JP4357380B2 - Method for producing aluminum alloy-silicon carbide composite - Google Patents

Method for producing aluminum alloy-silicon carbide composite Download PDF

Info

Publication number
JP4357380B2
JP4357380B2 JP2004215187A JP2004215187A JP4357380B2 JP 4357380 B2 JP4357380 B2 JP 4357380B2 JP 2004215187 A JP2004215187 A JP 2004215187A JP 2004215187 A JP2004215187 A JP 2004215187A JP 4357380 B2 JP4357380 B2 JP 4357380B2
Authority
JP
Japan
Prior art keywords
silicon carbide
aluminum alloy
carbide composite
aluminum
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004215187A
Other languages
Japanese (ja)
Other versions
JP2006040992A (en
Inventor
智志 日隈
秀樹 廣津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004215187A priority Critical patent/JP4357380B2/en
Publication of JP2006040992A publication Critical patent/JP2006040992A/en
Application granted granted Critical
Publication of JP4357380B2 publication Critical patent/JP4357380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、回路基板のベース板として好適なアルミニウム合金-炭化珪素質複合体に関する。   The present invention relates to an aluminum alloy-silicon carbide composite suitable as a base plate of a circuit board.

高絶縁性、高熱伝導性を有する窒化アルミニウム基板や窒化珪素基板等のセラミックス基板の表面に、銅製又はアルミニウム製の金属回路を、また裏面には銅製又はアルミニウム製の金属放熱板が接合されてなる回路基板は、パワーモジュール用基板として使用されている。今日、半導体素子の高集積化、小型化に伴い、発熱量は増加の一途をたどっており、いかに効率よく放熱するかが課題となっている。   A metal circuit made of copper or aluminum is joined to the surface of a ceramic substrate such as an aluminum nitride substrate or a silicon nitride substrate having high insulation and high thermal conductivity, and a metal heat sink made of copper or aluminum is joined to the back surface. The circuit board is used as a power module substrate. Today, as the integration and size of semiconductor elements increase, the amount of generated heat continues to increase, and the issue is how to efficiently dissipate heat.

従来の回路基板の放熱構造は、回路基板裏面の金属放熱板にヒートシンクがはんだ付けされており、ヒートシンク材としては銅、アルミニウムが一般的であった。しかしながら、この構造においては、半導体装置に熱負荷がかかった際に、ヒートシンクと回路基板の熱膨張係数差に起因するクラックが上記はんだに発生し、放熱が不十分となって、半導体を誤作動させたり、破損させたりする場合があった。   In a conventional heat dissipation structure for a circuit board, a heat sink is soldered to a metal heat sink on the back side of the circuit board, and copper and aluminum are generally used as the heat sink material. However, in this structure, when a thermal load is applied to the semiconductor device, cracks due to the difference in thermal expansion coefficient between the heat sink and the circuit board occur in the solder, resulting in insufficient heat dissipation, causing the semiconductor to malfunction. In some cases, it was damaged or damaged.

そこで、熱膨張係数を回路基板に近づけたヒートシンクとして、アルミニウム合金-炭化珪素質複合体が提案されている(特許文献1)。
特表平05−507030号公報
Therefore, an aluminum alloy-silicon carbide composite has been proposed as a heat sink having a thermal expansion coefficient close to that of a circuit board (Patent Document 1).
JP 05-507030 Gazette

しかしながら、半導体素子の高集積化、小型化が進んだ結果、半導体装置の温度が100℃以上になることもあり、この温度域では、アルミニウム合金-炭化珪素質複合体をヒートシンクとして用いても炭化珪素質の格子振動が大きくなって熱伝導が低下するなど、放熱材として用いるには充分ではなくなってきた。そのため、このような高温の温度域でも十分に使用に耐えうる、より放熱特性に優れた材料が求められるようになってきた。   However, as a result of higher integration and miniaturization of semiconductor elements, the temperature of the semiconductor device may reach 100 ° C. or higher. In this temperature range, even if an aluminum alloy-silicon carbide composite is used as a heat sink, carbonization is performed. It has become insufficient for use as a heat-dissipating material, for example, silicon lattice vibration increases and heat conduction decreases. Therefore, there has been a demand for a material with more excellent heat dissipation characteristics that can sufficiently withstand use even in such a high temperature range.

本発明の目的は、上記課題に鑑み、高温領域でも放熱特性が良好なアルミニウム合金-炭化珪素質複合体を提供することである。 In view of the above problems, an object of the present invention is to provide an aluminum alloy-silicon carbide composite having good heat dissipation characteristics even in a high temperature region.

即ち、本発明は、アルミニウム板を炭化珪素質多孔体で挟んだ複合体に、アルミニウム合金を含浸して得られるアルミニウム合金-炭化珪素質複合体であって、前記複合体のアルミニウム板の厚さと炭化珪素質多孔体の厚さの比が、1:9〜6:4の範囲にあることを特徴とするアルミニウム合金-炭化珪素質複合体であり、アルミニウム板が純度99.0%以上の高純度アルミニウムからなることを特徴とする該アルミニウム合金-炭化珪素質複合体であり、25℃から100℃までの熱伝導率の低下割合が15%以下、並びに、熱膨張係数が1.5×10−5/K以下である該アルミニウム合金-炭化珪素質複合体である。 That is, the present invention relates to an aluminum alloy-silicon carbide composite obtained by impregnating an aluminum alloy with a composite in which an aluminum plate is sandwiched between silicon carbide porous bodies, the thickness of the aluminum plate of the composite being An aluminum alloy-silicon carbide composite, wherein the thickness ratio of the silicon carbide based porous material is in the range of 1: 9 to 6: 4, and the aluminum plate has a high purity of 99.0% or more. The aluminum alloy-silicon carbide composite comprising the pure aluminum, the rate of decrease in thermal conductivity from 25 ° C. to 100 ° C. is 15% or less, and the thermal expansion coefficient is 1.5 × 10 The aluminum alloy-silicon carbide composite having −5 / K or less.

更には、アルミニウム板を挟み込む炭化珪素質多孔体の厚さが異なることを特徴とする該アルミニウム合金-炭化珪素質複合体であり、高圧鍛造法で製造される該アルミニウム合金-炭化珪素質複合体であり、該アルミニウム合金-炭化珪素質複合体の一主面が回路基板に接合され、他の主面が放熱面として用いられる電力制御部品である。 Furthermore, the aluminum alloy-silicon carbide composite, characterized in that the thickness of the silicon carbide porous body sandwiching the aluminum plate is different, and the aluminum alloy-silicon carbide composite manufactured by the high pressure forging method A power control component in which one main surface of the aluminum alloy-silicon carbide composite is bonded to a circuit board and the other main surface is used as a heat dissipation surface.

本発明により、例えば100℃以上のような高温領域においても、熱伝導率の低下が小さく、放熱特性に優れたアルミニウム合金-炭化珪素質複合体が提供される。 The present invention provides an aluminum alloy-silicon carbide composite having a small decrease in thermal conductivity and excellent heat dissipation characteristics even in a high temperature region such as 100 ° C. or higher.

本発明は、アルミニウム板を炭化珪素質多孔体(以下、プリフォームという)で挟んだ複合体のアルミニウム板の厚さとプリフォームの厚さの比率を制御することにより、例えば100℃以上の高温領域においても優れた放熱特性を有するアルミニウム合金-炭化珪素質複合体を提供するものである。   The present invention controls the ratio of the thickness of the aluminum plate and the thickness of the preform in which the aluminum plate is sandwiched between silicon carbide porous bodies (hereinafter referred to as preforms), for example, a high temperature region of 100 ° C. The present invention also provides an aluminum alloy-silicon carbide composite having excellent heat dissipation characteristics.

本発明に係るプリフォームは、プリフォーム中の炭化珪素質成分が55〜75体積%であることが好ましい。プリフォーム中の炭化珪素質成分が75体積%を超えると、30MPa以上の高圧をかけてもアルミニウム合金がプリフォーム中に含浸せず、気孔が残り熱伝導の妨げとなるので、良好な熱伝導性を得ることが困難になる。また、プリフォーム中の炭化珪素質成分が55体積%より低い場合は熱膨張係数を1.5×10−5/K以下とすることが困難である。 In the preform according to the present invention, the silicon carbide component in the preform is preferably 55 to 75% by volume. If the silicon carbide component in the preform exceeds 75% by volume, the aluminum alloy will not be impregnated in the preform even when a high pressure of 30 MPa or more is applied, and pores remain to hinder heat conduction. It becomes difficult to get sex. In addition, when the silicon carbide component in the preform is lower than 55% by volume, it is difficult to make the thermal expansion coefficient 1.5 × 10 −5 / K or less.

炭化珪素質粉末の平均粒子径は、特に限定されるものではないが、平均粒子径が10〜100μmのものが好ましい。平均粒子径が100μmよりも大きいと強度発現性に乏しく、一方、平均粒子径が10μm未満であると、アルミニウム合金-炭化珪素質複合体の熱伝導率が良好でない場合がある。炭化珪素質粉末の平均粒子径が10〜100μmの範囲において、粗い粒子の割合が多くなるように調整すると、熱伝導率が高くなる傾向がある。 The average particle size of the silicon carbide-based powder is not particularly limited, but those having an average particle size of 10 to 100 μm are preferable. When the average particle diameter is larger than 100 μm, the strength development is poor, whereas when the average particle diameter is less than 10 μm, the thermal conductivity of the aluminum alloy-silicon carbide composite may not be good. When the average particle diameter of the silicon carbide powder is adjusted to increase the ratio of coarse particles in the range of 10 to 100 μm, the thermal conductivity tends to increase.

成形方法は、特に限定されるものではなく、プレス成形、押し出し成形、鋳込み成形等の公知の方法が使用できる。プリフォームに強度を与える為、シリカ或いはアルミナ等を結合材として添加してもよく、更に成形直後の保形性を高めるため、必要に応じてバインダーを併用してもかまわない。ただし結合材を過剰に用いるとプリフォームの熱伝導率を低下させる要因となるので、結合材を用いる場合は、0.5〜5.0質量%の範囲で用いることが好ましい。 The molding method is not particularly limited, and known methods such as press molding, extrusion molding, and cast molding can be used. In order to give strength to the preform, silica, alumina or the like may be added as a binder, and a binder may be used in combination as necessary in order to improve shape retention immediately after molding. However, excessive use of the binder causes a decrease in the thermal conductivity of the preform. Therefore, when the binder is used, it is preferably used in the range of 0.5 to 5.0% by mass.

成形体は、バインダーを併用した場合には脱脂処理と焼成処理が施され、プリフォームとなる。脱脂は、大気中、100〜400℃の温度で10時間以上保持する条件で行われるのが一般的である。焼成温度は、3MPa以上の曲げ強度のプリフォームを得るため、800℃以上とすることが好ましい。曲げ強度が3MPa未満であると、取り扱い時や含浸中に割れる恐れがある。
焼成温度が高いほど、プリフォームは高強度となるが、炭化珪素質粉末は、酸化性雰囲気下で焼成すると酸化する場合があるので、酸化性雰囲気下では800〜1100℃の範囲で焼成することが好ましい。焼成温度及び時間は、プリフォームの大きさ、炉への投入量、雰囲気等の条件に合わせて、適宜決められる。
When the binder is used in combination, the molded body is subjected to a degreasing process and a baking process to become a preform. Degreasing is generally carried out in the air at a temperature of 100 to 400 ° C. for 10 hours or more. The firing temperature is preferably 800 ° C. or higher in order to obtain a preform having a bending strength of 3 MPa or higher. If the bending strength is less than 3 MPa, it may break during handling or during impregnation.
The higher the firing temperature, the higher the strength of the preform. However, since silicon carbide powder may be oxidized when fired in an oxidizing atmosphere, the preform should be fired in the range of 800 to 1100 ° C. in an oxidizing atmosphere. Is preferred. The firing temperature and time are appropriately determined according to conditions such as the size of the preform, the amount charged into the furnace, and the atmosphere.

本発明に係るアルミニウム板の純度は99.0%以上の高純度のものが好ましい。純度が99.0%未満では、不純物により自由電子の移動による熱伝導が抑制されるため、高温での熱伝導率が低下する傾向がある。 The aluminum plate according to the present invention preferably has a purity of 99.0% or higher. If the purity is less than 99.0%, the thermal conductivity due to the movement of free electrons is suppressed by the impurities, so that the thermal conductivity at high temperatures tends to decrease.

本発明のアルミニウム合金-炭化珪素質複合体の熱膨張係数は、アルミニウム板の厚さと炭化珪素質多孔体の合計厚さとの比を1:9〜6:4の範囲に制御することにより低減でき、熱膨張係数を目標値の1.5×10−5/K以下とすることが可能である。
アルミニウム板の厚さと炭化珪素質多孔体の合計厚さとの比が1:9より小さく高純度アルミニウム板が薄くなると、熱膨張係数を低減することが可能で、例えば1.5×10−5/K以下とすることができるが、アルミニウム部分での熱の拡散が不十分となるため、特に高温での熱伝導性が不良となる場合がある。
一方、アルミニウム板の厚さと炭化珪素質多孔体の合計厚さとの比が6:4よりも大きくアルミニウム板が厚くなると、熱膨張係数の値が大きくなり、例えば熱膨張係数を1.5×10−5/K以下にすることが困難となる場合がある。
本発明に係るアルミニウム合金-炭化珪素質複合体は、相対密度95%以上が好ましい。相対密度が95%未満の場合、気孔により熱伝導が阻害される場合がある。
The thermal expansion coefficient of the aluminum alloy-silicon carbide based composite of the present invention can be reduced by controlling the ratio between the thickness of the aluminum plate and the total thickness of the silicon carbide based porous body in the range of 1: 9 to 6: 4. The thermal expansion coefficient can be set to a target value of 1.5 × 10 −5 / K or less.
When the ratio of the thickness of the aluminum plate to the total thickness of the silicon carbide based porous material is smaller than 1: 9 and the high-purity aluminum plate is thinned, the thermal expansion coefficient can be reduced, for example, 1.5 × 10 −5 / Although it can be made K or less, since heat diffusion in the aluminum portion becomes insufficient, the thermal conductivity at a particularly high temperature may be poor.
On the other hand, when the ratio of the thickness of the aluminum plate to the total thickness of the silicon carbide based porous material is larger than 6: 4, the value of the thermal expansion coefficient increases, for example, the thermal expansion coefficient is 1.5 × 10. -5 / K or less may be difficult.
The aluminum alloy-silicon carbide composite according to the present invention preferably has a relative density of 95% or more. When the relative density is less than 95%, the heat conduction may be inhibited by the pores.

本発明のアルミニウム合金-炭化珪素質複合体の製造方法について説明する。
一般に金属-セラミックス質複合体の製造方法には、粉末冶金法、高圧鍛造法等があるが、本発明のアルミニウム合金-炭化珪素質複合体の製造方法としては、高圧下で含浸を行う高圧鍛造法が最も好適な方法である。高圧鍛造法とは、高圧容器内にセラミックス多孔体を配置し、これに金属の溶湯を高圧で含浸させて金属-セラミックス質複合体を得る方法であり、溶湯鍛造法とダイキャスト法がある。
The method for producing the aluminum alloy-silicon carbide composite of the present invention will be described.
In general, the metal-ceramic composite manufacturing method includes powder metallurgy, high-pressure forging, and the like. The aluminum alloy-silicon carbide composite manufacturing method of the present invention includes high-pressure forging in which impregnation is performed under high pressure. The method is the most preferred method. The high-pressure forging method is a method of obtaining a metal-ceramic composite by placing a ceramic porous body in a high-pressure vessel and impregnating it with a molten metal at high pressure, and includes a molten-metal forging method and a die casting method.

金属製の簡易治具に、プリフォーム/高純度アルミニウム板/プリフォームの順に配置(積層)し、両端に離型板を置いて一つのブロックとする。離型板は、予備加熱やアルミニウム合金含浸時に、プリフォームやアルミニウム合金と反応しない材質であれば特に限定されず、鉄、ステンレス、チタン等の金属板が好適に用いられる。離型性を高めるため、カーボンや窒化ホウ素等を離型板にコーティングしておくことは好ましい。
前記ブロックを500〜700℃で予備加熱後、高圧容器内に1個または2個以上配置し、ブロックの温度低下を防ぐためできるだけ速やかにアルミニウム合金の溶湯を30MPa以上の圧力で加圧し、アルミニウム合金をプリフォームの空隙中に含浸させることで、アルミニウム合金-炭化珪素質複合体のブロックが得られる。
本発明においては、高圧鍛造法によるアルミニウム合金の含浸を行った後でも、積層して挟まれたアルミニウム板の厚さは変化しないので、積層したアルミニウム板の厚さがそのままアルミニウム合金-炭化珪素質複合体中のアルミニウム層の厚みとなる。
A preform / high-purity aluminum plate / preform is placed (laminated) in this order on a simple metal jig, and a release plate is placed on both ends to form one block. The release plate is not particularly limited as long as it is a material that does not react with the preform or the aluminum alloy at the time of preheating or impregnation with an aluminum alloy, and a metal plate such as iron, stainless steel, or titanium is preferably used. In order to improve mold release properties, it is preferable to coat the release plate with carbon, boron nitride or the like.
After preheating the block at 500 to 700 ° C., one or more of them are placed in a high-pressure vessel, and in order to prevent the temperature of the block from decreasing, the molten aluminum alloy is pressurized as quickly as possible with a pressure of 30 MPa or more. Is impregnated in the voids of the preform to obtain an aluminum alloy-silicon carbide composite block.
In the present invention, even after impregnation of the aluminum alloy by the high pressure forging method, the thickness of the laminated aluminum plate does not change, so that the thickness of the laminated aluminum plate remains as it is in the aluminum alloy-silicon carbide This is the thickness of the aluminum layer in the composite.

本発明のアルミニウム合金-炭化珪素質複合体に用いるアルミニウム合金は、含浸時にプリフォームの空隙内に十分に浸透するために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを7〜25質量%含有したアルミニウム合金があげられる。更にマグネシウムを含有させることは、炭化珪素質粒子と金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば、銅等が含まれていてもよい。 The aluminum alloy used for the aluminum alloy-silicon carbide composite of the present invention preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated. Examples of such an aluminum alloy include an aluminum alloy containing 7 to 25% by mass of silicon. Furthermore, it is preferable to contain magnesium because the bond between the silicon carbide particles and the metal portion becomes stronger. The metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely. For example, copper or the like may be included.

次にアルミニウム合金-炭化珪素質複合体のブロックを湿式バンドソーにて切断し、両端に挟んだ離型板をはがしてアルミニウム合金-炭化珪素質複合体を取り出す。含浸時のひずみ除去の為に、含浸に用いたアルミニウム合金の溶融温度未満の温度でアニール処理を行うことが好ましい。アニール処理は、350〜550℃の温度で10分以上行うのが一般的である。 Next, the aluminum alloy-silicon carbide composite block is cut with a wet band saw, and the release plates sandwiched between both ends are peeled off to take out the aluminum alloy-silicon carbide composite. In order to remove strain at the time of impregnation, it is preferable to perform the annealing treatment at a temperature lower than the melting temperature of the aluminum alloy used for the impregnation. The annealing treatment is generally performed at a temperature of 350 to 550 ° C. for 10 minutes or more.

本発明のアルミニウム合金-炭化珪素質複合体の用途の一つであるベース板は、放熱フィンと接合して用いることが多いので、その接合部分の形状や反りもまた重要な特性として挙げられる。予めベース板に凸型の反りを付けたものを用いることが多いが、この反りは、通常、所定の形状を有する治具を用い、加熱下、ベース板に圧力をかけることで得られる。しかしこの方法は、反りのばらつきが大きいという課題があった。
本発明者は、アルミニウム板を挟み込む炭化珪素質多孔体の厚さを制御することにより、加熱時に所望の量の反りを導入でき、ばらつきも小さくなることを見出した。
Since the base plate, which is one of the uses of the aluminum alloy-silicon carbide composite of the present invention, is often used by being joined to a heat radiating fin, the shape and warpage of the joined portion are also important characteristics. In many cases, a base plate with a convex warp is used in advance. This warp is usually obtained by using a jig having a predetermined shape and applying pressure to the base plate under heating. However, this method has a problem that variation in warpage is large.
The inventor has found that by controlling the thickness of the silicon carbide based porous material sandwiching the aluminum plate, a desired amount of warpage can be introduced during heating, and the variation can be reduced.

本発明により、25℃から100℃までの熱伝導率の低下比率が15%以下、熱膨張係数が1.5×10−5/K以下、並びに、相対密度が95%以上のアルミニウム合金-炭化珪素質複合体が得られる。また、これを用いた放熱部品、さらにその放熱部品を用いたモジュールは、例えば100℃以上のような高温領域でも放熱特性に優れ、温度変化を受けても変形し難く、その結果、高信頼性が得られるという効果を奏する。 According to the present invention, an aluminum alloy-carbonization in which the rate of decrease in thermal conductivity from 25 ° C. to 100 ° C. is 15% or less, the thermal expansion coefficient is 1.5 × 10 −5 / K or less, and the relative density is 95% or more. A silicon composite is obtained. In addition, heat dissipation parts using this, and modules using such heat dissipation parts, have excellent heat dissipation characteristics even at high temperatures such as 100 ° C or higher, and are not easily deformed even when subjected to temperature changes, resulting in high reliability. The effect that is obtained.

炭化珪素粉末A(太平洋ランダム社製:NG−220、平均粒径:100μm)68g、炭化珪素粉末B(屋久島電工社製:GC−1000F、平均粒径:10μm)32g、及びシリカゾル(日産化学社製:スノーテックス0 固形分濃度20%)20gを秤取し、攪拌混合機で30分間混合した後、185mm×135mm×1.8mmの寸法の平板状に圧力15MPaでプレス成形した。
得られた成形体を、大気中、温度890℃で2時間焼成して、プリフォーム中の炭化珪素質成分が67体積%のプリフォームを得た。
68 g of silicon carbide powder A (manufactured by Taiheiyo Random: NG-220, average particle size: 100 μm), 32 g of silicon carbide powder B (manufactured by Yakushima Electric: GC-1000F, average particle size: 10 μm), and silica sol (Nissan Chemical Co., Ltd.) 20 g) (Snowtex 0 solid content concentration 20%) was weighed and mixed for 30 minutes with a stirring mixer, and then press-molded into a flat plate having dimensions of 185 mm × 135 mm × 1.8 mm at a pressure of 15 MPa.
The obtained molded body was fired in the atmosphere at a temperature of 890 ° C. for 2 hours to obtain a preform containing 67% by volume of a silicon carbide component in the preform.

得られたプリフォームを溶湯が流入できる湯口がついた185mm×135mm×5mmの鉄製枠にプリフォーム/高純度アルミニウム板(純度99.5%、185mm×135mm×0.9mm)/プリフォームの順に入れ、両面をカーボンコートしたSUS板(200mm×150mm×1mm)で鉄製枠を挟んで一体としたものを20個積層し、電気炉で600℃に予備加熱した。次にそれをあらかじめ加熱しておいた内径300mmのプレス型内に収め、シリコンを12質量%、マグネシウムを0.5質量%含有するアルミニウム合金(融点580℃)の溶湯を注ぎ、80MPaの圧力で20分間加圧してプリフォームにアルミニウム合金を含浸させた。アルミニウム合金-炭化珪素質複合体ブロックを室温まで冷却した後、湿式バンドソーにて枠等を切断し、両面に挟んだ離型板をはがした後に、含浸時のひずみ除去の為に530℃で3時間アニール処理を行いアルミニウム合金-炭化珪素質複合体を得た。 Preform / high-purity aluminum plate (purity 99.5%, 185 mm × 135 mm × 0.9 mm) / preform in the order of an obtained 185 mm × 135 mm × 5 mm steel frame with a pouring gate through which molten metal can flow. Then, 20 SUS plates (200 mm × 150 mm × 1 mm) coated with carbon on both sides were stacked together with an iron frame sandwiched, and preheated to 600 ° C. in an electric furnace. Next, it was put in a pre-heated press mold having an inner diameter of 300 mm, and a molten aluminum alloy (melting point 580 ° C.) containing 12% by mass of silicon and 0.5% by mass of magnesium was poured at a pressure of 80 MPa. The preform was impregnated with an aluminum alloy by applying pressure for 20 minutes. After cooling the aluminum alloy-silicon carbide composite block to room temperature, the frame is cut with a wet band saw, the release plate sandwiched between both sides is peeled off, and the strain is removed at 530 ° C. at the time of impregnation. An annealing treatment was performed for 3 hours to obtain an aluminum alloy-silicon carbide composite.

得られたアルミニウム合金-炭化珪素質複合体の縁周部4隅に直径8mmの加工穴を設け、端部に付着したアルミニウム合金を除去した。アルミニウム合金-炭化珪素質複合体の表面を、ブラスト表面研磨機を用いてアルミナ砥粒で表面研磨した後(圧力:0.4MPa、搬送速度:1.0m/min)、めっき処理を行った。なお、前記めっきは、無電解Ni-P(5μm)、無電解Ni-B(2μm)の2層とした。 Processed holes with a diameter of 8 mm were provided at the four corners of the peripheral edge of the obtained aluminum alloy-silicon carbide composite, and the aluminum alloy adhering to the ends was removed. The surface of the aluminum alloy-silicon carbide composite was polished with alumina abrasive grains using a blast surface polishing machine (pressure: 0.4 MPa, transport speed: 1.0 m / min), and then subjected to plating treatment. The plating was made of two layers of electroless Ni—P (5 μm) and electroless Ni—B (2 μm).

アルミニウム合金-炭化珪素質複合体から、研削加工により熱膨張係数測定用試験体(20mm×5mm×5mm)、熱伝導率測定用試験体(直径10Φmm×5mm)、強度測定用試験体(40mm×4mm×4mm)、相対密度測定用試験体(20mm×5mm×5mm)の試験片を作製した。それぞれの試験片を用いて、25〜150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、25℃、100℃での熱伝導率をレーザーフラッシュ法(理学電機社製;TC−7000)で、25℃の3点曲げ強度を抗折強度計(今田製作所製;SV-301)で測定した。相対密度は、試験体の重量を測定後、算出した密度を、プリフォームの空隙にAlが完全に含浸したときの理論密度で除して求めた。結果を表1に示す。 From an aluminum alloy-silicon carbide composite, a thermal expansion coefficient measurement specimen (20 mm × 5 mm × 5 mm), a thermal conductivity measurement specimen (diameter 10Φ mm × 5 mm), and a strength measurement specimen (40 mm ×) by grinding. 4 mm × 4 mm) and a test piece for relative density measurement (20 mm × 5 mm × 5 mm) were prepared. Using each test piece, a thermal expansion coefficient of 25 to 150 ° C. was measured with a thermal dilatometer (Seiko Denshi Kogyo Co., Ltd .; TMA300), and thermal conductivity at 25 ° C. and 100 ° C. was measured with a laser flash method (manufactured by Rigaku Corporation) TC-7000), and a three-point bending strength at 25 ° C. was measured with a bending strength meter (manufactured by Imada Seisakusho; SV-301). The relative density was determined by measuring the weight of the specimen and dividing the calculated density by the theoretical density when Al was completely impregnated in the voids of the preform. The results are shown in Table 1.

プリフォームの合計の厚さを2.6mm(1.3mm×2)、アルミニウム板の厚さを2.0mmとしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。   An aluminum alloy-silicon carbide composite was prepared in the same manner as in Example 1 except that the total thickness of the preform was 2.6 mm (1.3 mm × 2) and the thickness of the aluminum plate was 2.0 mm. Fabricated and evaluated. The results are shown in Table 1.

厚さが1.4mm及び1.2mmの2種類のプリフォームを用い、更にアルミニウム板の厚さを2.0mmとしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。   Aluminum alloy-silicon carbide composite as in Example 1 except that two types of preforms having a thickness of 1.4 mm and 1.2 mm were used and the thickness of the aluminum plate was 2.0 mm. Were prepared and evaluated. The results are shown in Table 1.

プリフォームの合計の厚さを4.5mm(2.25mm×2)、アルミニウム板の厚さを0.5mmとしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。   An aluminum alloy-silicon carbide composite was prepared in the same manner as in Example 1 except that the total thickness of the preform was 4.5 mm (2.25 mm × 2) and the thickness of the aluminum plate was 0.5 mm. Fabricated and evaluated. The results are shown in Table 1.

プリフォームの合計の厚さを2.0mm(1.0mm×2)、アルミニウム板の厚さを3.0mmとしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。   An aluminum alloy-silicon carbide composite was prepared in the same manner as in Example 1 except that the total thickness of the preform was 2.0 mm (1.0 mm × 2) and the thickness of the aluminum plate was 3.0 mm. Fabricated and evaluated. The results are shown in Table 1.

(比較例1)
プリフォームの厚さを4.6mmとし、アルミニウム板を使用しなかったこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。
(Comparative Example 1)
An aluminum alloy-silicon carbide composite was prepared and evaluated in the same manner as in Example 1 except that the thickness of the preform was 4.6 mm and no aluminum plate was used. The results are shown in Table 1.

(比較例2)
プリフォームの合計の厚さを0.9mm、アルミニウム板の厚さを3.6mmとしたこと以外は、実施例1と同様にしてアルミニウム合金-炭化珪素質複合体を作製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
An aluminum alloy-silicon carbide composite was prepared and evaluated in the same manner as in Example 1 except that the total thickness of the preform was 0.9 mm and the thickness of the aluminum plate was 3.6 mm. . The results are shown in Table 1.

Figure 0004357380
Figure 0004357380

実施例1〜5、並びに比較例1〜2において得られたアルミニウム合金-炭化珪素質複合体を窒化アルミニウム回路基板裏面の銅放熱板にはんだ付けし、回路基板上の半導体素子に100Wの電力をかけて、10時間後の半導体素子の温度を測定し、クラック発生の有無を観察した。結果を表1に併記する。但し、実施例3では、厚さが1.2mmのプリフォーム側に回路基板を接合した。実施例1〜5では、クラックの発生がなく、半導体素子の温度上昇を抑制することが可能であった。
The aluminum alloy-silicon carbide composite obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was soldered to the copper heat sink on the back surface of the aluminum nitride circuit board, and 100 W of power was applied to the semiconductor element on the circuit board. The temperature of the semiconductor element after 10 hours was measured, and the presence or absence of cracks was observed. The results are also shown in Table 1. However, in Example 3, the circuit board was bonded to the preform side having a thickness of 1.2 mm. In Examples 1 to 5, there was no occurrence of cracks and it was possible to suppress the temperature rise of the semiconductor element.

Claims (3)

アルミニウム板を炭化珪素質多孔体で挟んだ複合体に高圧鍛造法でアルミニウム合金を含浸して得られるアルミニウム合金-炭化珪素質複合体であって、前記複合体のアルミニウム板の厚さと炭化珪素質多孔体の厚さの比が、1:9〜6:4の範囲にあることを特徴とする、高温領域でも放熱特性に優れたアルミニウム合金-炭化珪素質複合体の製造方法An aluminum alloy-silicon carbide composite obtained by impregnating an aluminum plate with a silicon carbide porous body and impregnating the aluminum alloy with a high pressure forging method , wherein the thickness of the aluminum plate of the composite and the silicon carbide A method for producing an aluminum alloy-silicon carbide composite having excellent heat dissipation characteristics even in a high temperature region, wherein the thickness ratio of the porous body is in the range of 1: 9 to 6: 4. アルミニウム板が、純度99.0%以上の高純度アルミニウムからなることを特徴とする請求項1記載のアルミニウム合金-炭化珪素質複合体の製造方法2. The method for producing an aluminum alloy-silicon carbide composite according to claim 1, wherein the aluminum plate is made of high-purity aluminum having a purity of 99.0% or more. アルミニウム板を挟み込む炭化珪素質多孔体の厚さが異なることを特徴とする請求項1又は2記載のアルミニウム合金-炭化珪素質複合体の製造方法The method for producing an aluminum alloy-silicon carbide composite according to claim 1 or 2, wherein the thickness of the silicon carbide porous body sandwiching the aluminum plate is different.
JP2004215187A 2004-07-23 2004-07-23 Method for producing aluminum alloy-silicon carbide composite Active JP4357380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215187A JP4357380B2 (en) 2004-07-23 2004-07-23 Method for producing aluminum alloy-silicon carbide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215187A JP4357380B2 (en) 2004-07-23 2004-07-23 Method for producing aluminum alloy-silicon carbide composite

Publications (2)

Publication Number Publication Date
JP2006040992A JP2006040992A (en) 2006-02-09
JP4357380B2 true JP4357380B2 (en) 2009-11-04

Family

ID=35905700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215187A Active JP4357380B2 (en) 2004-07-23 2004-07-23 Method for producing aluminum alloy-silicon carbide composite

Country Status (1)

Country Link
JP (1) JP4357380B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130191B2 (en) 2016-07-22 2021-09-28 Hamilton Sundstrand Corporation Method of manufacturing metal articles
CN107012346B (en) * 2017-03-14 2018-11-23 广东鸿邦金属铝业有限公司 A kind of preparation method of the aluminium base of high temperature resistant low thermal coefficient of expansion/PMOS base complex layered materials
CN107502790B (en) * 2017-08-18 2019-06-21 吴振江 Nano-pore aluminum alloy materials and its manufacturing method and protection system

Also Published As

Publication number Publication date
JP2006040992A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4761157B2 (en) Aluminum-silicon carbide composite
KR101344152B1 (en) - aluminum/silicon carbide composite and radiating part comprising the same
JP5144279B2 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
JP5021636B2 (en) Aluminum-silicon carbide composite and processing method thereof
EP3121847B1 (en) Aluminium-silicon carbide composite, and power-module base plate
JP6636924B2 (en) Aluminum-silicon carbide composite and method for producing the same
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
EP3104406B1 (en) Power module
JP4187739B2 (en) Aluminum alloy-silicon carbide silicon nitride composite
JP4864593B2 (en) Method for producing aluminum-silicon carbide composite
JP2011139000A (en) Power module structure and method of manufacturing the same
JP3907620B2 (en) Ceramic circuit board integrated aluminum-silicon carbide composite and manufacturing method thereof
JP5208616B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2008071845A (en) Heat-dissipating part and its manufacturing method
JP4191124B2 (en) Aluminum alloy-ceramic composite and method for producing the same
JP4357380B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP5388464B2 (en) Aluminum-ceramic composite and method for producing the same
JP6617153B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP5284704B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP4319939B2 (en) Method for producing aluminum alloy-ceramic composite
JP5457992B2 (en) Method for producing aluminum-ceramic composite structural part
JP3732193B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2004055761A (en) Aluminum-silicon carbide composite and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250