JP4357656B2 - Quaternary ammonium salt - Google Patents

Quaternary ammonium salt Download PDF

Info

Publication number
JP4357656B2
JP4357656B2 JP22445399A JP22445399A JP4357656B2 JP 4357656 B2 JP4357656 B2 JP 4357656B2 JP 22445399 A JP22445399 A JP 22445399A JP 22445399 A JP22445399 A JP 22445399A JP 4357656 B2 JP4357656 B2 JP 4357656B2
Authority
JP
Japan
Prior art keywords
general formula
represented
same meaning
formula
ammonium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22445399A
Other languages
Japanese (ja)
Other versions
JP2001048851A (en
Inventor
康規 大田和
徹 加藤
健 冨藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP22445399A priority Critical patent/JP4357656B2/en
Publication of JP2001048851A publication Critical patent/JP2001048851A/en
Application granted granted Critical
Publication of JP4357656B2 publication Critical patent/JP4357656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界面活性剤、更には布帛、毛髪等の柔軟基剤として使用される新規な第4級アンモニウム塩及びその製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
現在、繊維用柔軟剤として市販されている商品は、ジ(長鎖アルキル)ジメチルアンモニウムクロライドに代表される1分子中に2つの長鎖アルキル基を有する第4級アンモニウム塩を含む組成物である。しかし、上記第4級アンモニウム塩は、河川等の自然界に放出された場合、殆どが生分解されずに蓄積されるという問題点がある。
【0003】
このような問題点の改良品としてN−メチル−N,N−ビス(長鎖アルカノイルオキシエチル)−N−(2−ヒドロキシエチル)アンモニウムメチルサルフェートや、N,N−ジメチル−N,N−ビス(アルカノイルオキシエチル)アンモニウムクロライド等が市販されているが、上記第4級アンモニウム塩に比べ、生分解性は改善されているものの、柔軟性が十分満足できる基剤とはいえない。
【0004】
一方、1分子中に少なくとも2個のカチオン基を有する化合物を柔軟基剤として使用する方法がEP225281号、特開平2-11545号やWO9414938号に開示されている。しかし、これらの化合物は親水性が強すぎ、柔軟性能が弱かった。また特開平9-111660号ではポリカチオンとアニオンを含有する柔軟剤が開示されているが、このポリカチオンは柔軟性能は優れているものの生分解性が満足できるものではなかった。
【0005】
本発明の課題は、柔軟性に優れ、かつ生分解性の良好な柔軟基剤として適した化合物を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、一般式(1)で表される第4級アンモニウム塩及びその製造法である。
【0007】
【化7】

Figure 0004357656
【0008】
(式中、R1は直鎖もしくは分岐鎖の炭素数8〜22のアルキル基又はアルケニル基を示し、アミド基、エステル基又はエーテル基で中断されていても良い。R2は炭素数1〜3のアルキル基又はヒドロキシアルキル基を示す。R3は水素原子、又は炭素数1〜22の直鎖もしくは分岐鎖のアルキル基、ヒドロキシアルキル基又はアルケニル基を示し、アミド基、エステル基又はエーテル基で中断されていても良い。mは1〜6の数を示し、nは2〜6の数を示し、pは1〜10の数を示す。Xは陰イオン基を示す。なお、2p+2個のR2、p+1個のXは同一でも異なっていても良い。)
【0009】
【発明の実施の形態】
第4級アンモニウム塩(1)において、R1は炭素数12〜18のアルキル基又はアルケニル基が好ましい。R2は炭素数1〜2のアルキル基又はヒドロキシアルキル基が好ましい。R3は水素原子、又は炭素数1〜22のアルキル基、ヒドロキシアルキル基又はアルケニル基が好ましく、アミド基、エステル基又はエーテル基で中断されてもよい。mは1〜3が好ましい。nは2〜6が好ましい。pは1〜3が好ましい。Xはクロル、メチル硫酸が好ましい。
【0010】
第4級アンモニウム塩(1)として、例えば次の化合物が挙げられる。
【0011】
【化8】
Figure 0004357656
【0012】
(一連の式中,Rは硬化牛脂脂肪酸、牛脂脂肪酸、ヤシ脂肪酸からカルボニル基を除いた残基、R’はメチル基又は水素原子を示す。)
第4級アンモニウム塩(1)は下記工程(a)、(b)及び(d)、又は工程(a)、(b)、(c)及び(d)を行うことにより製造することができる。
<工程(a)>
一般式(2)
【0013】
【化9】
Figure 0004357656
【0014】
(式中、R1及びR2は前記と同じ意味を示す。)
で表される第3級アミンと、一般式(3)
X−(CH2)m−CO2Y (3)
(式中、Xはハロゲン原子、Yは水素原子、又は炭素数1〜22の直鎖もしくは分岐鎖のアルキル基又はアルケニル基を示し、mは前記と同じ意味を示す。)
で表されるハロゲン化カルボン酸又はそのエステルとを反応させ、一般式(4)
【0015】
【化10】
Figure 0004357656
【0016】
(式中、R1、R2、m、X及びYは前記と同じ意味を示す。)
で表される第4級アンモニウム塩を得る工程。
<工程(b)>
一般式(4)で表される第4級アンモニウム塩を、一般式(5)
【0017】
【化11】
Figure 0004357656
【0018】
(式中、R2及びnは前記と同じ意味を示す。)
で表されるジアミンと反応させ、一般式(6)
【0019】
【化12】
Figure 0004357656
【0020】
(式中、R1、R2、m、n及びXは前記と同じ意味を示す。)
で表されるアミノカチオンを得る工程。
<工程(c)>
工程(a)における第3級アミンの代わりに、工程(b)で得られたアミノカチオンを用いて、工程(a)及び工程(b)を1〜9回繰り返し、一般式(7)
【0021】
【化13】
Figure 0004357656
【0022】
(式中、R1、R2、m、n及びXは前記と同じ意味を示し、p'は2〜10の数を示す。)
で表されるアミノポリカチオンを得る工程。
<工程(d)>
一般式(6)で表されるアミノカチオン又は一般式(7)で表されるアミノポリカチオンに対して、一般式(8)
X−R3 (8)
(式中、X及びR3は前記と同じ意味を示す。)
で表される4級化剤、又は一般式(9)
HX (9)
(式中、Xは前記と同じ意味を示す。)
で表される酸を反応させて、第4級アンモニウム塩(1)を得る工程。
【0023】
以下、各工程について詳細に説明する。
<工程(a)>
本工程に使用される、第3級アミン(2)として、N,N−ジメチルオクタデシルアミン等のN,N−ジメチルアルキルアミン、N−メチル−N−ヒドロキシエチルオクタデシルアミン等のN−メチル−N−ヒドロキシエチルアルキルアミン、N,N−ジヒドロキシエチルオクタデシルアミン等のN,N−ジヒドロキシエチルアルキルアミン、N,N−ジメチル−N−アルカノイルアミノプロピルアミン、N,N−ジメチル−N−アルカノイルオキシエチルアミン、N,N−ジメチル−N−アルカノイルオキシプロピルアミン等を挙げることができ、R1で示されるアルキル基は単独組成でも混合組成でも良く、硬化牛脂脂肪酸、牛脂脂肪酸、ヤシ脂肪酸からカルボキシル基を除いた残基でもよい。
【0024】
ハロゲン化カルボン酸又はそのエステル(3)として、例えばモノクロロ酢酸、モノクロロ酪酸、モノクロロヘキサン酸及びこれらのメチルエステル、エチルエステル、イソプロピルエステル等が挙げられる。
【0025】
本工程の反応の場合、反応溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ヘキサン、アセトン、クロロホルム等を用いることができる。反応温度は30〜120℃が好ましく、50〜90℃が更に好ましい。また、この反応における[ハロゲン化カルボン酸又はそのエステル(3)/第3級アミン(2)]のモル比は0.5〜2.0が好ましく、0.8〜1.5が更に好ましい。この条件で0.5〜10時間かけて4級化反応を行えば反応が完結する。その後、常法に従い後処理を行い、エステル基を持つ第4級アンモニウム塩(4)を得る。更に必要ならばアセトン等で再結晶しても良い。
【0026】
<工程(b)>
本工程に使用される、ジアミン(5)として、例えばN,N−ジメチルアミノエチルアミン、N−メチル−N−ヒドロキシエチルアミノエチルアミン、N,N−ジヒドロキシエチルアミノエチルアミン、N,N−ジメチルアミノプロピルアミン、N−メチル−N−ヒドロキシエチルアミノプロピルアミン、N,N−ジヒドロキシエチルアミノプロピルアミン、N,N−ジメチルアミノブチルアミン、N−メチル−N−ヒドロキシエチルアミノブチルアミン、N,N−ジヒドロキシエチルアミノブチルアミン、N,N−ジメチルアミノヘキシルアミン、N−メチル−N−ヒドロキシエチルアミノヘキシルアミン、N,N−ジヒドロキシエチルアミノヘキシルアミン等を挙げることができる。
【0027】
本工程の反応の場合、溶媒として、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン等が用いられる。反応温度は50〜150℃が好ましく、70〜120℃が更に好ましい。この反応における[ジアミン(5)/第4級アンモニウム塩(4)]のモル比は0.5〜2.0が好ましく、0.8〜1.2が更に好ましい。この条件で0.5〜10時間かけて反応を行えばアミド化反応が完結し、その後、常法に従い溶媒を留去することでアミノカチオン(6)が得られる。
【0028】
<工程(c)>
アミノカチオン(6)に対し、上記工程(a)、(b)と同様に、ハロゲン化カルボン酸又はそのエステル(3)、ジアミン(5)との反応を必要な回数繰り返せばアミノポリカチオン(7)が得られる。
【0029】
<工程(d)>
本工程で使用される4級化剤(8)として、メチルクロライド等の低級アルキルハライド、ジメチル硫酸、ジエチル硫酸等のジ低級アルキル硫酸、モノクロロ酢酸アルキルエステル等が挙げられる。4級化反応の溶媒として、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン等が挙げられる。
【0030】
アミノカチオン(6)又はアミノポリカチオン(7)と4級化剤(8)との反応温度は30〜150℃が好ましく、40〜100℃が更に好ましい。また、この4級化反応における[4級化剤(8)/アミノカチオン(6)又はアミノポリカチオン(7)]のモル比は0.5〜10が好ましく、0.8〜2.0が更に好ましい。この条件で0.1〜20時間かけて無溶媒あるいは溶媒中で4級化反応を行えば反応が完結し、その後、常法に従い後処理を行い、更に必要ならば、イオン交換樹脂等を用いて塩交換を行えば、必要な対イオンを有する第4級アンモニウム塩(1)を得ることができる。
【0031】
また、アミノカチオン(6)又はアミノポリカチオン(7)の中和に用いられる酸(9)として、塩酸、硫酸、リン酸、硝酸、p−トルエンスルホン酸、メタンスルホン酸等の無機酸、蟻酸、酢酸、プロピオン酸、リンゴ酸、クエン酸等の有機酸の単独あるいは混合物が挙げられる。この中和反応の溶媒として、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン等が挙げられる。
【0032】
本発明の第4級アンモニウム塩(1)は赤外線吸収スペクトル、核磁気共鳴スペクトルでその構造を確認することができる。
【0033】
【発明の効果】
本発明の第4級アンモニウム塩(1)は、安全性が高く、更に生分解性が良好な新規な界面活性剤であり、アニオン界面活性剤と併用することで、繊維、毛髪等に対して優れた柔軟性を付与でき、生分解性の優れた柔軟基剤として有用である。
【0034】
【実施例】
実施例1
(1) フラスコにN,N−ジメチルオクタデシルアミン178.8g(0.601mol)とアセトン238.0gを仕込み、50℃まで昇温し溶解させた。その後、20℃でモノクロロ酢酸イソプロピルエステル98.5g(0.721mol)を5分間で滴下し、60℃に昇温して4時間反応させた。反応終了後、これを20℃まで冷却して得られた白色結晶を常法に従い、アセトンで再結晶することで下記構造式の塩化N−(イソプロポキシカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム213.5g(0.492mol)を得た。
【0035】
【化14】
Figure 0004357656
【0036】
IR分析、NMR分析結果
<IR分析>
1731cm-1においてエステル特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.31ppm -CH- (m,1H)
4.20ppm N+-CH 2 -COO (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.24ppm N+-CH 2 - (t,2H)
1.35ppm C-(CH 3 )2 (s,6H)
(2) フラスコ中で、(1)で得られた塩化N−(イソプロポキシカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム207.4g(0.478mol)をイソプロピルアルコール66.1gに溶かし、これにN,N−ジメチルアミノプロピルアミン58.7g(0.574mol)を加え、90℃まで昇温し、5時間反応させた。反応終了後、過剰のN,N−ジメチルアミノプロピルアミン及びイソプロピルアルコールを減圧下で留去し、下記構造式の塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムのイソプロピルアルコール溶液218.8g(純分97wt%)を得た。
【0037】
【化15】
Figure 0004357656
【0038】
IR分析、NMR分析結果
<IR分析>
1680cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.22ppm N+-CH 2 -、CONH-CH 2 - (4H)
2.36ppm -CH 2 -N(CH3)2 (t,2H)
2.27ppm N-(CH 3 )2 (s,6H)
(3) オートクレーブに、(2)で得られた塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム100g(0.210mol)、メチルクロライド12.7g(0.252mol)、イソプロピルアルコール27gを入れ、90℃まで昇温した。そのままの温度で6時間撹拌し、反応を終結させた。反応後、過剰のメチルクロライドを留去し、下記構造式の塩化N−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム135g(0.203mol)を得た。
【0039】
【化16】
Figure 0004357656
【0040】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.23ppm N+-CH 2 -、CONH-CH 2 -CH2-CH 2 -N+(CH3)3 (6H)
実施例2
フラスコに、実施例1の(2)で得られた塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム100g(0.210mol)とイソプロピルアルコール50gを仕込み、50℃まで昇温し溶解させた。その後6N塩酸38.7g(0.231mol)を加え10分間撹拌し、中和反応を行った。中和反応後、20℃に冷却し、得られた白色結晶を常法に従いアセトンで再結晶することで、下記構造式の塩化N−(3−ジメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウム86g(0.168mol)を得た。
【0041】
【化17】
Figure 0004357656
【0042】
IR分析、NMR分析結果
<IR分析>
1674cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.21ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -NH+(CH3)2 (6H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例3
実施例1の(1)におけるN,N−ジメチルオクタデシルアミンの代わりにN,N−ジメチルヘキサデシルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルヘキサデシルアンモニウムを得た。
【0043】
【化18】
Figure 0004357656
【0044】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.23ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (6H)
実施例4
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルヘキサデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(3−ジメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルヘキサデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1674cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.21ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -NH+(CH3)2 (6H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例5
実施例1の(1)におけるN,N−ジメチルオクタデシルアミンの代わりにN,N−ジメチルドデシルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルドデシルアンモニウムを得た。
【0045】
【化19】
Figure 0004357656
【0046】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.24ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (6H)
実施例6
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルドデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(3−ジメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルドデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1674cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.24ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -NH+(CH3)2 (6H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例7
実施例1の(1)におけるモノクロロ酢酸イソプロピルエステルの代わりにモノクロロ酪酸メチルエステルを用いて実施例1と同様な操作を行い、下記構造式の塩化N−[3−(3−トリメチルアンモニオプロピルアミノカルボニル)プロピル]−N,N−ジメチルオクタデシルアンモニウムを得た。
【0047】
【化20】
Figure 0004357656
【0048】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.21ppm -CH 2 -N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (8H)
2.18ppm -CH 2 -CONH (t,2H)
実施例8
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−[3−(3−ジメチルアミノプロピルアミノカルボニル)プロピル]−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−[3−(3−ジメチルアンモニオプロピルアミノカルボニル)プロピル]−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1676cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
3.30ppm N+-(CH 3 )2 (s,6H)
3.22ppm -CH 2 -N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (8H)
2.90ppm NH+-(CH 3 )2 (s,6H)
2.18ppm -CH 2 -CONH (t,2H)
実施例9
実施例1の(1)におけるモノクロロ酢酸イソプロピルエステルの代わりにモノクロロヘキサン酸メチルエステルを用いて実施例1と同様な操作を行い、下記構造式の塩化N−[6−(3−トリメチルアンモニオプロピルアミノカルボニル)ヘキシル]−N,N−ジメチルオクタデシルアンモニウムを得た。
【0049】
【化21】
Figure 0004357656
【0050】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.24ppm -CH 2 -N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (8H)
2.18ppm -CH 2 -CONH (t,2H)
実施例10
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−[6−(3−ジメチルアミノプロピルアミノカルボニル)ヘキシル]−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−[6−(3−ジメチルアンモニオプロピルアミノカルボニル)ヘキシル]−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1676cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
3.30ppm N+-(CH 3 )2 (s,6H)
3.22ppm -CH 2 -N+-CH 2 -、NH-CH 2 -CH2-CH 2 -NH+(CH3)2 (8H)
2.90ppm NH+-(CH 3 )2 (s,6H)
2.18ppm -CH 2 -CONH (t,2H)
実施例11
実施例1の(2)におけるN,N−ジメチルアミノプロピルアミンの代わりにN,N−ジメチルアミノエチルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(2−トリメチルアンモニオエチルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
【0051】
【化22】
Figure 0004357656
【0052】
IR分析、NMR分析結果
<IR分析>
1675cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.64ppm NH-CH 2 -CH2-N+-(CH3)3 (t,4H)
3.50ppm NH-CH2-CH 2- N+-(CH3)3 (t,4H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (t,15H)
3.24ppm N+-CH 2 - (t,2H)
実施例12
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(2−ジメチルアミノエチルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(2−ジメチルアンモニオエチルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1679cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.64ppm NH-CH 2 -CH2-N+-(CH3)2 (t,2H)
3.50ppm NH-CH2-CH 2- N+-(CH3)2 (t,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.24ppm N+-CH 2 - (t,2H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例13
実施例1の(2)におけるN,N−ジメチルアミノプロピルアミンの代わりにN,N−ジメチルアミノヘキシルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(6−トリメチルアンモニオヘキシルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
【0053】
【化23】
Figure 0004357656
【0054】
IR分析、NMR分析結果
<IR分析>
1670cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (t,15H)
3.50ppm N+-CH 2 -、CONH-CH 2 -、-CH 2 -N+(CH3)3 (6H)
実施例14
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(6−ジメチルアミノヘキシルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(6−ジメチルアンモニオヘキシルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1674cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.23ppm N+-CH 2 -、CONH-CH 2 -、-CH 2 -NH+(CH3)2 (6H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例15
実施例1の(1)におけるN,N−ジメチルオクタデシルアミンの代わりに実施例1の(2)で得られた塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを用いて実施例1と同様な操作を行い、下記構造式の塩化N−{N’−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N’,N’−ジメチルアンモニオプロピルアミノカルボニルメチル)}−N,N−ジメチルオクタデシルアンモニウムを得た。
【0055】
【化24】
Figure 0004357656
【0056】
IR分析、NMR分析結果
<IR分析>
1675cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,4H)
3.30ppm N+-(CH 3 )3 、N+-(CH 3 )2 (s,21H)
3.22ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+(CH3)3 (10H)
実施例16
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−{N’−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N’,N’−ジメチルアンモニオプロピルアミノカルボニルメチル)}−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−{N’−(3−ジメチルアンモニオプロピルアミノカルボニルメチル)−N’,N’−ジメチルアンモニオプロピルアミノカルボニルメチル)}−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1679cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,4H)
3.30ppm N+-(CH 3 )2 (s,12H)
3.22ppm N+-CH 2 、NH-CH 2 -CH2-CH 2 -N+ (10H)
2.90ppm NH+-(CH 3 )2 (s,6H)
実施例17
実施例1の(2)におけるN,N−ジメチルアミノプロピルアミンの代わりにN,N−ジヒドロキシエチルアミノプロピルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(N',N'−ジヒドロキシエチル−N'−メチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
【0057】
【化25】
Figure 0004357656
【0058】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.97ppm N+-CH2-CH 2 -OH (t,4H)
3.43ppm N+-CH 2 -CH2-OH (t,4H)
3.30ppm N+-(CH 3 )2、N+-CH 3 (s,9H)
3.24ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+-CH3 (6H)
実施例18
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(N',N'−ジヒドロキシエチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(N',N'−ジヒドロキシエチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1676cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.97ppm N+-CH2-CH 2 -OH (t,4H)
3.43ppm N+-CH 2 -CH2-OH (t,4H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.24ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -NH+(CH3)2 (6H)
実施例19
実施例1の(2)におけるN,N−ジメチルアミノプロピルアミンの代わりにN−ヒドロキシエチル−N−メチルアミノプロピルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(N'−ヒドロキシエチル−N',N'−ジメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
【0059】
【化26】
Figure 0004357656
【0060】
IR分析、NMR分析結果
<IR分析>
1670cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.97ppm N+-CH2-CH 2 -OH (t,2H)
3.43ppm N+-CH 2 -CH2-OH (t,2H)
3.30ppm N+-(CH 3 )2 (s,12H)
3.22ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+ (6H)
実施例20
実施例2における塩化N−(3−ジメチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムの代わりに塩化N−(N'−ヒドロキシエチル−N'−メチルアミノプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを用いて実施例2と同様な操作を行い、塩化N−(N'−ヒドロキシエチル−N'−メチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチルオクタデシルアンモニウムを得た。
IR分析、NMR分析結果
<IR分析>
1670cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.97ppm N+-CH2-CH 2 -OH (t,2H)
3.43ppm N+-CH 2 -CH2-OH (t,2H)
3.30ppm N+-(CH 3 )2 (s,6H)
3.22ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+H (9H)
2.90ppm NH+-(CH 3 ) (d,3H)
実施例21
実施例1の(1)におけるN,N−ジメチルオクタデシルアミンの代わりにN,N−ジメチル−N−オクタデカノイルアミノプロピルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチル−N−オクタデカノイルアミノプロピルアンモニウムを得た。
【0061】
【化27】
Figure 0004357656
【0062】
IR分析、NMR分析結果
<IR分析>
1672cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.13ppm N+-CH 2 -CONH (s,2H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.22ppm NH-CH 2 -CH2-CH 2 -N+ (8H)
2.18ppm CH2-CH 2 -CONH (t,2H)
実施例22
実施例1の(1)におけるN,N−ジメチルオクタデシルアミンの代わりにN,N−ジメチル−N−オクタデシルオキシプロピルアミンを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(3−トリメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチル−N−オクタデシルオキシプロピルアンモニウムを得た。
【0063】
【化28】
Figure 0004357656
【0064】
IR分析、NMR分析結果
<IR分析>
1670cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.14ppm N+-CH 2 -CONH (s,2H)
3.37ppm -CH 2 -O-CH 2 - (s,4H)
3.30ppm N+-(CH 3 )2、N+-(CH 3 )3 (s,15H)
3.22ppm N+CH 2 -、NH-CH 2 -CH2-CH 2 -N+ (6H)
実施例23
実施例1の(3)におけるメチルクロライドの代わりにクロロ酢酸オクタデシルを用いて実施例1と同様な操作を行い、下記構造式の塩化N−(N’−オクタデシルオキシカルボニルメチル−N',N'−ジメチルアンモニオプロピルアミノカルボニルメチル)−N,N−ジメチル−N−オクタデシルアンモニウムを得た。
【0065】
【化29】
Figure 0004357656
【0066】
IR分析、NMR分析結果
<IR分析>
1731cm-1においてエステル特有の強い吸収が認められた。
【0067】
1670cm-1においてアミド特有の強い吸収が認められた。
<NMR分析>
溶媒CDCl3、内部標準TMS
4.20ppm N+-CH 2 -COO (s,2H)
4.13ppm N+-CH 2 -CONH (s,2H)
4.08ppm COO-CH 2 - (t,2H)
3.30ppm N+-(CH 3 )2 (s,12H)
3.22ppm N+-CH 2 -、NH-CH 2 -CH2-CH 2 -N+ (6H)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel quaternary ammonium salt used as a surfactant, and further as a soft base for fabrics, hair, and the like, and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Currently, a commercial product as a fabric softener is a composition containing a quaternary ammonium salt having two long-chain alkyl groups in one molecule represented by di (long-chain alkyl) dimethylammonium chloride. . However, when the quaternary ammonium salt is released into the natural world such as a river, there is a problem that most of it is accumulated without being biodegraded.
[0003]
N-methyl-N, N-bis (long-chain alkanoyloxyethyl) -N- (2-hydroxyethyl) ammonium methyl sulfate and N, N-dimethyl-N, N-bis are improved products for such problems. Although (alkanoyloxyethyl) ammonium chloride and the like are commercially available, the biodegradability is improved as compared with the quaternary ammonium salt, but it cannot be said that the base is sufficiently satisfactory in flexibility.
[0004]
On the other hand, methods using a compound having at least two cationic groups in one molecule as a flexible base are disclosed in EP225281, JP-A-2-11545 and WO9414938. However, these compounds were too hydrophilic and weakly flexible. Japanese Patent Application Laid-Open No. 9-111660 discloses a softening agent containing a polycation and an anion, but this polycation is excellent in softening performance but is not satisfactory in biodegradability.
[0005]
An object of the present invention is to provide a compound suitable as a flexible base having excellent flexibility and good biodegradability.
[0006]
[Means for Solving the Problems]
The present invention is a quaternary ammonium salt represented by the general formula (1) and a method for producing the same.
[0007]
[Chemical 7]
Figure 0004357656
[0008]
(Wherein R1Represents a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and may be interrupted by an amide group, an ester group or an ether group. R2Represents an alkyl group having 1 to 3 carbon atoms or a hydroxyalkyl group. RThreeRepresents a hydrogen atom or a linear or branched alkyl group, hydroxyalkyl group or alkenyl group having 1 to 22 carbon atoms, and may be interrupted by an amide group, an ester group or an ether group. m shows the number of 1-6, n shows the number of 2-6, p shows the number of 1-10. X represents an anionic group. 2p + 2 R2, P + 1 X may be the same or different. )
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the quaternary ammonium salt (1), R1Is preferably an alkyl or alkenyl group having 12 to 18 carbon atoms. R2Is preferably an alkyl group having 1 to 2 carbon atoms or a hydroxyalkyl group. RThreeIs preferably a hydrogen atom or an alkyl group having 1 to 22 carbon atoms, a hydroxyalkyl group or an alkenyl group, and may be interrupted by an amide group, an ester group or an ether group. m is preferably 1 to 3. n is preferably 2-6. p is preferably 1 to 3. X is preferably chloro or methylsulfuric acid.
[0010]
Examples of the quaternary ammonium salt (1) include the following compounds.
[0011]
[Chemical 8]
Figure 0004357656
[0012]
(In the series of formulas, R represents a residue obtained by removing a carbonyl group from hardened beef tallow fatty acid, beef tallow fatty acid, and coconut fatty acid, and R 'represents a methyl group or a hydrogen atom.)
The quaternary ammonium salt (1) can be produced by performing the following steps (a), (b) and (d) or steps (a), (b), (c) and (d).
<Process (a)>
General formula (2)
[0013]
[Chemical 9]
Figure 0004357656
[0014]
(Wherein R1And R2Indicates the same meaning as described above. )
A tertiary amine represented by the general formula (3)
X- (CH2)m-CO2Y (3)
(In the formula, X represents a halogen atom, Y represents a hydrogen atom, or a linear or branched alkyl group or alkenyl group having 1 to 22 carbon atoms, and m represents the same meaning as described above.)
Is reacted with a halogenated carboxylic acid represented by the general formula (4)
[0015]
Embedded image
Figure 0004357656
[0016]
(Wherein R1, R2, M, X and Y have the same meaning as described above. )
The process of obtaining the quaternary ammonium salt represented by these.
<Process (b)>
A quaternary ammonium salt represented by the general formula (4) is converted into the general formula (5).
[0017]
Embedded image
Figure 0004357656
[0018]
(Wherein R2And n have the same meaning as described above. )
Is reacted with a diamine represented by the general formula (6)
[0019]
Embedded image
Figure 0004357656
[0020]
(Wherein R1, R2, M, n and X have the same meaning as described above. )
The process of obtaining the amino cation represented by these.
<Process (c)>
Using the amino cation obtained in step (b) instead of the tertiary amine in step (a), steps (a) and (b) are repeated 1 to 9 times to obtain the general formula (7)
[0021]
Embedded image
Figure 0004357656
[0022]
(Wherein R1, R2, M, n and X have the same meaning as described above, and p ′ represents a number of 2 to 10. )
The process of obtaining the aminopolycation represented by these.
<Process (d)>
For the amino cation represented by the general formula (6) or the amino polycation represented by the general formula (7), the general formula (8)
X-RThree    (8)
(Wherein X and RThreeIndicates the same meaning as described above. )
Or a quaternizing agent represented by the general formula (9)
HX (9)
(In the formula, X has the same meaning as described above.)
A step of reacting an acid represented by formula (1) to obtain a quaternary ammonium salt (1).
[0023]
Hereinafter, each step will be described in detail.
<Process (a)>
As tertiary amine (2) used in this step, N, N-dimethylalkylamine such as N, N-dimethyloctadecylamine, N-methyl-N such as N-methyl-N-hydroxyethyloctadecylamine, etc. -Hydroxyethylalkylamine, N, N-dihydroxyethylalkylamine such as N, N-dihydroxyethyloctadecylamine, N, N-dimethyl-N-alkanoylaminopropylamine, N, N-dimethyl-N-alkanoyloxyethylamine, N, N-dimethyl-N-alkanoyloxypropylamine, etc.1The alkyl group represented by may be a single composition or a mixed composition, and may be a residue obtained by removing a carboxyl group from hardened beef tallow fatty acid, beef tallow fatty acid, or coconut fatty acid.
[0024]
Examples of the halogenated carboxylic acid or its ester (3) include monochloroacetic acid, monochlorobutyric acid, monochlorohexanoic acid, and methyl, ethyl and isopropyl esters thereof.
[0025]
In the case of the reaction in this step, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, hexane, acetone, chloroform or the like can be used as a reaction solvent. The reaction temperature is preferably 30 to 120 ° C, more preferably 50 to 90 ° C. Further, the molar ratio of [halogenated carboxylic acid or its ester (3) / tertiary amine (2)] in this reaction is preferably 0.5 to 2.0, more preferably 0.8 to 1.5. The reaction is completed when the quaternization reaction is carried out under these conditions for 0.5 to 10 hours. Thereafter, post-treatment is performed according to a conventional method to obtain a quaternary ammonium salt (4) having an ester group. If necessary, it may be recrystallized with acetone or the like.
[0026]
<Process (b)>
Examples of the diamine (5) used in this step include N, N-dimethylaminoethylamine, N-methyl-N-hydroxyethylaminoethylamine, N, N-dihydroxyethylaminoethylamine, and N, N-dimethylaminopropylamine. N-methyl-N-hydroxyethylaminopropylamine, N, N-dihydroxyethylaminopropylamine, N, N-dimethylaminobutylamine, N-methyl-N-hydroxyethylaminobutylamine, N, N-dihydroxyethylaminobutylamine N, N-dimethylaminohexylamine, N-methyl-N-hydroxyethylaminohexylamine, N, N-dihydroxyethylaminohexylamine and the like.
[0027]
In the case of the reaction in this step, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone or the like is used as a solvent. The reaction temperature is preferably 50 to 150 ° C, more preferably 70 to 120 ° C. The molar ratio of [diamine (5) / quaternary ammonium salt (4)] in this reaction is preferably 0.5 to 2.0, more preferably 0.8 to 1.2. When the reaction is carried out under these conditions for 0.5 to 10 hours, the amidation reaction is completed, and then the amino cation (6) is obtained by distilling off the solvent according to a conventional method.
[0028]
<Process (c)>
If the reaction with the halogenated carboxylic acid or its ester (3) or diamine (5) is repeated for the amino cation (6) as in the above steps (a) and (b), the amino cation (7 ) Is obtained.
[0029]
<Process (d)>
Examples of the quaternizing agent (8) used in this step include lower alkyl halides such as methyl chloride, di-lower alkyl sulfates such as dimethyl sulfate and diethyl sulfate, and monochloroacetic acid alkyl esters. Examples of the quaternization reaction solvent include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, and acetone.
[0030]
The reaction temperature between the amino cation (6) or amino polycation (7) and the quaternizing agent (8) is preferably 30 to 150 ° C, more preferably 40 to 100 ° C. The molar ratio of [quaternizing agent (8) / amino cation (6) or amino polycation (7)] in this quaternization reaction is preferably 0.5 to 10, and more preferably 0.8 to 2.0. If the quaternization reaction is carried out in the absence of a solvent or in a solvent for 0.1 to 20 hours under these conditions, the reaction is completed, and then a post-treatment is carried out according to a conventional method. If necessary, a salt is obtained using an ion exchange resin or the like. If exchange is performed, the quaternary ammonium salt (1) which has a required counter ion can be obtained.
[0031]
Moreover, as acid (9) used for neutralization of amino cation (6) or amino polycation (7), inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, p-toluenesulfonic acid, methanesulfonic acid, formic acid In addition, an organic acid such as acetic acid, propionic acid, malic acid, citric acid or the like may be used alone or as a mixture. Examples of the solvent for the neutralization reaction include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, and acetone.
[0032]
The structure of the quaternary ammonium salt (1) of the present invention can be confirmed by infrared absorption spectrum and nuclear magnetic resonance spectrum.
[0033]
【The invention's effect】
The quaternary ammonium salt (1) of the present invention is a novel surfactant having high safety and good biodegradability. By using it together with an anionic surfactant, it is suitable for fibers, hairs, etc. It can impart excellent flexibility and is useful as a flexible base with excellent biodegradability.
[0034]
【Example】
Example 1
(1) A flask was charged with 178.8 g (0.601 mol) of N, N-dimethyloctadecylamine and 238.0 g of acetone and heated to 50 ° C. to dissolve. Thereafter, 98.5 g (0.721 mol) of monochloroacetic acid isopropyl ester was added dropwise at 20 ° C. over 5 minutes, and the temperature was raised to 60 ° C. and reacted for 4 hours. After completion of the reaction, the white crystals obtained by cooling to 20 ° C. are recrystallized with acetone according to a conventional method, whereby N- (isopropoxycarbonylmethyl) -N, N-dimethyloctadecylammonium chloride having the following structural formula 213.5 g (0.492 mol) was obtained.
[0035]
Embedded image
Figure 0004357656
[0036]
IR analysis, NMR analysis results
<IR analysis>
1731cm-1The strong absorption peculiar to ester was recognized.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.31ppm -CH-(m, 1H)
4.20ppm N+-CH 2 -COO (s, 2H)
3.30ppm N+-(CH Three )2        (s, 6H)
3.24ppm N+-CH 2 -(t, 2H)
1.35ppm C- (CH Three )2         (s, 6H)
(2) In a flask, 207.4 g (0.478 mol) of N- (isopropoxycarbonylmethyl) -N, N-dimethyloctadecylammonium chloride obtained in (1) was dissolved in 66.1 g of isopropyl alcohol. -58.7 g (0.574 mol) of dimethylaminopropylamine was added, the temperature was raised to 90 ° C, and the reaction was allowed to proceed for 5 hours. After completion of the reaction, excess N, N-dimethylaminopropylamine and isopropyl alcohol were distilled off under reduced pressure to obtain N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride having the following structural formula. An isopropyl alcohol solution (218.8 g, pure content: 97 wt%) was obtained.
[0037]
Embedded image
Figure 0004357656
[0038]
IR analysis, NMR analysis results
<IR analysis>
1680cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2            (s, 6H)
3.22ppm N+-CH 2 -, CONH-CH 2 - (4H)
2.36ppm -CH 2 -N (CHThree)2          (t, 2H)
2.27ppm N- (CH Three )2              (s, 6H)
(3) In an autoclave, 100 g (0.210 mol) of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride obtained in (2), 12.7 g (0.252 mol) of methyl chloride, isopropyl 27 g of alcohol was added and the temperature was raised to 90 ° C. The reaction was terminated by stirring at the same temperature for 6 hours. After the reaction, excess methyl chloride was distilled off to obtain 135 g (0.203 mol) of N- (3-trimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride having the following structural formula.
[0039]
Embedded image
Figure 0004357656
[0040]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three         (s, 15H)
3.23ppm N+-CH 2 -, CONH-CH 2 -CH2-CH 2 -N+(CHThree)Three(6H)
Example 2
A flask was charged with 100 g (0.210 mol) of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride obtained in (2) of Example 1 and 50 g of isopropyl alcohol, and the mixture was heated to 50 ° C. The temperature was raised and dissolved. Thereafter, 38.7 g (0.231 mol) of 6N hydrochloric acid was added and stirred for 10 minutes to carry out a neutralization reaction. After the neutralization reaction, the mixture was cooled to 20 ° C., and the resulting white crystals were recrystallized with acetone according to a conventional method, whereby N- (3-dimethylammoniopropylaminocarbonylmethyl) -N, N of the following structural formula -86 g (0.168 mol) of dimethyl octadecyl ammonium were obtained.
[0041]
Embedded image
Figure 0004357656
[0042]
IR analysis, NMR analysis results
<IR analysis>
1674cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2                            (s, 6H)
3.21ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -NH+(CHThree)2(6H)
2.90ppm NH+-(CH Three )2                            (s, 6H)
Example 3
The same operation as in Example 1 was performed using N, N-dimethylhexadecylamine instead of N, N-dimethyloctadecylamine in (1) of Example 1, and N- (3-trimethyl chloride having the following structural formula was obtained. Ammoniopropylaminocarbonylmethyl) -N, N-dimethylhexadecylammonium was obtained.
[0043]
Embedded image
Figure 0004357656
[0044]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three        (s, 15H)
3.23ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three(6H)
Example 4
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethylhexadecylammonium chloride Was used in the same manner as in Example 2 to obtain N- (3-dimethylammoniopropylaminocarbonylmethyl) -N, N-dimethylhexadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1674cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2                         (s, 6H)
3.21ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -NH+(CHThree)2(6H)
2.90ppm NH+-(CH Three )2                          (s, 6H)
Example 5
The same operation as in Example 1 was carried out using N, N-dimethyldodecylamine in place of N, N-dimethyloctadecylamine in (1) of Example 1, and N- (3-trimethylammonium chloride having the following structural formula was obtained. (Opropylaminocarbonylmethyl) -N, N-dimethyldodecylammonium was obtained.
[0045]
Embedded image
Figure 0004357656
[0046]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three        (s, 15H)
3.24ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three(6H)
Example 6
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyldodecylammonium chloride was used. The same operation as in Example 2 was performed to obtain N- (3-dimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyldodecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1674cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2                         (s, 6H)
3.24ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -NH+(CHThree)2(6H)
2.90ppm NH+-(CH Three )2                          (s, 6H)
Example 7
The same operation as in Example 1 was carried out using monochlorobutyric acid methyl ester instead of monochloroacetic acid isopropyl ester in Example 1 (1), and N- [3- (3-trimethylammoniopropylamino chloride) having the following structural formula Carbonyl) propyl] -N, N-dimethyloctadecylammonium was obtained.
[0047]
Embedded image
Figure 0004357656
[0048]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
3.30ppm N+-(CH Three )2, N+-(CH Three )Three                   (s, 15H)
3.21ppm -CH 2 -N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three   (8H)
2.18ppm -CH 2 -CONH (t, 2H)
Example 8
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- [3- (3-dimethylaminopropylaminocarbonyl) propyl] chloride-N, N- The same operation as in Example 2 was performed using dimethyloctadecylammonium to obtain N- [3- (3-dimethylammoniopropylaminocarbonyl) propyl] -N, N-dimethyloctadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1676cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
3.30ppm N+-(CH Three )2                               (s, 6H)
3.22ppm -CH 2 -N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three   (8H)
2.90ppm NH+-(CH Three )2                              (s, 6H)
2.18ppm -CH 2 -CONH (t, 2H)
Example 9
The same operation as in Example 1 was carried out using monochlorohexanoic acid methyl ester instead of monochloroacetic acid isopropyl ester in Example 1 (1), and N- [6- (3-trimethylammoniopropyl chloride) of the following structural formula Aminocarbonyl) hexyl] -N, N-dimethyloctadecylammonium was obtained.
[0049]
Embedded image
Figure 0004357656
[0050]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
3.30ppm N+-(CH Three )2, N+-(CH Three )Three                   (s, 15H)
3.24ppm -CH 2 -N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three   (8H)
2.18ppm -CH 2 -CONH (t, 2H)
Example 10
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- [6- (3-dimethylaminopropylaminocarbonyl) hexyl chloride] -N, N- The same operation as in Example 2 was performed using dimethyloctadecylammonium to obtain N- [6- (3-dimethylammoniopropylaminocarbonyl) hexyl] -N, N-dimethyloctadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1676cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
3.30ppm N+-(CH Three )2                               (s, 6H)
3.22ppm -CH 2 -N+-CH 2 -, NH-CH 2 -CH2-CH 2 -NH+(CHThree)2 (8H)
2.90ppm NH+-(CH Three )2                              (s, 6H)
2.18ppm -CH 2 -CONH (t, 2H)
Example 11
The same operation as in Example 1 was carried out using N, N-dimethylaminoethylamine instead of N, N-dimethylaminopropylamine in (2) of Example 1, and N- (2-trimethyl chloride having the following structural formula Ammonioethylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium was obtained.
[0051]
Embedded image
Figure 0004357656
[0052]
IR analysis, NMR analysis results
<IR analysis>
1675cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.64ppm NH-CH 2 -CH2-N+-(CHThree)Three   (t, 4H)
3.50ppm NH-CH2-CH 2- N+-(CHThree)Three   (t, 4H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three   (t, 15H)
3.24ppm N+-CH 2 -          (t, 2H)
Example 12
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- (2-dimethylaminoethylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride was used. And the same operation as in Example 2 was performed to obtain N- (2-dimethylammonioethylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1679cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.64ppm NH-CH 2 -CH2-N+-(CHThree)2   (t, 2H)
3.50ppm NH-CH2-CH 2- N+-(CHThree)2   (t, 2H)
3.30ppm N+-(CH Three )2              (s, 6H)
3.24ppm N+-CH 2 -          (t, 2H)
2.90ppm NH+-(CH Three )2       (s, 6H)
Example 13
The same operation as in Example 1 was performed using N, N-dimethylaminohexylamine instead of N, N-dimethylaminopropylamine in (2) of Example 1, and N- (6- Trimethylammoniohexylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium was obtained.
[0053]
Embedded image
Figure 0004357656
[0054]
IR analysis, NMR analysis results
<IR analysis>
1670cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three               (t, 15H)
3.50ppm N+-CH 2 -, CONH-CH 2 -, -CH 2 -N+(CHThree)Three  (6H)
Example 14
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- (6-dimethylaminohexylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride was used. And the same operation as in Example 2 was performed to obtain N- (6-dimethylammoniohexylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1674cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2                            (s, 6H)
3.23ppm N+-CH 2 -, CONH-CH 2 -, -CH 2 -NH+(CHThree)2   (6H)
2.90ppm NH+-(CH Three )2       (s, 6H)
Example 15
N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride obtained in (2) of Example 1 instead of N, N-dimethyloctadecylamine in (1) of Example 1 Was used in the same manner as in Example 1, and N- {N ′-(3-trimethylammoniopropylaminocarbonylmethyl) -N ′, N′-dimethylammoniopropylaminocarbonylmethyl) chloride having the following structural formula) } -N, N-dimethyloctadecylammonium was obtained.
[0055]
Embedded image
Figure 0004357656
[0056]
IR analysis, NMR analysis results
<IR analysis>
1675cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 4H)
3.30ppm N+-(CH Three )Three, N+-(CH Three )2             (S, 21H)
3.22ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+(CHThree)Three   (10H)
Example 16
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- {N '-(3-dimethylaminopropylaminocarbonylmethyl) -N', N '-Dimethylammoniopropylaminocarbonylmethyl)}-N, N-dimethyloctadecylammonium was used in the same manner as in Example 2 to prepare N- {N'-(3-dimethylammoniopropylaminocarbonylmethyl) chloride. -N ', N'-dimethylammoniopropylaminocarbonylmethyl)}-N, N-dimethyloctadecylammonium was obtained.
IR analysis, NMR analysis results
<IR analysis>
1679cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 4H)
3.30ppm N+-(CH Three )2                       (s, 12H)
3.22ppm N+-CH 2 , NH-CH 2 -CH2-CH 2 -N+    (10H)
2.90ppm NH+-(CH Three )2                          (s, 6H)
Example 17
The same operation as in Example 1 was carried out using N, N-dihydroxyethylaminopropylamine in place of N, N-dimethylaminopropylamine in (2) of Example 1, and N- (N ', N'-dihydroxyethyl-N'-methylammoniopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium was obtained.
[0057]
Embedded image
Figure 0004357656
[0058]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.97ppm N+-CH2-CH 2 -OH                       (t, 4H)
3.43ppm N+-CH 2 -CH2-OH                    (t, 4H)
3.30ppm N+-(CH Three )2, N+-CH Three              (S, 9H)
3.24ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+-CHThree     (6H)
Example 18
Instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2, N- (N ′, N′-dihydroxyethylaminopropylaminocarbonylmethyl) -N, N The same operation as in Example 2 was performed using dimethyloctadecylammonium to obtain N- (N ′, N′-dihydroxyethylammoniopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride.
IR analysis, NMR analysis results
<IR analysis>
1676cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.97ppm N+-CH2-CH 2 -OH                       (t, 4H)
3.43ppm N+-CH 2 -CH2-OH (t, 4H)
3.30ppm N+-(CH Three )2                             (s, 6H)
3.24ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -NH+(CHThree)2     (6H)
Example 19
The same operation as in Example 1 was carried out using N-hydroxyethyl-N-methylaminopropylamine instead of N, N-dimethylaminopropylamine in (2) of Example 1, and N-chloride of the following structural formula (N′-hydroxyethyl-N ′, N′-dimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium was obtained.
[0059]
Embedded image
Figure 0004357656
[0060]
IR analysis, NMR analysis results
<IR analysis>
1670cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.97ppm N+-CH2-CH 2 -OH                       (t, 2H)
3.43ppm N+-CH 2 -CH2-OH                    (t, 2H)
3.30ppm N+-(CH Three )2                   (S, 12H)
3.22ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+     (6H)
Example 20
N- (N′-hydroxyethyl-N′-methylaminopropylaminocarbonylmethyl) -N instead of N- (3-dimethylaminopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride in Example 2 , N-dimethyloctadecylammonium was used in the same manner as in Example 2 to obtain N- (N′-hydroxyethyl-N′-methylammoniopropylaminocarbonylmethyl) -N, N-dimethyloctadecylammonium chloride. It was.
IR analysis, NMR analysis results
<IR analysis>
1670cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.97ppm N+-CH2-CH 2 -OH                     (t, 2H)
3.43ppm N+-CH 2 -CH2-OH (t, 2H)
3.30ppm N+-(CH Three )2                           (s, 6H)
3.22ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+H         (9H)
2.90ppm NH+-(CH Three ) (d, 3H)
Example 21
The same operation as in Example 1 was carried out using N, N-dimethyl-N-octadecanoylaminopropylamine in place of N, N-dimethyloctadecylamine in Example 1 (1), and the following structural formula was obtained. N- (3-trimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyl-N-octadecanoylaminopropylammonium was obtained.
[0061]
Embedded image
Figure 0004357656
[0062]
IR analysis, NMR analysis results
<IR analysis>
1672cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.13ppm N+-CH 2 -CONH (s, 2H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three               (s, 15H)
3.22ppm NH-CH 2 -CH2-CH 2 -N+                 (8H)
2.18ppm CH2-CH 2 -CONH                  (T, 2H)
Example 22
The same operation as in Example 1 was carried out using N, N-dimethyl-N-octadecyloxypropylamine in place of N, N-dimethyloctadecylamine in (1) of Example 1, and N—chloride of the following structural formula (3-Trimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyl-N-octadecyloxypropylammonium was obtained.
[0063]
Embedded image
Figure 0004357656
[0064]
IR analysis, NMR analysis results
<IR analysis>
1670cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.14ppm N+-CH 2 -CONH (s, 2H)
3.37ppm -CH 2 -O-CH 2 -(s, 4H)
3.30ppm N+-(CH Three )2, N+-(CH Three )Three               (s, 15H)
3.22ppm N+CH 2 -, NH-CH 2 -CH2-CH 2 -N+          (6H)
Example 23
The same procedure as in Example 1 was performed using octadecyl chloroacetate instead of methyl chloride in Example 3 (3), and N— (N′-octadecyloxycarbonylmethyl-N ′, N ′) having the following structural formula -Dimethylammoniopropylaminocarbonylmethyl) -N, N-dimethyl-N-octadecylammonium was obtained.
[0065]
Embedded image
Figure 0004357656
[0066]
IR analysis, NMR analysis results
<IR analysis>
1731cm-1The strong absorption peculiar to ester was recognized.
[0067]
1670cm-1In, strong absorption peculiar to amide was observed.
<NMR analysis>
Solvent CDClThreeInternal standard TMS
4.20ppm N+-CH 2 -COO (s, 2H)
4.13ppm N+-CH 2 -CONH                       (s, 2H)
4.08ppm COO-CH 2 -                    (t, 2H)
3.30ppm N+-(CH Three )2                    (S, 12H)
3.22ppm N+-CH 2 -, NH-CH 2 -CH2-CH 2 -N+   (6H)

Claims (2)

下記工程(a)、(b)及び(d)、又は工程(a)、(b)、(c)及び(d)からなる製造法により得られる一般式(1)で表される第4級アンモニウム塩。
Figure 0004357656
(式中、R1 11 -(A ) -R 12 -(R11及びR12はそれぞれ直鎖もしくは分岐鎖の炭素数1〜21のアルキル基を示し、R11とR12の炭素数の合計は8〜22である。 はアミド基又はエーテル基を示し、aは0又は1である。)で表される基を示す。R2メチル基又はヒドロキシエチル基を示す。R3は水素原子、メチル基又は 31 -(A ) -R 32 -(R31及びR32はそれぞれ炭素数1〜21の直鎖もしくは分岐鎖のアルキル基を示し、R31とR32の炭素数の合計は2〜22である。 はエステル基を示し、aは前記と同じ意味を示す。)で表される基を示す。mは1〜6の数を示し、nは2〜6の数を示し、pは1又は2の数を示す。Xはハロゲンイオンを示す。なお、2p+2個のR2、p+1個のXは同一でも異なっていても良い。)
<工程(a)>
一般式(2)
Figure 0004357656
(式中、R 1 及びR 2 は前記と同じ意味を示す。)
で表される第3級アミンと、一般式(3)
−(CH 2 ) m −CO 2 Y (3)
(式中、X はハロゲン原子、Yは水素原子、又は炭素数1〜22の直鎖もしくは分岐鎖のアルキル基又はアルケニル基を示し、mは前記と同じ意味を示す。)
で表されるハロゲン化カルボン酸又はそのエステルとを反応させ、一般式(4)
Figure 0004357656
(式中、R 1 、R 2 、m、X 及びYは前記と同じ意味を示す。)
で表される第4級アンモニウム塩を得る工程。
<工程(b)>
一般式(4)で表される第4級アンモニウム塩を、一般式(5)
Figure 0004357656
(式中、R 2 及びnは前記と同じ意味を示す。)
で表されるジアミンと反応させ、一般式(6)
Figure 0004357656
(式中、R 1 、R 2 、m、n及びX は前記と同じ意味を示す。)
で表されるアミノカチオンを得る工程。
<工程(c)>
工程(a)における第3級アミンの代わりに、工程(b)で得られたアミノカチオンを用いて、工程(a)及び工程(b)を1回繰り返し、一般式(7)
Figure 0004357656
(式中、R 1 、R 2 、m、n及びX は前記と同じ意味を示し、p'は2の数を示す。)
で表されるアミノポリカチオンを得る工程。
<工程(d)>
一般式(6)で表されるアミノカチオン又は一般式(7)で表されるアミノポリカチオンに対して、一般式(8)
X−R 3 (8)
(式中、X及びR 3 は前記と同じ意味を示す。)
で表される4級化剤、又は一般式(9)
HX (9)
(式中、Xは前記と同じ意味を示す。)
で表される酸を反応させて、一般式(1)で表される第4級アンモニウム塩を得る工程。
A quaternary compound represented by the general formula (1) obtained by the production method comprising the following steps (a), (b) and (d), or steps (a), (b), (c) and (d) Ammonium salt.
Figure 0004357656
(Wherein, R 1 is R 11 - (A 1) a -R 12 - (R 11 and R 12 each represents a linear or branched alkyl group having 1 to 21 carbon atoms, the R 11 and R 12 The total number of carbon atoms is 8 to 22. A 1 represents an amide group or an ether group , and a represents 0 or 1.) R 2 represents a methyl group or a hydroxyethyl group . .R 3 is a hydrogen atom, a methyl group, or R 31 - (a 2) a -R 32 - shows the (linear or branched alkyl group of R 31 and R 32 are each 1 to 21 carbon atoms, and R 31 The total carbon number of R 32 is 2 to 22. A 2 represents an ester group, a represents the same meaning as described above.) M represents a number of 1 to 6; n represents a number of 2 to 6, p represents a number of 1 or 2 , X represents a halogen ion , and 2p + 2 R 2 s and p + 1 Xs may be the same or different. Yes.)
<Process (a)>
General formula (2)
Figure 0004357656
(In the formula, R 1 and R 2 have the same meaning as described above.)
A tertiary amine represented by the general formula (3)
X 1 - (CH 2) m -CO 2 Y (3)
( Wherein X 1 represents a halogen atom, Y represents a hydrogen atom, or a linear or branched alkyl group or alkenyl group having 1 to 22 carbon atoms, and m represents the same meaning as described above.)
Is reacted with a halogenated carboxylic acid represented by the general formula (4)
Figure 0004357656
(In the formula, R 1 , R 2 , m, X 1 and Y have the same meaning as described above.)
The process of obtaining the quaternary ammonium salt represented by these.
<Process (b)>
A quaternary ammonium salt represented by the general formula (4) is converted into the general formula (5).
Figure 0004357656
(In the formula, R 2 and n have the same meaning as described above.)
Is reacted with a diamine represented by the general formula (6)
Figure 0004357656
(In the formula, R 1 , R 2 , m, n and X 1 have the same meaning as described above.)
The process of obtaining the amino cation represented by these.
<Process (c)>
Instead of the tertiary amine in step (a), using the amino cation obtained in step (b), step (a) and step (b) are repeated once to obtain the general formula (7)
Figure 0004357656
(In the formula, R 1 , R 2 , m, n and X 1 have the same meaning as described above, and p ′ represents a number of 2.)
The process of obtaining the aminopolycation represented by these.
<Process (d)>
For the amino cation represented by the general formula (6) or the amino polycation represented by the general formula (7), the general formula (8)
X-R 3 (8)
(Wherein X and R 3 have the same meaning as described above.)
Or a quaternizing agent represented by the general formula (9)
HX (9)
(In the formula, X has the same meaning as described above.)
The process of obtaining the quaternary ammonium salt represented by General formula (1) by making the acid represented by these react.
請求項1記載の工程(a)、(b)及び(d)、又は工程(a)、(b)、(c)及び(d)からなる請求項1記載の一般式(1)で表される第4級アンモニウム塩の製造法。 Claim 1, wherein the step (a), the represented by (b) and (d), or step (a), the (b), (c) and the general formula of claim 1, wherein consisting (d) (1) A method for producing a quaternary ammonium salt .
JP22445399A 1999-08-06 1999-08-06 Quaternary ammonium salt Expired - Fee Related JP4357656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22445399A JP4357656B2 (en) 1999-08-06 1999-08-06 Quaternary ammonium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22445399A JP4357656B2 (en) 1999-08-06 1999-08-06 Quaternary ammonium salt

Publications (2)

Publication Number Publication Date
JP2001048851A JP2001048851A (en) 2001-02-20
JP4357656B2 true JP4357656B2 (en) 2009-11-04

Family

ID=16814023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22445399A Expired - Fee Related JP4357656B2 (en) 1999-08-06 1999-08-06 Quaternary ammonium salt

Country Status (1)

Country Link
JP (1) JP4357656B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653348B2 (en) * 2009-05-07 2015-01-14 公立大学法人大阪府立大学 Gene transfer agent composition comprising polyamidoamine dendron
CA3131436C (en) * 2019-05-23 2023-08-29 Halliburton Energy Services, Inc. Dual cation hydrate inhibitors
BR112023000293A2 (en) 2020-07-09 2023-03-21 Advansix Resins & Chemicals Llc BRANCHED AMINO ACID SURFACTANTS
BR112023000521A2 (en) 2020-07-13 2023-01-31 Advansix Resins & Chemicals Llc BRANCHED AMINO ACID SURFACTANTS FOR USE IN HEALTHCARE PRODUCTS
JP2023534939A (en) 2020-07-13 2023-08-15 アドバンシックス・レジンズ・アンド・ケミカルズ・リミテッド・ライアビリティ・カンパニー Branched-chain amino acid surfactants for inks, paints, and adhesives

Also Published As

Publication number Publication date
JP2001048851A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JPWO2005033062A1 (en) Method for producing carboxamide and derivative thereof
JP4357656B2 (en) Quaternary ammonium salt
JP4377063B2 (en) Method for producing cationic surfactant having ester group in molecule
JP3563473B2 (en) Novel quaternary ammonium salt and method for producing the same
DE60217742T2 (en) Hair care preparations, aminocarboxamides and process for their preparation
JP2951762B2 (en) Novel amidoamine and method for producing the same
JP4721518B2 (en) Process for producing 5-amino-isophthalamide
JP3071917B2 (en) Method for producing nitrogen-containing fatty acid ester and method for producing quaternary ammonium salt containing ester group
JP3701337B2 (en) Novel quaternary ammonium salt and process for producing the same
JP4672164B2 (en) Production of quaternary ammonium salts
JP3563505B2 (en) Novel quaternary ammonium salt, method for producing the same, and hair cosmetic containing the same
JP3476555B2 (en) Method for producing quaternary ammonium salt
JP4036953B2 (en) Amine
JP3871730B2 (en) Novel quaternary ammonium salt, process for producing the same and surfactant composition, and hair cosmetic containing the same
JP2941239B2 (en) Method for preparing hydroxypropylated quaternary ammonium derivatives containing fatty acid ester functional groups
JP3563474B2 (en) Novel quaternary ammonium salt and method for producing the same
JP3081065B2 (en) Novel amine and its production method
JP4230004B2 (en) Quaternary ammonium salt and softener composition
KR100834483B1 (en) Method for preparing of cationic surfactants
JP2951790B2 (en) Method for producing N- [3-amino-propyl] amine
JP3553142B2 (en) Method for producing quaternary ammonium salt and intermediate diamino alcohol
JP2951730B2 (en) Novel betaine compound, method for producing the same, and surfactant containing the same
JP2610744B2 (en) Novel amine and its production method
JP4342645B2 (en) Method for producing imidazoline compound
JP3349694B2 (en) Surfactant for washing hair or body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees