガスを供給する供給部と、前記秤量部から供給される前記出発原料を溶融して前記出発原料の混合溶液を得るとともに、前記ガスを混合させる加熱容器と、内部の雰囲気を、前記秤量部における秤量中の環境および前記育成部における育成中の環境に略適合させることができる雰囲気調整手段とを備えて構成されることを特徴とする。   In the crystal growing apparatus of the present invention, the atmosphere adjusting unit is provided on each of the weighing unit side and the growing unit side, and communicates the inside of the atmosphere adjusting unit with the inside of the weighing unit and the growing unit. A heat-resistant / pressure-resistant lid that shuts off, a supply unit that supplies a gas containing nitrogen atoms, and heating that melts the starting material supplied from the weighing unit to obtain a mixed solution of the starting material and mixes the gas It is characterized by comprising a container and an atmosphere adjusting means that can substantially match the internal atmosphere with the environment during weighing in the weighing section and the environment during growing in the growing section.

上記の構成によれば、前記雰囲気調整部は、ガスボンベ等の窒素ガスやアンモニアガスなどの窒素原子を含むガスを供給可能な設備と、リーク弁やロータリーポンプ等の真空設備とを完備し、個別に制御可能な耐熱・耐圧蓋を開閉することで、秤量部と育成部との圧力差のある空間を接続することができる。さらに、前記秤量部から供給された出発原料を、そのまま育成部へ受渡すのではなく、この雰囲気調整部は、前記出発原料を溶融して、その混合溶液を得るとともに、それに前記ガスを混合させる加熱容器を備えている。   According to said structure, the said atmosphere adjustment part is fully equipped with the equipment which can supply gas containing nitrogen atoms, such as nitrogen gas, such as gas cylinders, and ammonia gas, and vacuum equipment, such as a leak valve and a rotary pump, By opening and closing the controllable heat-resistant / pressure-resistant lid, a space having a pressure difference between the weighing unit and the growing unit can be connected. Furthermore, the starting material supplied from the weighing unit is not directly delivered to the growing unit, but the atmosphere adjusting unit melts the starting material to obtain a mixed solution and mixes the gas with the starting material. A heating vessel is provided.

したがって、窒素原子を出発原料に溶かした形で育成部に運ぶことができ、前記連続育成を良好に行うことができる。また、複数の原料を、時間をずらして導入することが可能になり、半導体発光素子を作成するときなどは、一度の育成で、たとえばn型層、発光層、p型層を連続して作製することが可能となる。   Therefore, nitrogen atoms can be transported to the growing part in a form dissolved in the starting material, and the continuous growth can be performed satisfactorily. In addition, a plurality of raw materials can be introduced at different times, and when a semiconductor light emitting device is produced, for example, an n-type layer, a light-emitting layer, and a p-type layer are continuously produced by one growth. It becomes possible to do.

さらにまた、本発明の結晶育成装置では、前記出発原料は、ナトリウム、カルシウムまたはリチウムの少なくとも1つと、ガリウムとであることを特徴とする。   Furthermore, in the crystal growth apparatus of the present invention, the starting material is at least one of sodium, calcium or lithium and gallium.

上記の構成によれば、前記アルカリ金属としてリチウム(Li)、ナトリウム(Na)を用い、アルカリ土類金属としてカルシウム(Ca)を用い、それらのうちの少なくとも1つと、III族金属としてガリウム(Ga)を用い、いわゆるナトリウム(Na)フラックス法などによって窒化ガリウム(GaN)を育成する。   According to the above configuration, lithium (Li) or sodium (Na) is used as the alkali metal, calcium (Ca) is used as the alkaline earth metal, at least one of them, and gallium (Ga) as the group III metal. ) Is used to grow gallium nitride (GaN) by a so-called sodium (Na) flux method or the like.

したがって、本発明が特に効果的である。   Therefore, the present invention is particularly effective.

また、本発明の結晶育成装置では、前記雰囲気調整部および育成部は、1つの秤量部に対して複数並列に設けられていることを特徴とする。   In the crystal growth apparatus of the present invention, a plurality of the atmosphere adjustment units and the growth units are provided in parallel with respect to one weighing unit.

上記の構成によれば、前記雰囲気調整部および育成部では、加熱容器を用いて、出発原料を溶融させるとともに、それにガスを混合させており、上記のような油落としなどの出発原料の前処理や秤量を行う秤量部とは、処理に要する時間が異なる。そこで、この秤量部を共用として、雰囲気調整部および育成部を複数並列に設けることで、単位スペース当りの収率を増加することができる。   According to the above configuration, the atmosphere adjusting unit and the growing unit use a heating container to melt the starting material and mix the gas with it, and pretreatment of the starting material such as oil dropping as described above The time required for processing is different from the weighing unit that performs weighing. Thus, the yield per unit space can be increased by providing the weighing unit in common and providing a plurality of atmosphere adjusting units and growing units in parallel.

また、並行して複数種類の結晶を育成でき、たとえばn型育成部、p型育成部と、用途を分けて半導体素子を作製することも可能となる。   In addition, it is possible to grow a plurality of types of crystals in parallel. For example, it is possible to fabricate a semiconductor element separately for an n-type growing part and a p-type growing part.

さらにまた、本発明の結晶育成装置では、前記育成部は、前記成長する結晶の種となる種結晶の回転と引き上げとの少なくとも一方を可能な駆動機構を有することを特徴とする。 Furthermore, in the crystal growing apparatus of the present invention, the growing section has a drive mechanism capable of at least one of rotation and pulling up of a seed crystal serving as a seed of the growing crystal .

上記の構成によれば、結晶育成中にGaNなどの結晶を回転させることで、結晶周辺の溶液を攪拌する作用が生じ、結晶成長において重要な溶液の状態を均一にすることができ、結晶の品質を向上することができるとともに、安定に種結晶を成長させることができる。また、GaNなどの結晶を引き上げることで、結晶サイズを制御することができるとともに、前記の連続育成によって、大きな塊を得ることができる。   According to the above configuration, by rotating a crystal such as GaN during crystal growth, an action of stirring the solution around the crystal occurs, and the state of the solution important in crystal growth can be made uniform. The quality can be improved and the seed crystal can be grown stably. Further, by pulling up a crystal such as GaN, the crystal size can be controlled, and a large lump can be obtained by the continuous growth.

また、本発明の結晶育成装置では、前記育成部は、加熱容器内の出発原料の混合溶液の攪拌を行う第1の攪拌手段を有することを特徴とする。   In the crystal growth apparatus of the present invention, the growth part has a first stirring means for stirring the mixed solution of the starting materials in the heating vessel.

上記の構成によれば、育成部には、窒素を溶かし込んだ出発原料の混合溶液を溜めており、種結晶の引き上げが行われる加熱容器内があり、第1の攪拌手段がその混合溶液の攪拌を行うことで、溶液の状態を均一にすることができ、結晶の品質を向上することができるとともに、安定に種結晶を成長させることができる。また、前記雰囲気調整部にも、出発原料を溶融し、窒素を溶かし込む加熱容器が設けられており、これら原料の連続投入を可能にした構成では、投入された原料と、育成部側にあった原料とを、速やかに均一に混ぜ合わせることができ、特に効果的である。   According to the above configuration, the growing portion stores a mixed solution of starting materials in which nitrogen is dissolved, and there is an inside of a heating vessel in which the seed crystal is pulled up, and the first stirring means is used for the mixed solution. By stirring, the state of the solution can be made uniform, the quality of the crystal can be improved, and the seed crystal can be grown stably. In addition, the atmosphere adjusting unit is also provided with a heating vessel for melting the starting material and dissolving nitrogen, and in a configuration in which these materials can be continuously charged, there is a supply between the charged material and the growing unit side. The raw materials can be mixed quickly and uniformly, which is particularly effective.

さらにまた、本発明の結晶育成装置では、前記雰囲気調整部は、前記加熱容器内の出発原料の混合溶液を攪拌する第2の攪拌手段を有することを特徴とする。   Furthermore, in the crystal growth apparatus of the present invention, the atmosphere adjusting unit includes a second stirring unit that stirs the mixed solution of the starting materials in the heating container.

上記の構成によれば、前記雰囲気調整部において、加圧によって混合溶液に窒素を溶かし込むと、溶液中の窒素溶解量に大きな差が生じるのに対して、溶液を攪拌することで、溶液中のフラックスや原料に加えて、それらに溶け込んだ窒素原子の濃度をより均一にすることができるとともに、窒素の溶解速度を上げることもできる。   According to the above configuration, in the atmosphere adjusting unit, when nitrogen is dissolved in the mixed solution by pressurization, a large difference occurs in the amount of dissolved nitrogen in the solution. In addition to the flux and raw material, the concentration of nitrogen atoms dissolved therein can be made more uniform, and the dissolution rate of nitrogen can be increased.

本発明の結晶育成装置は、以上のように、ナトリウム(Na)などのアルカリ金属またはカルシウム(Ca)などのアルカリ土類金属の少なくとも1つと、ガリウム(Ga)などのIII族金属とを含む出発原料を溶融して成る混合融液に窒素原子を含ませた融液を反応させて、窒化ガリウム(GaN)などのIII族窒化物の単結晶を得るようにした結晶育成装置において、前記秤量部は、脱酸素雰囲気中で秤量を行うとともに、該秤量部と前記育成部との間に、内部を、秤量中の環境に適合させて前記秤量部から出発原料を受入れ、育成中の環境に適合させて前記育成部へ前記出発原料を受渡す雰囲気調整部を介在する。   As described above, the crystal growth apparatus of the present invention includes at least one of an alkali metal such as sodium (Na) or an alkaline earth metal such as calcium (Ca) and a group III metal such as gallium (Ga). In the crystal growth apparatus in which a melt containing nitrogen atoms is reacted with a mixed melt formed by melting raw materials to obtain a group III nitride single crystal such as gallium nitride (GaN), the weighing unit Weighs in a deoxygenated atmosphere, and adapts the inside between the weighing unit and the growing unit to the environment during weighing, accepts the starting material from the weighing unit, and adapts to the growing environment And an atmosphere adjusting unit for delivering the starting material to the growing unit.

それゆえ、出発原料や育成部分を大気にさらすことなく出発原料を搬入でき、高品質な結晶を育成できるとともに、得られる結晶の収率も増加することができる。また、連続した育成が可能であり、育成部では、出発原料に窒素原子を含ませた混合融液を貯留する加熱容器から種結晶を引き上げてゆくことで、大きな塊を得ることができる。   Therefore, it is possible to carry in the starting material without exposing the starting material and the growing part to the atmosphere, and it is possible to grow high quality crystals and increase the yield of the obtained crystals. Further, continuous growth is possible, and in the growth section, a large lump can be obtained by pulling up the seed crystal from a heating container that stores a mixed melt containing nitrogen atoms in the starting material.

[実施の形態1]
図1は、本発明の実施の一形態に係る結晶育成装置の全体の概略的構成を示す図である。本発明の結晶育成装置は、大略的に、秤量部lと、育成部2と、それらを連結する本発明に特有の雰囲気調整部3とを備えて構成される。
[Embodiment 1]
FIG. 1 is a diagram showing an overall schematic configuration of a crystal growth apparatus according to an embodiment of the present invention. The crystal growing apparatus of the present invention is generally configured to include a weighing unit l, a growing unit 2, and an atmosphere adjusting unit 3 unique to the present invention for connecting them.

前記秤量部1は、開閉扉4を開閉することで外部に連通/遮蔽されるようになっており、本発明では、この秤量部1には、パイプ5を介して、図示しないガスボンベから、窒素ガスまたはアンモニアガスもしくはそれらの混合ガスが導入可能となっているとともに、パイプ6から、リーク弁やロータリーポンプ等の真空機器7を用いて雰囲気を置換できるようになっている。前記開閉扉4から搬入されたフラックスとしてのナトリウム(Na)やリチウム(Li)などのアルカリ金属またはカルシウム(Ca)などのアルカリ土類金属の少なくとも1つや、ガリウム(Ga)などのIII族金属は、この秤量部1の秤量器8において秤量され、規定の量ずつ育成部2へ供給される。   The weighing unit 1 is communicated / shielded to the outside by opening and closing the open / close door 4. In the present invention, the weighing unit 1 is connected to a nitrogen gas from a gas cylinder (not shown) via a pipe 5. Gas, ammonia gas or a mixed gas thereof can be introduced, and the atmosphere can be replaced from the pipe 6 by using a vacuum device 7 such as a leak valve or a rotary pump. At least one of an alkali metal such as sodium (Na) and lithium (Li) or an alkaline earth metal such as calcium (Ca) as a flux carried in from the open / close door 4 and a group III metal such as gallium (Ga) These are weighed by the weighing device 8 of the weighing unit 1 and supplied to the growing unit 2 by a specified amount.

たとえば、金属Naの場合、油に浸漬されて保存されている状態でこの秤量部1内に搬入され、前記油を落し、酸化している表面を削って、前記秤量器8で秤量される。その際、搬入時の開閉扉4の開放によって、略常温常圧となっていたこの秤量部1内は、前記窒素ガスの導入や真空機器7による減圧などで、脱酸素雰囲気とされる。好ましくは、酸素濃度20%以下かつ、水分濃度30%以下である。   For example, in the case of metallic Na, it is carried into the weighing unit 1 in a state where it is immersed and stored in oil, the oil is dropped, the oxidized surface is shaved and weighed by the weigher 8. At this time, the inside of the weighing unit 1, which has become approximately room temperature and normal pressure due to the opening of the opening / closing door 4 at the time of carrying in, is brought into a deoxygenated atmosphere by introduction of the nitrogen gas or decompression by the vacuum device 7. Preferably, the oxygen concentration is 20% or less and the water concentration is 30% or less.

そして、本発明の秤量部1にはまた、前記雰囲気調整部3との間に、耐熱・耐圧蓋9が設けられている。この耐熱・耐圧蓋9を開放することで、秤量部1の内部と雰囲気調整部3の内部とが連通する。この雰囲気調整部3内には、前記秤量器8で秤量され、供給されてきた出発原料を、後述するように溶解する加熱容器11が設けられている。この雰囲気調整部3にも、パイプ12を介して、窒素原子を含むガスを供給する供給部である図示しないガスボンベから、前記窒素ガスまたはアンモニアガスもしくはそれらの混合ガスが導入可能となっているとともに、パイプ13から、雰囲気調整手段であるリーク弁やロータリーポンプ等の真空機器14を用いて新しいガスを導入することで、雰囲気を置換できるようになっている。しかしながら、この雰囲気調整部3の容器は、耐熱・耐圧容器から成り、後述するように育成部2の雰囲気に適応できるように、前記ガスボンベや真空機器14は、高温高圧の雰囲気を作成可能な能力を有する。この雰囲気調整部3と前記育成部2との間には、耐熱・耐圧蓋19が設けられており、この耐熱・耐圧蓋19を開放することで、育成部2の内部と雰囲気調整部3の内部とが連通する。 The weighing unit 1 of the present invention is provided with a heat-resistant / pressure-resistant lid 9 between the weighing unit 1 and the atmosphere adjusting unit 3. By opening the heat-resistant / pressure-resistant lid 9, the inside of the weighing unit 1 and the inside of the atmosphere adjusting unit 3 communicate with each other. In the atmosphere adjusting unit 3, a heating container 11 for dissolving the starting raw material weighed and supplied by the weigher 8 as described later is provided. The atmosphere adjusting unit 3 can also introduce the nitrogen gas, ammonia gas, or a mixed gas thereof from a gas cylinder (not shown) that is a supply unit that supplies a gas containing nitrogen atoms via the pipe 12. The atmosphere can be replaced by introducing a new gas from the pipe 13 by using a vacuum device 14 such as a leak valve or a rotary pump which is an atmosphere adjusting means. However, containers of atmosphere adjusting section 3 of this consists heat-resistant container, so that it can adapt to the atmosphere of the breeding unit 2 as will be described later, the gas cylinder and vacuum equipment 14 can create the atmosphere of high temperature and high pressure Have the ability. Between the atmosphere adjusting unit 3 of this with the growing portion 2 is provided with heat and pressure cap 19, the heat and pressure lid 19 by opening the internal and atmospheric adjustment portion of the development unit 2 3 communicates with the inside.

前記育成部2内には、前記雰囲気調整部3の加熱容器11において溶解され、高圧によって窒素原子が溶け込んだ出発原料が供給される加熱容器21が設けられている。この育成部2にも、パイプ22を介して、図示しないガスボンベから、前記窒素ガスまたはアンモニアガスもしくはそれらの混合ガスが導入可能となっているとともに、パイプ23から、リーク弁やロータリーポンプ等の真空機器24を用いて雰囲気を置換できるようになっている。この育成部2の容器も、耐熱・耐圧容器から成り、たとえば、いわゆるナトリウムNaフラックス法では、約600〜800℃、約45気圧の高温高圧の雰囲気を作成可能となっている。   A heating vessel 21 is provided in the growing unit 2 to which a starting material that is dissolved in the heating vessel 11 of the atmosphere adjusting unit 3 and into which nitrogen atoms are dissolved by high pressure is supplied. Nitrogen gas, ammonia gas, or a mixed gas thereof can be introduced into the growing unit 2 from a gas cylinder (not shown) via a pipe 22, and a vacuum such as a leak valve or a rotary pump is supplied from the pipe 23. The atmosphere can be replaced by using the device 24. The container of the growing section 2 is also composed of a heat-resistant / pressure-resistant container. For example, in the so-called sodium Na flux method, a high-temperature and high-pressure atmosphere of about 600 to 800 ° C. and about 45 atm can be created.

このように構成することで、秤量部1は、脱酸素雰囲気中で秤量を行い、雰囲気調整部3は、秤量中の環境に適合した状態となると耐熱・耐圧蓋9を開閉して前記秤量部1から出発原料を受入れ、その後、温度、圧力を所定の値に設定して育成部2の育成中の環境に適合した状態とし、出発原料を混合するとともに、出発原料に窒素原子を溶かし込み、混合溶液が所定の条件になると、耐熱・耐圧蓋19を開閉して育成部2へ前記出発原料を受渡しし、加熱容器21内に元からあった混合溶液に補充することができるWith this configuration, the weighing unit 1 performs weighing in a deoxygenated atmosphere, and the atmosphere adjusting unit 3 opens and closes the heat-resistant / pressure-resistant lid 9 when it is in a state suitable for the environment during weighing. The starting material is received from 1, and then the temperature and pressure are set to predetermined values so as to be suitable for the environment in which the growing unit 2 is growing. The starting material is mixed, and nitrogen atoms are dissolved in the starting material. When the mixed solution becomes a predetermined condition, it is possible to open and close the heat and pressure cap 19 to pass the starting material to the growing portion 2, to replenish the mixed solution was originally in the heating chamber 21.

これによって、たとえばGaNを、いわゆるNaフラックス法で作製する場合、装置全体を酸素濃度20%以下かつ、水分濃度30%以下で密閉することで、透明な結晶が得られ、収率が10倍以上になり、成長速度の増加を実現でき、またGaNを育成するために必要な最低圧力が低下し、プロセスを簡略化することができる。   Thus, for example, when GaN is produced by the so-called Na flux method, a transparent crystal is obtained by sealing the entire apparatus at an oxygen concentration of 20% or less and a water concentration of 30% or less, and the yield is 10 times or more. Thus, the growth rate can be increased, and the minimum pressure required for growing GaN can be reduced, thereby simplifying the process.

また、育成部2内を高温高圧にして、一旦、育成を開始した後も、任意に原料の補充が可能になる。これによって、連続した育成が可能になり、育成部2では、出発原料に窒素原子を含ませた混合融液を貯留する加熱容器21から種結晶を引き上げてゆくことで、大きな塊を得ることができるとともに、複数の原料を、時間をずらして導入することが可能になり、半導体発光素子を作成するときなどは、一度の育成で、たとえばn型層、発光層、p型層を連続して作製することが可能となる。さらにまた、雰囲気調整部3において、窒素原子を出発原料に溶かした形で育成部2に運ぶことができ、前記連続育成を良好に行うことができる。なお、前記種結晶としては、前記サファイア基板にMOCVD法で成長させた別途に設けるものや、混合融液から析出したものの何れであってもよい。   Moreover, even after the inside of the growing part 2 is set to a high temperature and a high pressure and the growth is once started, it is possible to arbitrarily replenish the raw material. As a result, continuous growth is possible, and the growth unit 2 can obtain a large lump by pulling up the seed crystal from the heating vessel 21 that stores the mixed melt containing nitrogen atoms in the starting material. In addition, it is possible to introduce a plurality of raw materials at different times. When a semiconductor light emitting device is produced, for example, an n-type layer, a light-emitting layer, and a p-type layer are continuously formed by a single growth. It can be produced. Furthermore, in the atmosphere adjusting unit 3, nitrogen atoms can be transported to the growing unit 2 in a form dissolved in the starting material, and the continuous growth can be performed satisfactorily. The seed crystal may be either a separately provided crystal grown on the sapphire substrate by MOCVD, or a crystal deposited from a mixed melt.

さらにまた、前記アルカリ金属としてナトリウム(Na)を用い、III族金属としてガリウム(Ga)を用い、いわゆるナトリウム(Na)フラックス法によって窒化ガリウム(GaN)を育成する場合、本発明が特に効果的である。   Furthermore, the present invention is particularly effective when sodium (Na) is used as the alkali metal, gallium (Ga) is used as the group III metal, and gallium nitride (GaN) is grown by a so-called sodium (Na) flux method. is there.

図2は、前記育成部2の具体的な一構成例を示す縦断面図である。育成部2内には、前述のように窒素原子を溶かし込んだフラックスと出発原料との混合溶液25を貯留する加熱容器21が設けられており、この加熱容器21には、種結晶26の回転と引き上げとの少なくとも一方が可能な駆動機構27が設けられている。これによって、結晶育成中に前記種結晶26を回転させることで、結晶周辺の溶液25を攪拌する作用が生じ、結晶成長において重要な溶液の状態を均一にすることができ、結晶の品質を向上することができるとともに、安定に種結晶26を成長させることができる。また、種結晶26を引き上げることで、結晶サイズを制御することができるとともに、前述の連続育成によって、大きな塊を得ることができる。   FIG. 2 is a longitudinal sectional view showing a specific configuration example of the growing unit 2. A heating vessel 21 for storing a mixed solution 25 of a flux in which nitrogen atoms are dissolved and a starting material as described above is provided in the growth unit 2, and the rotation of the seed crystal 26 is provided in the heating vessel 21. A drive mechanism 27 capable of at least one of lifting and lifting is provided. As a result, the seed crystal 26 is rotated during crystal growth to act to agitate the solution 25 around the crystal, so that the state of the solution important for crystal growth can be made uniform, and the quality of the crystal is improved. In addition, the seed crystal 26 can be stably grown. Further, by pulling up the seed crystal 26, the crystal size can be controlled, and a large lump can be obtained by the above-mentioned continuous growth.

また、前記加熱容器21には、出発原料の混合溶液25の攪拌を行う第1の攪拌手段28が設けられている。これによってもまた、溶液25の状態を均一にすることができ、結晶の品質を向上することができるとともに、安定に種結晶26を成長させることができる。また、前述のように原料の連続投入を行う場合には、投入された原料と、加熱容器21内にあった原料とを、速やかに均一に混ぜ合わせることができ、特に効果的である。   The heating vessel 21 is provided with first stirring means 28 for stirring the mixed solution 25 of the starting material. Also by this, the state of the solution 25 can be made uniform, the quality of the crystal can be improved, and the seed crystal 26 can be grown stably. In addition, when the raw materials are continuously charged as described above, the charged raw materials and the raw materials in the heating vessel 21 can be mixed quickly and uniformly, which is particularly effective.

図3は、前記雰囲気調整部3の具体的な一構成例を示す縦断面図である。前記雰囲気調整部3内には、前述のように秤量部1からフラックスと出発原料とを受入れる加熱容器11が設けられており、この加熱容器11にも、それらを溶解して得られた混合溶液15の攪拌を行う第2の攪拌手段18が設けられている。これによって、加圧によって混合溶液15に窒素を溶かし込むと、溶液15中の窒素溶解量に大きな差が生じるのに対して、溶液15を攪拌することで、溶液15中のフラックスや原料に加えて、それらに溶け込んだ窒素原子の濃度をより均一にすることができるとともに、窒素の溶解速度を上げることもできる。 FIG. 3 is a longitudinal sectional view showing a specific configuration example of the atmosphere adjusting unit 3. As described above, the atmosphere adjusting unit 3 is provided with the heating container 11 that receives the flux and the starting material from the weighing unit 1, and the heating container 11 is also a mixed solution obtained by dissolving them. A second stirring means 18 for performing 15 stirring is provided. As a result, when nitrogen is dissolved in the mixed solution 15 by pressurization, a large difference occurs in the amount of nitrogen dissolved in the solution 15. On the other hand, stirring the solution 15 adds it to the flux and raw material in the solution 15. Thus, the concentration of nitrogen atoms dissolved in them can be made more uniform, and the dissolution rate of nitrogen can be increased.

[実施の形態2]
図4は、本発明の実施の他の形態に係る結晶育成装置の全体の概略的構成を示す図である。この結晶育成装置は、前述の結晶育成装置に類似し、対応する部分には同一の参照符号またはそれに添字を付して示し、その説明を省略する。注目すべきは、この結晶育成装置では、1つの秤量部1aに対して、複数(図4では3つ)の育成部2a,2b,2cおよびそれに対応する雰囲気調整部3a,3b,3cが並列に設けられていることである。
[Embodiment 2]
FIG. 4 is a diagram showing an overall schematic configuration of a crystal growth apparatus according to another embodiment of the present invention. This crystal growth apparatus is similar to the above-described crystal growth apparatus, and corresponding portions are denoted by the same reference numerals or suffixes, and description thereof is omitted. It should be noted that in this crystal growth apparatus, a plurality of (three in FIG. 4) growth parts 2a, 2b, and 2c and corresponding atmosphere adjustment parts 3a, 3b, and 3c are arranged in parallel with respect to one weighing part 1a. Is provided.

上述のように、育成部2a,2b,2cおよび雰囲気調整部3a,3b,3cでは、加熱容器21,11を用いて、出発原料を溶融させるとともに、それにガスを混合させており、上記のような油落としなどの出発原料の前処理や秤量を行う秤量部1aとは、処理に要する時間が異なる。そこで、このように秤量部1aを共用として、育成部2a,2b,2cおよび雰囲気調整部3a,3b,3cを複数並列に設けることで、単位スペース当りの収率を増加することができる。   As described above, in the growing parts 2a, 2b, 2c and the atmosphere adjusting parts 3a, 3b, 3c, the heating raw materials 21 and 11 are used to melt the starting material and to mix the gas, as described above. The time required for the treatment is different from that of the weighing unit 1a that performs pre-treatment and weighing of the starting material such as oil removal. Thus, the yield per unit space can be increased by providing a plurality of growth parts 2a, 2b, 2c and a plurality of atmosphere adjustment parts 3a, 3b, 3c in common with the weighing part 1a.

また、並行して複数種類の結晶を育成でき、たとえばn型育成部、p型育成部と、用途を分けて半導体素子を作製することも可能となる。   In addition, it is possible to grow a plurality of types of crystals in parallel. For example, it is possible to fabricate a semiconductor element separately for an n-type growing part and a p-type growing part.

なお、上述の各図およびその説明では、出発原料や混合溶液を搬送するための構成を省略しているけれども、適宜設けられればよい。たとえば、秤量部1には、前処理や秤量を行った出発原料を把持し、耐熱・耐圧蓋9を開けた状態で、雰囲気調整部3の加熱容器11へ前記出発原料を落し込むアームを設け、同様に、育成部2には、耐熱・耐圧蓋19を開けた状態で、雰囲気調整部3から加熱容器11を取り出し、加熱容器21上で傾けることで混合溶液を流し込むアームを設けるようにすればよい。また、育成した単結晶や、種結晶の脱着のために、育成部2に、さらに別の耐熱・耐圧蓋や、脱着機構が設けられていてもよい。   In each of the above-described drawings and the description thereof, the structure for transporting the starting material and the mixed solution is omitted, but may be provided as appropriate. For example, the weighing unit 1 is provided with an arm for dropping the starting material into the heating container 11 of the atmosphere adjusting unit 3 while holding the pretreated or weighed starting material and opening the heat-resistant / pressure-resistant lid 9. Similarly, the growing unit 2 is provided with an arm for taking out the heating container 11 from the atmosphere adjusting unit 3 with the heat-resistant / pressure-resistant lid 19 opened and tilting it on the heating container 21 to pour the mixed solution. That's fine. Further, in order to desorb the grown single crystal or seed crystal, the growing unit 2 may be further provided with another heat-resistant / pressure-resistant lid and a desorption mechanism.

本発明の実施の一形態に係る結晶育成装置の全体の概略的構成を示す図である。It is a figure showing the schematic structure of the whole crystal growth device concerning one embodiment of the present invention. 図1で示す結晶育成装置における育成部の具体的な一構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one specific structural example of the growth part in the crystal growth apparatus shown in FIG. 図1で示す結晶育成装置における雰囲気調整部の具体的な一構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one specific structural example of the atmosphere adjustment part in the crystal growth apparatus shown in FIG. 本発明の実施の他の形態に係る結晶育成装置の全体の概略的構成を示す図である。It is a figure which shows the schematic structure of the whole of the crystal growth apparatus which concerns on the other form of implementation of this invention.

1 秤量部
2 育成部
3 雰囲気調整部
4 開閉扉
5,6;12,13;22,23 パイプ
7,14,24 真空機器
8 秤量器
9,19 耐熱・耐圧蓋
11,21 加熱容器
15,25 混合溶液
18 第2の攪拌手段
26 種結晶
27 駆動機構
28 第1の攪拌手段
DESCRIPTION OF SYMBOLS 1 Weighing part 2 Growing part 3 Atmosphere adjustment part 4 Opening / closing door 5,6; 12,13; 22,23 Pipe 7,14,24 Vacuum equipment 8 Weighing instrument 9,19 Heat-resistant / pressure-resistant lid 11,21 Heating container 15,25 Mixed solution 18 Second stirring means 26 Seed crystal 27 Drive mechanism 28 First stirring means

Claims (7)

アルカリ金属またはアルカリ土類金属の少なくとも1つとIII族金属とを含む出発原料の質量を計測する秤量部と、前記出発原料を溶融して成る混合融液に窒素原子を含ませた融液を反応させてIII族窒化物の結晶を成長させる育成部とを備えた結晶育成装置において、
前記秤量部は、脱酸素雰囲気中で秤量を行うとともに、該秤量部と前記育成部との間に、内部を、秤量中の環境に適合させて前記秤量部から出発原料を受入れ、育成中の環境に適合させて前記育成部へ前記出発原料を受渡す雰囲気調整部を介在することを特徴とする結晶育成装置。
A weighing unit for measuring the mass of a starting material containing at least one of an alkali metal or an alkaline earth metal and a Group III metal, and reacting a melt containing nitrogen atoms with a mixed melt obtained by melting the starting material In a crystal growth apparatus comprising a growth unit for growing a group III nitride crystal,
The weighing unit performs weighing in a deoxygenated atmosphere, and accepts a starting material from the weighing unit so that the inside is adapted between the weighing unit and the growing unit in accordance with the environment under weighing, A crystal growing apparatus characterized by interposing an atmosphere adjusting unit that delivers the starting material to the growing unit in conformity with an environment.
前記雰囲気調整部は、
前記秤量部側および育成部側のそれぞれに設けられ、該雰囲気調整部の内部とそれらの秤量部および育成部の内部とを連通/遮断する耐熱・耐圧蓋と、
窒素原子を含むガスを供給する供給部と、
前記秤量部から供給される前記出発原料を溶融して前記出発原料の混合溶液を得るとともに、前記ガスを混合させる加熱容器と、
内部の雰囲気を、前記秤量部における秤量中の環境および前記育成部における育成中の環境に略適合させることができる雰囲気調整手段とを備えて構成されることを特徴とする請求項1記載の結晶育成装置。
The atmosphere adjusting unit is
A heat-resistant / pressure-resistant lid that is provided on each of the weighing unit side and the growing unit side and communicates / blocks the inside of the atmosphere adjusting unit and the weighing unit and the growing unit;
A supply unit for supplying a gas containing nitrogen atoms;
A heating vessel for melting the starting material supplied from the weighing unit to obtain a mixed solution of the starting material and mixing the gas;
2. The crystal according to claim 1, further comprising an atmosphere adjusting means capable of substantially matching an internal atmosphere with an environment during weighing in the weighing unit and an environment under growing in the growing unit. Training device.
前記出発原料は、ナトリウム、カルシウムまたはリチウムの少なくとも1つと、ガリウムとであることを特徴とする請求項1または2記載の結晶育成装置。   3. The crystal growth apparatus according to claim 1, wherein the starting material is at least one of sodium, calcium, or lithium and gallium. 前記雰囲気調整部および育成部は、1つの秤量部に対して複数並列に設けられていることを特徴とする請求項2または3記載の結晶育成装置。   The crystal growth apparatus according to claim 2 or 3, wherein a plurality of the atmosphere adjusting units and the growing units are provided in parallel with respect to one weighing unit. 前記育成部は、前記成長する結晶の種となる種結晶の回転と引き上げとの少なくとも一方を可能な駆動機構を有することを特徴とする請求項1〜4のいずれか1項に記載の結晶育成装置。 5. The crystal growth according to claim 1, wherein the growth unit has a drive mechanism capable of at least one of rotation and pulling of a seed crystal serving as a seed of the growing crystal. apparatus. 前記育成部は、加熱容器内の出発原料の混合溶液の攪拌を行う第1の攪拌手段を有することを特徴とする請求項1〜5のいずれか1項に記載の結晶育成装置。   The crystal growing apparatus according to claim 1, wherein the growing unit includes a first stirring unit that stirs the mixed solution of the starting materials in the heating container. 前記雰囲気調整部は、前記加熱容器内の出発原料の混合溶液を攪拌する第2の攪拌手段を有することを特徴とする請求項2〜6のいずれか1項に記載の結晶育成装置。   The crystal growth apparatus according to any one of claims 2 to 6, wherein the atmosphere adjusting unit includes a second stirring unit that stirs the mixed solution of the starting materials in the heating container.
JP2004154588A 2004-05-25 2004-05-25 Crystal growth equipment Expired - Fee Related JP4358033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154588A JP4358033B2 (en) 2004-05-25 2004-05-25 Crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154588A JP4358033B2 (en) 2004-05-25 2004-05-25 Crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2005335983A JP2005335983A (en) 2005-12-08
JP4358033B2 true JP4358033B2 (en) 2009-11-04

Family

ID=35489951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154588A Expired - Fee Related JP4358033B2 (en) 2004-05-25 2004-05-25 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JP4358033B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787692B2 (en) * 2006-07-13 2011-10-05 株式会社リコー Crystal growth equipment
US7718002B2 (en) 2007-03-07 2010-05-18 Ricoh Company, Ltd. Crystal manufacturing apparatus
JP5005522B2 (en) * 2007-03-07 2012-08-22 株式会社リコー Crystal manufacturing equipment
CN103603049B (en) * 2013-12-06 2016-04-20 北京大学东莞光电研究院 A kind of multiple-piece nitride single crystal Material growth device and method

Also Published As

Publication number Publication date
JP2005335983A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4189423B2 (en) Method for producing compound single crystal and production apparatus used therefor
CN101558188B (en) Process for producing group iii elment nitride crystal, and group iii element nitride crystal
US7670430B2 (en) Method of recovering sodium metal from flux
JP2005263622A (en) Method of manufacturing compound single crystal and apparatus for manufacturing it
WO2006022302A2 (en) Process for producing aluminum nitride crystal and aluminum nitride crystal obtained thereby
CA2608102C (en) Method of producing group iii nitride crystal, apparatus for producing group iii nitride crystal, and group iii nitride crystal
JP5187846B2 (en) Method and apparatus for producing nitride single crystal
US8486190B2 (en) Process for producing single crystal
US8343239B2 (en) Group III nitride semiconductor manufacturing system
US10041186B2 (en) Method for producing nitride crystal
JP4358033B2 (en) Crystal growth equipment
JP2005112718A (en) Method for manufacturing group 13 element nitride crystal
JP2003286099A (en) Apparatus and method for growing group iii nitride crystal
JP4381638B2 (en) Method for producing crystal of group III nitride crystal
JP5205630B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP5005522B2 (en) Crystal manufacturing equipment
JP2007254206A (en) Method for growing nitride single crystal
JP6720888B2 (en) Method for manufacturing group III nitride semiconductor
JP5030821B2 (en) Flux processing method
JP2009114057A (en) Manufacturing process of nitride crystal
JP6420366B2 (en) Group 13 element nitride crystal growth method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees