JP4356531B2 - Steel continuous casting method and electromagnetic force control device for molten steel in mold - Google Patents

Steel continuous casting method and electromagnetic force control device for molten steel in mold Download PDF

Info

Publication number
JP4356531B2
JP4356531B2 JP2004174551A JP2004174551A JP4356531B2 JP 4356531 B2 JP4356531 B2 JP 4356531B2 JP 2004174551 A JP2004174551 A JP 2004174551A JP 2004174551 A JP2004174551 A JP 2004174551A JP 4356531 B2 JP4356531 B2 JP 4356531B2
Authority
JP
Japan
Prior art keywords
mold
electromagnetic
magnetic pole
molten steel
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004174551A
Other languages
Japanese (ja)
Other versions
JP2005349454A (en
Inventor
信宏 岡田
幸司 高谷
正幸 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004174551A priority Critical patent/JP4356531B2/en
Publication of JP2005349454A publication Critical patent/JP2005349454A/en
Application granted granted Critical
Publication of JP4356531B2 publication Critical patent/JP4356531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、たとえばスラブを連続鋳造するに際し、鋳型内溶鋼の流れを制御しつつ連続鋳造する方法、および、この連続鋳造方法を実施する鋳型内溶鋼の電磁力制御装置に関するものである。   The present invention relates to a method of continuous casting while controlling the flow of molten steel in a mold, for example, when continuously casting a slab, and to an electromagnetic force control apparatus for molten steel in a mold for performing this continuous casting method.

鋼の連続鋳造では、通常、2つの吐出孔を有する浸漬ノズルを使用して鋳型内に溶鋼を給湯している。浸漬ノズルからの溶鋼吐出流は、鋳型の短辺内壁に衝突した後、図14に矢印で示したように、上下方向に分散して鋳型1内の全域に行き渡るため、溶鋼吐出流を制御して鋳型1内の流動状態を制御もしくは調整することは、操業上ならびに品質管理上重要な技術である。なお、図14中の2は浸漬ノズル、2aは浸漬ノズル2の吐出孔、3は溶鋼を示す。   In continuous casting of steel, molten steel is usually supplied into a mold using an immersion nozzle having two discharge holes. Since the molten steel discharge flow from the immersion nozzle collides with the inner wall of the short side of the mold and then spreads in the vertical direction and reaches the entire area of the mold 1 as shown by the arrows in FIG. 14, the molten steel discharge flow is controlled. Thus, controlling or adjusting the flow state in the mold 1 is an important technique in terms of operation and quality control. In FIG. 14, 2 is an immersion nozzle, 2a is a discharge hole of the immersion nozzle 2, and 3 is molten steel.

このような鋳型内における溶鋼の流動状態の制御を実現するための方法として、目的に合わせて浸漬ノズルの形状を設計する方法、鋳型内の溶鋼に電磁力を作用させる方法などがある。このうち、後者の溶鋼に電磁力を作用させる方法は、大きく分けて2種類に大別され、それぞれ、溶鋼吐出流に電磁制動を与える電磁ブレーキ、溶鋼を攪拌する電磁攪拌と呼ばれている。   As a method for realizing the control of the flow state of the molten steel in the mold, there are a method of designing the shape of the immersion nozzle in accordance with the purpose, a method of applying an electromagnetic force to the molten steel in the mold, and the like. Among these, the latter method of applying an electromagnetic force to the molten steel is roughly divided into two types, which are called an electromagnetic brake for applying electromagnetic braking to the molten steel discharge flow and an electromagnetic stirring for stirring the molten steel, respectively.

電磁ブレーキは、溶鋼の流速を低下させるために溶鋼流速が速い領域に静磁場を印可して制動を得るもので、静磁場は、一般的には、鉄芯に巻いたコイルに直流電流を供給することで印可する。一方、電磁攪拌は、鉄芯に巻いたコイルに交流電流を印可することで溶鋼中に動磁場を印可し、溶鋼中に生じるローレンツ力によって溶鋼を攪拌するものである。   An electromagnetic brake applies a static magnetic field to a region where the molten steel flow rate is high in order to reduce the flow velocity of the molten steel, thereby obtaining braking. The static magnetic field generally supplies a direct current to a coil wound around an iron core. Apply by doing. On the other hand, electromagnetic stirring applies a dynamic magnetic field in molten steel by applying an alternating current to a coil wound around an iron core, and stirs the molten steel by Lorentz force generated in the molten steel.

この電磁ブレーキと電磁攪拌の自由な選択は、鋳込み時の操業の自由度を確保する上で重要であり、すでに幾つかの方法が提案されている。
たとえば、スラブ等の連続鋳造において、奇数個のコイルの中心に位置する磁極鉄芯を浸漬ノズルの吐出位置に配置し、直流または交流の電流を選択的に印可することで、電磁ブレーキと電磁攪拌を兼用可能とする技術が開示されている。
特開昭63−188461号公報
This free selection between the electromagnetic brake and the electromagnetic stirring is important for ensuring the freedom of operation during casting, and several methods have already been proposed.
For example, in continuous casting such as slabs, a magnetic iron core and an electromagnetic stirrer are provided by selectively applying a direct current or alternating current to a magnetic iron core located at the center of an odd number of coils at the discharge position of an immersion nozzle. A technique that can be used in combination is disclosed.
JP-A-63-188461

しかしながら、特許文献1の技術は、コイルの中心に位置する磁極鉄芯を浸漬ノズルの吐出位置に配置しているので、電磁ブレーキ時に浸漬ノズルに磁場が印可されると、浸漬ノズルに沿って上昇流が発生するなど、鋳造に悪い影響を及ぼす溶鋼流動が発生するという問題がある。   However, in the technique of Patent Document 1, since the magnetic iron core located at the center of the coil is arranged at the discharge position of the immersion nozzle, when the magnetic field is applied to the immersion nozzle during electromagnetic braking, it rises along the immersion nozzle. There is a problem that a molten steel flow that adversely affects casting occurs, such as a flow.

なお、この特許文献1に記載の技術にあった問題を解決すべく、発明者らは、磁極が浸漬ノズルの吐出位置と対向しないように、偶数個の励磁コイルを配置し、直流又は2相交流を選択的に印可することにより電磁ブレーキと電磁攪拌を共に効率良く兼用できる技術を特願2003−122720号で提案した。   In order to solve the problem associated with the technique described in Patent Document 1, the inventors have arranged an even number of exciting coils so that the magnetic pole does not face the discharge position of the immersion nozzle, and the direct current or the two-phase. Japanese Patent Application No. 2003-122720 has proposed a technique that can effectively use both electromagnetic braking and electromagnetic stirring by selectively applying alternating current.

発明者らが提案した技術は、特許文献1にあった問題を解決できるものであるが、電磁攪拌性能については更なる性能向上が望まれている。   The technique proposed by the inventors can solve the problem in Patent Document 1, but further improvement in the performance of the electromagnetic stirring performance is desired.

本発明が解決しようとする問題点は、従来の電磁ブレーキと電磁攪拌の兼用技術では、共に十分な性能を確保することができないという点である。   The problem to be solved by the present invention is that both conventional electromagnetic brake and electromagnetic stirring technologies cannot ensure sufficient performance.

発明者は、前記特願2003−122720号で提案した技術において、電磁攪拌性能について更なる性能向上を達成すべく種々の数値解析によるシミュレーションを重ねた結果、以下の本発明を成立させた。   The inventor, in the technique proposed in the Japanese Patent Application No. 2003-122720, has conducted the following present invention as a result of repeated simulations by various numerical analyzes in order to achieve further improvement in electromagnetic stirring performance.

すなわち、本発明の鋼の連続鋳造方法は、
電磁ブレーキと電磁攪拌の兼用技術における更なる性能向上を達成するために、
鋳型の外周に配置された励磁コイルに直流又は交流の電流を供給することにより、鋳型内の溶鋼に電磁制動又は電磁攪拌を選択的に作用させて鋼を連続鋳造する方法において、
鋳型長辺の外側に配置される電磁コイルは、浸漬ノズルを挟んで各n個ずつ(nは自然数)、鋳型合計で4n個配置され、
これらそれぞれの磁極鉄芯は、各2個ずつに分割され、これら分割された磁極鉄芯のそれぞれの外周部に巻き回された2個の励磁コイルと、前記分割された2個の磁極鉄芯の外周部に巻き回された1個の励磁コイルを有し、
鋳型長辺と前記磁極鉄芯の鋳型長辺側先端との間隔Lを40mm以上、160mm以下となし、
鋳型内溶鋼を電磁攪拌する際には、前記各長辺側の2n個の電磁コイルに通電する交流電流の位相を反転させて、メニスカス全体を旋回する流動状態での流速が20cm/秒以上となるようにし、
また、鋳型内溶鋼に電磁ブレーキを付与する際には、1個の電磁コイル当たり、前記分割された2個の磁極鉄芯の外周に巻き回した励磁コイルに直流電流を通電するか、または、前記3個の励磁コイルに直流電流を通電し、各電磁コイルによって鋳型内溶鋼に0.15(T)以上の磁束密度を与えることを主要な特徴としている。
That is, the steel continuous casting method of the present invention,
In order to achieve further performance improvement in the combined technology of electromagnetic brake and electromagnetic stirring,
In the method of continuously casting steel by selectively applying electromagnetic braking or electromagnetic stirring to the molten steel in the mold by supplying direct current or alternating current to the excitation coil arranged on the outer periphery of the mold,
The electromagnetic coils arranged on the outside of the long side of the mold are arranged with n pieces each (n is a natural number) across the immersion nozzle, 4n pieces in total,
Each of these magnetic pole iron cores is divided into two pieces, two excitation coils wound around the respective outer peripheral portions of the divided magnetic pole iron cores, and the two divided magnetic pole iron cores Having one exciting coil wound around the outer periphery of
The distance L between the mold long side and the tip of the magnetic pole core on the mold long side is 40 mm or more and 160 mm or less.
When electromagnetically stirring the molten steel in the mold, the flow rate in a flow state in which the entire meniscus is swung is reversed to 20 cm / second or more by inverting the phase of the alternating current applied to the 2n electromagnetic coils on each long side. To be
Further, when applying an electromagnetic brake to the molten steel in the mold, a direct current is applied to the excitation coil wound around the outer periphery of the two divided magnetic pole cores per one electromagnetic coil, or The main feature is that a direct current is applied to the three exciting coils and a magnetic flux density of 0.15 (T) or more is given to the molten steel in the mold by each electromagnetic coil.

前記本発明の鋼の連続鋳造方法は、
鋳型長辺の外側に、浸漬ノズルを挟んで各n個ずつ、鋳型合計で4n個配置され、
各2個ずつに分割された磁極鉄芯と、これら分割された磁極鉄芯のそれぞれの外周部に巻き回された2個の励磁コイルと、前記分割された2個の磁極鉄芯の外周部に巻き回された1個の励磁コイルを有する、それぞれの電磁コイルにおける前記磁極鉄芯の設置位置を、鋳型長辺と前記磁極鉄芯の鋳型長辺側先端との間隔Lを40mm以上、160mm以下となし、
電磁ブレーキを付与する際には、1個の電磁コイル当たり、前記分割された2個の磁極鉄芯の外周に巻き回した励磁コイルに直流電流を通電するか、または、前記3個の励磁コイルに直流電流を通電して、前記各電磁コイルによる鋳型内溶鋼に与える磁束密度を0.15(T)以上となし、
また、電磁攪拌を行う際には、前記各長辺側の2n個の電磁コイルに通電する交流電流の位相を反転させて、メニスカス全体を旋回する流動状態での流速を20cm/秒以上となすようにしたことを主要な特徴とする本発明の鋳型内溶鋼の電磁力制御装置を使用することで実施できる。
The steel continuous casting method of the present invention,
On the outside of the long side of the mold, 4 n pieces are arranged in total, n pieces each with an immersion nozzle in between,
Magnetic pole cores divided into two pieces each, two excitation coils wound around the respective outer peripheral parts of the divided magnetic pole iron cores, and outer peripheral parts of the two divided magnetic pole iron cores The installation position of the magnetic pole iron core in each electromagnetic coil having one exciting coil wound around is set to a distance L between the mold long side and the mold long side tip of the magnetic pole iron core of 40 mm or more and 160 mm. None of the following,
When applying an electromagnetic brake , a DC current is applied to the excitation coil wound around the outer periphery of the two magnetic pole cores divided per one electromagnetic coil, or the three excitation coils The magnetic flux density applied to the molten steel in the mold by each electromagnetic coil is 0.15 (T) or more by passing a direct current through
In addition, when performing electromagnetic stirring, the phase of the alternating current applied to the 2n electromagnetic coils on each of the long sides is reversed , and the flow velocity in the flow state in which the entire meniscus is swirled becomes 20 cm / second or more. to mainly characterized in that the Suyo be implemented by using an electromagnetic force control device for the molten steel in the mold of the present invention.

かかる本発明においては、鋳型長辺の外側に、浸漬ノズルを挟んで各n個ずつ、鋳型合計で4n個配置した電磁コイルそれぞれに、各2個ずつに分割された磁極鉄芯と、これら分割された磁極鉄芯のそれぞれの外周部に巻き回された2個の励磁コイルと、前記分割された2個の磁極鉄芯の外周部に巻き回された1個の励磁コイルを有し、鋳型長辺と前記磁極鉄芯の鋳型長辺側先端との間隔Lを40mm以上、160mm以下となるようにすると共に、前記磁極鉄芯を、鋳型壁との間隔が、電磁ブレーキを付与する際には、1個の電磁コイル当たり、前記分割された2個の磁極鉄芯の外周に巻き回した励磁コイルに直流電流を通電するか、または、前記3個の励磁コイルに直流電流を通電して、前記各電磁コイルによる鋳型内溶鋼に与える磁束密度を0.15(T)以上となし、また、電磁攪拌を行う際には、前記各長辺側の2n個の電磁コイルに通電する交流電流の位相を反転させて、メニスカス全体を旋回する流動状態での流速を20cm/秒以上となすことで、鋳型内の広範囲において、電磁攪拌性能と電磁ブレーキ性能の向上が図れるようになる。 In the present invention, the magnetic pole iron core divided into two pieces respectively for each of the electromagnetic coils arranged in a total of 4n pieces on the outer side of the long side of the mold with n immersion nozzles therebetween, and the divided pieces. A mold having two excitation coils wound around the outer periphery of each of the magnetic pole iron cores and one excitation coil wound around the outer periphery of the two divided magnetic pole iron cores. The distance L between the long side and the tip of the magnetic pole core on the long side of the mold is set to 40 mm or more and 160 mm or less, and the distance between the magnetic core and the mold wall is set when applying an electromagnetic brake. In each electromagnetic coil, a direct current is applied to the excitation coil wound around the outer periphery of the two divided magnetic pole cores, or a direct current is applied to the three excitation coils. , the magnetic flux density to provide the in-mold molten steel by the electromagnetic coil None and 0.15 (T) or more, when performing electromagnetic stirring, a fluidized state where the by inverting the phase of the AC current supplied to the 2n electromagnetic coil of each long side, to pivot the entire meniscus By increasing the flow rate at 20 cm / second or more, electromagnetic stirring performance and electromagnetic braking performance can be improved over a wide range in the mold.

前記の本発明において、各電磁コイルによる鋳型内溶鋼に与える磁束密度が0.15(T)以上となるような位置に、鋳型壁との間隔を存して磁極鉄芯を設置するのは、電磁ブレーキ性能を確保するためには、0.15(T)以上の磁束密度が必要だからであり、発明者らのシミュレーション解析の結果によれば、鋳型と磁極鉄芯との間隔は、160mm以下の場合に、0.15(T)以上の磁束密度が確保できた。   In the present invention described above, the magnetic pole iron core is disposed at a position where the magnetic flux density given to the molten steel in the mold by each electromagnetic coil is 0.15 (T) or more with a gap from the mold wall. This is because a magnetic flux density of 0.15 (T) or more is necessary to ensure the electromagnetic brake performance. According to the results of simulation analysis by the inventors, the distance between the mold and the magnetic pole iron core is 160 mm or less. In this case, a magnetic flux density of 0.15 (T) or more could be secured.

一方、良好な電磁攪拌を行うには、メニスカス全体を旋回する流動状態でその流速が20cm/秒以上となることが必要で、発明者らのシミュレーション解析の結果によれば、前記間隔が40mm以上の場合に20cm/秒以上の前記流速を得ることができた。
なお、これらの磁束密度、流速を得るための鋳型壁と磁極鉄芯との間隔は、使用する鋳型や鋳型に鋳込む溶鋼などの各種条件によって若干の相違があることは言うまでもない。
On the other hand, in order to perform good electromagnetic stirring, it is necessary that the flow velocity is 20 cm / second or more in a flow state in which the entire meniscus is swirled. According to the results of simulation analysis by the inventors, the interval is 40 mm or more. In this case, the flow velocity of 20 cm / second or more could be obtained.
In addition, it cannot be overemphasized that the space | interval of the casting_mold | template wall and magnetic pole iron core for obtaining these magnetic flux densities and flow velocity has some differences with various conditions, such as a casting_mold | template used and the molten steel cast | casted to a casting_mold | template.

本発明により、電磁ブレーキと電磁攪拌の兼用技術において、十分な電磁ブレーキ性能と電磁攪拌性能が共に確保できるという利点がある。   According to the present invention, there is an advantage that sufficient electromagnetic brake performance and electromagnetic stirring performance can be secured in the combined technology of electromagnetic braking and electromagnetic stirring.

以下、本発明の着想から課題解決に至るまでの過程と共に本発明を実施するための最良の形態について、図1〜図13を用いて説明する。
発明者らは、以下の数値解析によるシミュレーション結果から、電磁攪拌を行うに際しては鋳型と磁極鉄芯(以下、単に「鉄芯」と言う。)を離すことが非常に有効であることを知見した。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 1 to 13 together with the process from the idea of the present invention to the solution of the problem.
The inventors have found from simulation results by the following numerical analysis that it is very effective to separate the mold from the magnetic iron core (hereinafter simply referred to as “iron core”) when performing electromagnetic stirring. .

図1は、長辺側が1250mm、短辺側が235mmの内寸の鋳型(長辺側の厚み42.5mm、短辺側の厚み55mm)における鋳型長辺の外側に、幅が350mmの鉄芯4を、その一方端(図1の紙面左側)が鋳型短辺から80mmの位置となるように、15mmの間隔を存して、浸漬ノズル2を挟むように各1個ずつ、鋳型合計で4個配置した場合の設置位置関係を説明する図である。そして、この位置関係において、以下の解析条件でシミュレーションした場合における攪拌力分布の結果を、図2に示している。 FIG. 1 shows an iron core 4 having a width of 350 mm on the outer side of a long side of a casting mold having a long side of 1250 mm and a short side of 235 mm (long side thickness 42.5 mm, short side thickness 55 mm). the, as its one end (left side in FIG. 1) is a position of 80mm from the mold short side, 1 9 5 mm intervals and presence of, one each so as to sandwich the immersion nozzle 2, in a mold total It is a figure explaining the installation position relationship at the time of arrange | positioning four pieces. And in this positional relationship, the result of stirring force distribution in the case of simulating on the following analysis conditions is shown in FIG.

(数値解析条件)
周波数:1.5Hz
コイル電流:50000AT
溶鋼導電率:7.14×105S/m
鋳型導電率:3.75×107S/m
鉄芯比透磁率:500
(Numerical analysis conditions)
Frequency: 1.5Hz
Coil current: 50000AT
Molten steel conductivity: 7.14 × 10 5 S / m
Mold conductivity: 3.75 × 10 7 S / m
Iron core relative permeability: 500

一般的に、スラブの連続鋳造において、電磁攪拌として良好なものは、メニスカス域全体が旋回する流動状態であるが、図1のように、断面積が大きな鉄芯4を鋳型1に密着させた場合には、鋳型1を貫通する磁束強度が強くなるために、図2に示したように、鋳型1の短辺方向への攪拌力が強くなり、電磁攪拌としては良好なものではなかった。   Generally, in the continuous casting of slabs, a good electromagnetic stirring is a fluid state in which the entire meniscus region swirls, but an iron core 4 having a large cross-sectional area is brought into close contact with the mold 1 as shown in FIG. In this case, the strength of the magnetic flux penetrating the mold 1 was increased, so that the stirring force in the short side direction of the mold 1 was increased as shown in FIG. 2, and the electromagnetic stirring was not good.

一方、鉄芯4を鋳型1から6cm離して配置(図3参照)したほかは図1と同じ条件でシミュレーションした場合の攪拌力分布を図4に示す。鋳型1と鉄芯4の間に間隔を設けることにより、鋳型短辺方向への磁気抵抗が生じ、図4に示すように、攪拌力が鋳型長辺方向を向いて旋回流が得られる攪拌力分布となることが判明した。   On the other hand, FIG. 4 shows a stirring force distribution when a simulation is performed under the same conditions as in FIG. By providing an interval between the mold 1 and the iron core 4, a magnetic resistance is generated in the mold short side direction, and the stirring force is obtained in which the stirring force is directed in the mold long side direction and a swirl flow is obtained as shown in FIG. 4. It turned out to be a distribution.

但し、図3のように、ただ鋳型1と鉄芯4の間に間隔を設けただけでは、鋳型1の隅(図4では紙面左上及び右下の隅)には攪拌力が存在せず、良好な旋回流が得られるとは言えない。   However, as shown in FIG. 3, just by providing a gap between the mold 1 and the iron core 4, there is no stirring force at the corners of the mold 1 (upper left corner and lower right corner in FIG. 4), It cannot be said that a good swirl flow is obtained.

このように、図1及び図2、図3及び図4のシミュレーション結果から、攪拌力は浸漬ノズルを挟むように配置した鉄芯の間に生じていることが確認された。従って、攪拌力が得られる領域を増やすには、鉄芯を鋳型の隅に設置することが考えられる。   Thus, from the simulation results of FIGS. 1, 2, 3, and 4, it was confirmed that the stirring force was generated between the iron cores arranged so as to sandwich the immersion nozzle. Therefore, in order to increase the region where the stirring force can be obtained, it is conceivable to install an iron core at the corner of the mold.

ところで、図1〜図4は通常鋳型の場合におけるシミュレーション結果を示したものであるが、鋳型の幅によっては鋳型中心に鉄芯が位置しないツイン鋳型の場合にも、図5に示したように、略同様の結果が得られた。なお、図5(a)(b)はツイン鋳型の場合の図2及び図4と同じ条件のシミュレーション結果を示した図である。
以下、このツイン鋳型を使用した場合のシミュレーション結果に基づいて説明する。
1 to 4 show the simulation results in the case of a normal mold. However, depending on the width of the mold, as shown in FIG. 5, even in the case of a twin mold in which the iron core is not located at the mold center. A substantially similar result was obtained. 5A and 5B are diagrams showing simulation results under the same conditions as in FIGS. 2 and 4 in the case of a twin mold.
In the following, description will be given based on the simulation results when this twin mold is used.

しかしながら、鉄芯を鋳型の隅に設置するということは、浸漬ノズルの吐出孔付近には鉄芯が存在しないことにほかならず、溶鋼吐出流速が速くなる浸漬ノズルの吐出孔付近に静磁場を印可しなければならない電磁ブレーキ時には望ましいことではない。   However, installing an iron core in the corner of the mold means that there is no iron core near the discharge hole of the immersion nozzle, and a static magnetic field is applied near the discharge hole of the immersion nozzle where the molten steel discharge flow rate increases. This is not desirable when electromagnetic braking must be done.

そこで、発明者らは、図6に示すように、前記幅が350mmのそれぞれの鉄芯4を、110mmの間隔を存した幅が120mmの2つの鉄芯4a,4bに分割することにより、鉄芯位置は電磁ブレーキ時に望ましい位置から変更することなく、攪拌力が得られる領域を増加できると考えた。   Therefore, as shown in FIG. 6, the inventors divided each iron core 4 having a width of 350 mm into two iron cores 4 a and 4 b having a width of 110 mm with a space of 110 mm, thereby providing iron We considered that the area where the stirring force can be obtained can be increased without changing the core position from the desired position during electromagnetic braking.

この図6のように、鉄芯を分割した場合における、垂直断面の鉄芯中心位置における鋳型内水平断面での攪拌力分布を同図に併せて示すが、発明者らの前記シミュレーションの結果に基づく考え方、すなわち、鉄芯を鋳型から離して設置すること、鉄芯を分割することは、共に電磁ブレーキ性能を低下させることになることが判明した。なお、図6では、鉄芯を分割した以外の解析条件、鉄芯の鋳型への設置位置は前記図1と同じである。   As shown in FIG. 6, the distribution of stirring force in the horizontal cross section in the mold at the iron core center position of the vertical cross section when the iron core is divided is also shown in the same figure. It has been found that the idea based on the above, that is, the installation of the iron core away from the mold and the division of the iron core both reduce the electromagnetic brake performance. In FIG. 6, the analysis conditions other than the division of the iron core and the installation position of the iron core on the mold are the same as those in FIG.

従って、発明者らは、電磁ブレーキ性能を確保するために、コイル電流の印可方法について検討した。図7は分割された鉄芯4a,4bの断面図を示し、分割した鉄芯4a,4b毎にコイル5を内側に巻き、分割した鉄芯4を2つまとめて外側にコイル6を巻いている。   Therefore, the inventors examined a method of applying a coil current in order to ensure electromagnetic brake performance. FIG. 7 shows a cross-sectional view of the divided iron cores 4a and 4b. Each of the divided iron cores 4a and 4b is wound with the coil 5 on the inner side, and the two divided iron cores 4 are bundled and the coil 6 is wound on the outer side. Yes.

電磁ブレーキ時の電流印可方法としては、図7(a)の3つのコイル5,6に電流を印可する方法、(b)の外側のコイル6にのみ電流を印可する方法、(c)の内側の2つのコイル5のみに電流を印可する方法の3通りが考えられ、それぞれについて数値解析による検討を行った結果を図8に示す。   As a method of applying current during electromagnetic braking, a method of applying current to the three coils 5 and 6 in FIG. 7A, a method of applying current only to the outer coil 6 of FIG. 7B, and the inner side of FIG. There are three possible methods for applying current to only the two coils 5, and the results of investigations by numerical analysis are shown in FIG. 8.

図8(a)は、図8(b)に示す磁束密度比較位置Aにおける磁束密度の値を電流印可方法と鋳型と鉄芯との距離で検討した結果を示したものである。図8(a)を見ると、電磁ブレーキは、図7(a)、図7(b)、図7(c)で示した電流印可方法の順に高い磁束密度が得られている。これらの結果より、達成する磁束密度の大きさと、消費電力を考えると図7(b)で示した方法で印可するのが最も効率的であること、電磁ブレーキ性能が不足する場合には図7(a)の方法で印可することが望ましいことが判った。   FIG. 8A shows the result of examining the value of the magnetic flux density at the magnetic flux density comparison position A shown in FIG. 8B by the current application method and the distance between the mold and the iron core. As shown in FIG. 8A, the electromagnetic brake has a high magnetic flux density in the order of the current application method shown in FIGS. 7A, 7B, and 7C. From these results, considering the magnitude of the magnetic flux density to be achieved and the power consumption, it is most effective to apply the method shown in FIG. 7B, and FIG. It was found that application by the method (a) is desirable.

次に、発明者らは2相交流攪拌として、図9に示す電流位相配置(以下、「2相−1」と言う。)について検討した。2相−1の場合における攪拌力分布を図10(a)(b)に、メニスカス域での流動分布を図10(c)に示す。   Next, the inventors examined the current phase arrangement shown in FIG. 9 (hereinafter referred to as “two-phase-1”) as two-phase alternating current stirring. FIGS. 10 (a) and 10 (b) show the stirring force distribution in the case of 2-phase-1, and FIG. 10 (c) shows the flow distribution in the meniscus region.

図10(c)から、2相−1の電流位相配置の場合は、一応旋回流が得られていることは判るが、良好な旋回流が得られていないことは明らかである。これは、電磁攪拌力が不足していることが原因である。2相電磁攪拌では、2対の鉄芯(対向側もいれれば4対の鉄芯)を一組の電磁攪拌コイルとして配置するが、図9に示す2相−1の場合は、同位相の電磁攪拌コイルを並列に設置しているだけであるので、隣り合ったコイル組み同士の相互作用は殆どないからである。図10(a)(b)に示す攪拌力分布からもコイル組間に攪拌力が生じていないことが確認できる。   From FIG. 10C, it can be seen that in the case of the current phase arrangement of 2-phase-1, a swirl flow is obtained, but it is clear that a good swirl flow is not obtained. This is because the electromagnetic stirring force is insufficient. In the two-phase electromagnetic stirring, two pairs of iron cores (four pairs of iron cores if the opposite side is included) are arranged as a set of electromagnetic stirring coils. However, in the case of two-phase-1 shown in FIG. This is because the electromagnetic stirring coils are merely installed in parallel, and there is almost no interaction between adjacent coil sets. From the stirring force distribution shown in FIGS. 10 (a) and 10 (b), it can be confirmed that no stirring force is generated between the coil sets.

そこで、発明者らは、2相電磁攪拌の電磁攪拌力を上げるために、図11に示す電流位相配置(以下、「2相−2」と言う。)について検討を行った。この2相−2の電流位相配置は、前記の2相−1の電流位相配置におけるコイル組同士の位相を反転(位相差180°)させたものである。   Therefore, the inventors examined the current phase arrangement shown in FIG. 11 (hereinafter referred to as “two-phase-2”) in order to increase the electromagnetic stirring force of the two-phase electromagnetic stirring. This 2-phase-2 current phase arrangement is obtained by reversing the phases of the coil sets in the 2-phase-1 current phase arrangement (180 ° phase difference).

2相−2の場合における攪拌力分布を図12(a)(b)に、メニスカス域の流動を図12(c)に示す。図12(a)(b)に示すように、2相−2の電流位相配置では、コイル組同士の相互作用から、コイル組間にも攪拌力が得られて、広域かつ2相−1の電流位相配置に比べて1.5倍以上の攪拌力が得られていることが判る。また、図12(c)に示すメニスカス域での流動も鋳型隅まで良好な旋回流が得られていることが判る。   FIGS. 12A and 12B show the stirring force distribution in the case of 2-phase-2, and FIG. 12C shows the flow in the meniscus region. As shown in FIGS. 12 (a) and 12 (b), in the two-phase-2 current phase arrangement, the stirring force is also obtained between the coil sets due to the interaction between the coil sets, and a wide range of two-phase-1 It can be seen that a stirring force of 1.5 times or more is obtained as compared with the current phase arrangement. Moreover, it turns out that the favorable swirl | vortex flow is obtained to the mold corner also about the flow in the meniscus area | region shown in FIG.12 (c).

本発明は、発明者等による以上のシミュレーション解析による結果に基づいて成されたものであり、図13に示したように、鋳型1の長辺側の外側に、浸漬ノズル2を挟んでたとえば各1個ずつ、鋳型合計で4個の鉄芯4を左右対称に配置する。そして、前記鉄芯4を各2個ずつに分割して、これら分割した鉄芯4a,4bのそれぞれの外周部に、2個の励磁コイル5を巻き回し、この分割した2個の鉄芯4a,4bの外周部に1個の励磁コイル6を巻き回す。   The present invention is made based on the result of the above simulation analysis by the inventors and the like. As shown in FIG. 13, for example, each immersion nozzle 2 is sandwiched outside the long side of the mold 1. One by one, a total of four iron cores 4 are placed symmetrically. Then, the iron core 4 is divided into two pieces, and two exciting coils 5 are wound around the respective outer peripheral portions of the divided iron cores 4a and 4b, and the divided two iron cores 4a. , 4b, one excitation coil 6 is wound around the outer periphery.

このように成されたそれぞれの電磁コイルにおける、前記鉄芯4の設置位置を、鋳型1壁との間隔Lが、電磁ブレーキを付与する際には、前記各電磁コイルによる鋳型内溶鋼3に与える磁束密度が0.15(T)以上となり、また、電磁攪拌を行う際には、メニスカス全体を旋回する流動状態での流速が20cm/秒以上となるような位置となすのである。   When the electromagnetic brake is applied, the installation position of the iron core 4 in each electromagnetic coil thus formed is given to the molten steel 3 in the mold by the electromagnetic coil when the electromagnetic brake is applied. The magnetic flux density is 0.15 (T) or more, and when electromagnetic stirring is performed, the flow velocity in a flow state in which the entire meniscus is swung is set to a position where the flow velocity is 20 cm / second or more.

発明者らが、前記間隔Lを、0,5,10,20,30,40,60,80,100,120,140,160,180,200mmとした場合の電磁ブレーキ、電磁攪拌の可否についてシミュレーション解析を行った結果、前記間隔Lが160mm以下の場合に、前記各電磁コイルによって0.15(T)以上の磁束密度を鋳型1内溶鋼3に与えることができた。また、前記間隔Lが40mm以上の場合に、メニスカス全体を旋回する流動状態の流速が20cm/秒以上となって、電磁攪拌が可能であった。   The inventors simulated whether or not electromagnetic braking and electromagnetic stirring are possible when the distance L is set to 0, 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mm. As a result of the analysis, when the distance L was 160 mm or less, the magnetic flux density of 0.15 (T) or more could be given to the molten steel 3 in the mold 1 by the electromagnetic coils. In addition, when the distance L was 40 mm or more, the flow velocity in the fluid state of swirling the entire meniscus was 20 cm / second or more, and electromagnetic stirring was possible.

すなわち、発明者らのシミュレーション解析の結果によれば、鋳型と鉄芯の間隔Lを40〜160mmとすれば、電磁ブレーキと電磁攪拌の両性能を共に満足できる結果が得られることになる。これが本発明の鋳型内溶鋼の電磁力制御装置であり、本発明の連続鋳造方法は、この本発明の電磁力制御装置を使用して、鋼の連続鋳造を行うものである。   That is, according to the results of simulation analysis by the inventors, when the distance L between the mold and the iron core is 40 to 160 mm, a result that satisfies both the electromagnetic brake and electromagnetic stirring performances can be obtained. This is the electromagnetic force control device for molten steel in the mold of the present invention, and the continuous casting method of the present invention performs continuous casting of steel using this electromagnetic force control device of the present invention.

なお、本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範囲内であれば、適宜実施の形態を変更しても良いことは言うまでもない。また、本発明では、浸漬ノズルが鋳型中心に位置する必要はないことも、先に説明した通りである。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim. Further, as described above, in the present invention, it is not necessary that the immersion nozzle is positioned at the center of the mold.

以上の本発明は、浸漬ノズルを使用する連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。また、スラブの連続鋳造だけでなくブルームの連続鋳造にも適用できる。   The present invention described above can be applied to any type of continuous casting such as a curved type and a vertical type as long as it is a continuous casting using an immersion nozzle. Moreover, it can be applied not only to continuous casting of slabs but also to continuous casting of blooms.

鋳型長辺の外側に、浸漬ノズルを挟んで各1個ずつ、鋳型合計で4個、電磁コイルの鉄芯を配置した場合の設置位置関係を説明する図である。It is a figure explaining the installation positional relationship when the iron core of an electromagnetic coil is arrange | positioned on the outer side of a casting_mold | template long side, respectively 4 pieces in total and a casting mold. (a)は図1の場合における攪拌力分布の結果を示した図、(b)は(a)を簡略化した図である。(A) is the figure which showed the result of stirring force distribution in the case of FIG. 1, (b) is the figure which simplified (a). 図1において鉄芯を鋳型から6cm離した場合の配置図である。FIG. 2 is a layout view when the iron core is separated from the mold by 6 cm in FIG. 1. (a)は図3の場合における攪拌力分布の結果を示した図、(b)は(a)を簡略化した図である。(A) is the figure which showed the result of stirring force distribution in the case of FIG. 3, (b) is the figure which simplified (a). (a)(b)はツイン鋳型の場合の図2及び図4と同じ条件のシミュレーション結果を示した図である。(A) (b) is the figure which showed the simulation result on the same conditions as FIG.2 and FIG.4 in the case of a twin casting_mold | template. 図3における鉄芯を分割した場合の図に、攪拌力分布を併せて示したものである。FIG. 3 shows the stirring force distribution in the figure when the iron core is divided in FIG. 3. 電磁ブレーキ時の電流印可方法を説明する図で、(a)は3つのコイルに電流を印可するもの、(b)は外側のコイルにのみ電流を印可するもの、(c)は内側の2つのコイルのみに電流を印可する方法である。It is a figure explaining the electric current application method at the time of an electromagnetic brake, (a) is what applies electric current to three coils, (b) is what applies electric current only to an outer coil, (c) is inner two In this method, current is applied only to the coil. (a)は(b)に示す磁束密度比較位置Aにおける磁束密度の値を電流印可方法と鋳型と鉄芯との距離で検討した結果を示した図、(b)は磁束密度比較位置Aを示す図である。(A) is the figure which showed the result of having examined the value of the magnetic flux density in the magnetic flux density comparison position A shown in (b) by the current application method and the distance between the mold and the iron core, and (b) shows the magnetic flux density comparison position A. FIG. 2相交流攪拌の場合の電流位相配置を説明する図である。It is a figure explaining the electric current phase arrangement | positioning in the case of two-phase alternating current stirring. (a)は図9の攪拌力分布を示した図、(b)は(a)を簡略化した図、(c)はメニスカス域での流動分布を示した図である。(A) is a diagram showing the stirring force distribution of FIG. 9, (b) is a simplified diagram of (a), and (c) is a diagram showing the flow distribution in the meniscus region. 図9の電流位相配置におけるコイル組同士の位相を反転(位相差180°)したものである。FIG. 10 is a diagram in which the phases of the coil sets in the current phase arrangement of FIG. 9 are reversed (phase difference 180 °). (a)は図11の攪拌力分布を示した図、(b)は(a)を簡略化した図、(c)はメニスカス域での流動分布を示した図である。(A) is the figure which showed stirring force distribution of FIG. 11, (b) is the figure which simplified (a), (c) is the figure which showed the flow distribution in the meniscus area. 本発明を説明する図で、(a)は垂直断面図、(b)は全体斜視図、(c)は水平断面図である。It is a figure explaining this invention, (a) is a vertical sectional view, (b) is a whole perspective view, (c) is a horizontal sectional view. 浸漬ノズルからの溶鋼吐出流を説明する図である。It is a figure explaining the molten steel discharge flow from an immersion nozzle.

符号の説明Explanation of symbols

1 鋳型
2 浸漬ノズル
2a 吐出孔
3 溶鋼
4,4a,4b 鉄芯
5,6 コイル
1 Mold 2 Immersion nozzle 2a Discharge hole 3 Molten steel 4, 4a, 4b Iron core 5, 6 Coil

Claims (2)

鋳型の外周に配置された励磁コイルに直流又は交流の電流を供給することにより、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する方法であって、
鋳型長辺の外側に配置される電磁コイルは、浸漬ノズルを挟んで各n個ずつ(nは自然数)、鋳型合計で4n個配置され、
これらそれぞれの磁極鉄芯は、各2個ずつに分割され、これら分割された磁極鉄芯のそれぞれの外周部に巻き回された2個の励磁コイルと、前記分割された2個の磁極鉄芯の外周部に巻き回された1個の励磁コイルを有し、
鋳型長辺と前記磁極鉄芯の鋳型長辺側先端との間隔Lを40mm以上、160mm以下となし、
鋳型内溶鋼を電磁攪拌する際には、前記各長辺側の2n個の電磁コイルに通電する交流電流の位相を反転させて、メニスカス全体を旋回する流動状態での流速が20cm/秒以上となるようにし、
また、鋳型内溶鋼に電磁ブレーキを付与する際には、1個の電磁コイル当たり、前記分割された2個の磁極鉄芯の外周に巻き回した励磁コイルに直流電流を通電するか、または、前記3個の励磁コイルに直流電流を通電し、各電磁コイルによって鋳型内溶鋼に0.15(T)以上の磁束密度を与えることを特徴とする鋼の連続鋳造方法。
A method of continuously casting steel by selectively applying an electromagnetic brake or electromagnetic stirring to molten steel in a mold by supplying a direct current or an alternating current to an excitation coil arranged on the outer periphery of the mold,
The electromagnetic coils arranged on the outside of the long side of the mold are arranged with n pieces each (n is a natural number) across the immersion nozzle, 4n pieces in total,
Each of these magnetic pole iron cores is divided into two pieces, two excitation coils wound around the respective outer peripheral portions of the divided magnetic pole iron cores, and the two divided magnetic pole iron cores Having one exciting coil wound around the outer periphery of
The distance L between the mold long side and the tip of the magnetic pole core on the mold long side is 40 mm or more and 160 mm or less.
When electromagnetically stirring the molten steel in the mold, the flow rate in a flow state in which the entire meniscus is swung is reversed to 20 cm / second or more by inverting the phase of the alternating current applied to the 2n electromagnetic coils on each long side. To be
Further, when applying an electromagnetic brake to the molten steel in the mold, a direct current is applied to the excitation coil wound around the outer periphery of the two divided magnetic pole cores per one electromagnetic coil, or A continuous casting method of steel, wherein a direct current is applied to the three exciting coils, and a magnetic flux density of 0.15 (T) or more is applied to molten steel in the mold by each electromagnetic coil.
請求項1記載の鋼の連続鋳造方法を実施する鋳型内溶鋼の電磁力制御装置であって、
鋳型長辺の外側に、浸漬ノズルを挟んで各n個ずつ(nは自然数)、鋳型合計で4n個配置され、
各2個ずつに分割された磁極鉄芯と、これら分割された磁極鉄芯のそれぞれの外周部に巻き回された2個の励磁コイルと、前記分割された2個の磁極鉄芯の外周部に巻き回された1個の励磁コイルを有する、それぞれの電磁コイルにおける前記磁極鉄芯の設置位置を、鋳型長辺と前記磁極鉄芯の鋳型長辺側先端との間隔Lを40mm以上、160mm以下となし、
電磁ブレーキを付与する際には、1個の電磁コイル当たり、前記分割された2個の磁極鉄芯の外周に巻き回した励磁コイルに直流電流を通電するか、または、前記3個の励磁コイルに直流電流を通電して、前記各電磁コイルによる鋳型内溶鋼に与える磁束密度を0.15(T)以上となし、
また、電磁攪拌を行う際には、前記各長辺側の2n個の電磁コイルに通電する交流電流の位相を反転させて、メニスカス全体を旋回する流動状態での流速を20cm/秒以上となすようにしたことを特徴とする鋳型内溶鋼の電磁力制御装置。
An electromagnetic force control device for molten steel in a mold for carrying out the continuous casting method for steel according to claim 1,
On the outside of the long side of the mold, n pieces each (n is a natural number) across the immersion nozzle, 4n pieces in total are placed,
Magnetic pole cores divided into two pieces each, two excitation coils wound around the respective outer peripheral parts of the divided magnetic pole iron cores, and outer peripheral parts of the two divided magnetic pole iron cores The installation position of the magnetic pole iron core in each electromagnetic coil having one exciting coil wound around is set to a distance L between the mold long side and the mold long side tip of the magnetic pole iron core of 40 mm or more and 160 mm. None of the following,
When applying an electromagnetic brake , a DC current is applied to the excitation coil wound around the outer periphery of the two magnetic pole cores divided per one electromagnetic coil, or the three excitation coils The magnetic flux density applied to the molten steel in the mold by each electromagnetic coil is 0.15 (T) or more by passing a direct current through
In addition, when performing electromagnetic stirring, the phase of the alternating current applied to the 2n electromagnetic coils on each of the long sides is reversed , and the flow velocity in the flow state in which the entire meniscus is swirled becomes 20 cm / second or more. electromagnetic force control device for the molten steel in the mold, characterized in that the Suyo.
JP2004174551A 2004-06-11 2004-06-11 Steel continuous casting method and electromagnetic force control device for molten steel in mold Expired - Fee Related JP4356531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174551A JP4356531B2 (en) 2004-06-11 2004-06-11 Steel continuous casting method and electromagnetic force control device for molten steel in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174551A JP4356531B2 (en) 2004-06-11 2004-06-11 Steel continuous casting method and electromagnetic force control device for molten steel in mold

Publications (2)

Publication Number Publication Date
JP2005349454A JP2005349454A (en) 2005-12-22
JP4356531B2 true JP4356531B2 (en) 2009-11-04

Family

ID=35584340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174551A Expired - Fee Related JP4356531B2 (en) 2004-06-11 2004-06-11 Steel continuous casting method and electromagnetic force control device for molten steel in mold

Country Status (1)

Country Link
JP (1) JP4356531B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149204B1 (en) 2007-06-06 2012-05-25 수미도모 메탈 인더스트리즈, 리미티드 Steel continuous casting method and in-mold molten steel fluidity controller
JP4967856B2 (en) 2007-06-28 2012-07-04 住友金属工業株式会社 Steel continuous casting method
JP4910997B2 (en) * 2007-11-16 2012-04-04 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2009248110A (en) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd Connection method for electromagnetic coil device usable for both electromagnetic stirring and electromagnetic braking
JP5021560B2 (en) * 2008-05-20 2012-09-12 住友金属工業株式会社 Casting equipment for continuous casting
JP7273304B2 (en) * 2019-08-02 2023-05-15 日本製鉄株式会社 Continuous casting method and mold equipment

Also Published As

Publication number Publication date
JP2005349454A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR101207687B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP4438705B2 (en) Steel continuous casting method
JP5321528B2 (en) Equipment for continuous casting of steel
JP4356531B2 (en) Steel continuous casting method and electromagnetic force control device for molten steel in mold
JP4441435B2 (en) Linear moving magnetic field type electromagnetic stirrer
JP5023989B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
JP4296958B2 (en) Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold
JP7180383B2 (en) continuous casting machine
JP4192651B2 (en) Mold for continuous casting
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPH11156502A (en) Equipment and method for controlling molten steel flow in mold, in continuous casting
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP2001521444A (en) Apparatus for continuous casting of two strands in parallel
JP7124647B2 (en) Electromagnetic brake device
JP4910997B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2010110766A (en) Continuous casting apparatus for steel and continuous casting method for steel
JP2001300695A (en) Continuous casting mold for electromagnetic-stirring molten metal
JP2023026043A (en) electromagnetic stirrer
JP2000197952A (en) Method for controlling molten steel flow in mold in continuous casting
KR960007626B1 (en) Electromagnetic braking apparatus for continuous casting mold
JPH09285854A (en) Continuous casting method
JPH04200849A (en) Electromagnetic stirring method for continuous casting
JP2002239694A (en) Control unit for fluidity of molten steel
JPH04100665A (en) Method for electromagnetic-stirring in mold in continuous casting for slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees