JP4354796B2 - Heat exchanger element and manufacturing method thereof - Google Patents

Heat exchanger element and manufacturing method thereof Download PDF

Info

Publication number
JP4354796B2
JP4354796B2 JP2003423310A JP2003423310A JP4354796B2 JP 4354796 B2 JP4354796 B2 JP 4354796B2 JP 2003423310 A JP2003423310 A JP 2003423310A JP 2003423310 A JP2003423310 A JP 2003423310A JP 4354796 B2 JP4354796 B2 JP 4354796B2
Authority
JP
Japan
Prior art keywords
pair
header
wave
flange
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003423310A
Other languages
Japanese (ja)
Other versions
JP2005180821A (en
Inventor
公昭 中野
俊行 堀内
卓也 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2003423310A priority Critical patent/JP4354796B2/en
Publication of JP2005180821A publication Critical patent/JP2005180821A/en
Application granted granted Critical
Publication of JP4354796B2 publication Critical patent/JP4354796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、対向する一対の金属板の周縁を閉塞し、内部に熱交換媒体の流通する偏平流路が形成され、その偏平流路が波形に曲折されたものに関する。   The present invention relates to a structure in which a flat channel in which a heat exchange medium flows is formed inside a pair of opposed metal plates, and the flat channel is bent in a waveform.

多数の金属板を積層して、交互に加熱流体と被加熱流体とを各金属板間に流通させた再生器用熱交換器が各種知られている。さらにそれらの金属板の表面を波形に曲折し、伝熱面積を向上させたドロンカップ型の熱交換器も知られている。そのドロンカップ型の熱交換器のエレメントは、皿状金属板の両端部にヘッダー部を設け、それらの間に波形伝熱部を設けたものである。そしてエレメント内に第1の熱交換媒体を流通させ、その外面側に第2の熱交換媒体を流通させて、両者間に熱交換を行うものである。   Various heat exchangers for regenerators in which a large number of metal plates are stacked and a heated fluid and a fluid to be heated are alternately passed between the metal plates are known. Further, a drone cup type heat exchanger in which the surface of the metal plate is bent into a corrugated shape to improve the heat transfer area is also known. The element of the drone cup type heat exchanger is provided with header portions at both ends of a plate-shaped metal plate and a corrugated heat transfer portion therebetween. Then, the first heat exchange medium is circulated in the element, and the second heat exchange medium is circulated on the outer surface side to exchange heat between them.

従来のドロンカップ型の熱交換器のエレメントは、波形伝熱部における波の高さ(振幅)を大きくとることができなかった。なぜならば、波形伝熱部の両側には平坦なヘッダー部が存在するため、波形伝熱部とヘッダー部との境に亀裂を起こすおそれがあるからである。
即ち、波の高さを高くするとその分だけ金属板をヘッダー部に対して大きな絞り加工をすることになり、その境目に亀裂が生じ易い。そのため、従来の波形伝熱部を有するエレメントは、波の高さを比較的低いものにせざるを得なかった。すると、波形伝熱部の伝熱面積が比較的小さいものとなり、熱交換性能の向上を余り期待できなかった。
The element of the conventional drone cup type heat exchanger cannot take the wave height (amplitude) at the corrugated heat transfer section. This is because flat header portions exist on both sides of the corrugated heat transfer section, which may cause a crack at the boundary between the corrugated heat transfer section and the header section.
That is, when the height of the wave is increased, the metal plate is greatly drawn with respect to the header portion, and a crack is likely to occur at the boundary. Therefore, the element having the conventional corrugated heat transfer section has to have a relatively low wave height. As a result, the heat transfer area of the corrugated heat transfer section was relatively small, and the improvement in heat exchange performance could not be expected much.

そこで本発明は、波の高さを充分高くしつつ、ヘッダー部との境に亀裂が生じることがなく、更にその周縁の接合を確実に行うことができる熱交換器用エレメントおよびその製造方法を提供することを課題とする。   Therefore, the present invention provides an element for a heat exchanger and a method for manufacturing the same, in which the height of the wave is sufficiently high, cracks are not generated at the boundary with the header portion, and the periphery can be reliably joined. The task is to do.

請求項1に記載の本発明は、金属板のプレス成形体で、対向する一対の金属板の周縁をフランジ状に形成して、その周縁を互いに閉塞し、内部に熱交換媒体の流通する偏平流路を形成すると共に、その偏平流路の流路方向の両端部に一対のヘッダー部(3)を設け、そのヘッダー部(3)間に多数の並列された波形に曲折された波形伝熱部(4)を設けた熱交換器用エレメントの製造方法において、
前記対向する一対の金属板は、一枚の金属板をその側部で折返して重ね合わせ、その折返し縁(12)を前記フランジ状に形成し、
その波形伝熱部(4)の各波をその波の稜線方向両側へ連続して、一対のヘッダー部(3)の全幅に延在し、ヘッダー部(3)の各波はその稜線を直線状の直線波(14)にし、
そのヘッダー部(3)は、各波がその進行方向の一方向へのみ断面S字状に倒して平坦に押し潰し、そこに金属板の板厚3枚分の同一方向の重合部(5)を一定ピッチで形成し、各重合部(5)間に板厚1枚分の非重合部を存在させると共に、重合部(5)の内面側と非重合部の内面側とを面一の平面に形成し、
そのヘッダー部(3)の高さを前記周縁のフランジより高く且つ、一対のヘッダ部(3)間の波形伝熱部(4)の振幅の高さより低く形成し、そのヘッダー部(3)の周縁部にフランジ部(10)を形成し、
前記折り返されて対向する一対の前記金属板のフランジ部(10)どうしを、前記内面側の前記面一の平面で接触した状態で、その一対のフランジ部(10)の厚みに整合する溝幅を有する溝形材(11)をその一対のフランジ部(10)に被嵌して、
その溝形材(11)の上下からシーム溶接し、フランジ部(10)を溝形材(11)と共に溶着して、フランジ部(10)の重合部(5)である凹凸面をその溶着により平坦に形成し、溝形材(11)と一対のフランジ(10)との間を気密に一体的に溶着したことを特徴とする熱交換器用エレメントの製造方法である。
The present invention according to claim 1 is a flat plate formed by pressing a pair of opposing metal plates in a flange shape, closing the edges together, and circulating a heat exchange medium therein. Waveform heat transfer that forms a flow path and is provided with a pair of header parts (3) at both ends in the flow direction of the flat flow path, and is bent into a large number of parallel waveforms between the header parts (3). In the method for manufacturing a heat exchanger element provided with the section (4),
The pair of metal plates facing each other are folded by overlapping one metal plate at its side, and the folded edge (12) is formed in the flange shape,
Each wave of the corrugated heat transfer section (4) is continuous to both sides of the ridgeline of the wave and extends to the full width of the pair of header sections (3). Shape linear wave (14)
The header part (3) collapses flatly in the direction of travel of each wave in a sigmoidal shape in one direction and is flatly crushed. Is formed at a constant pitch, and there is a non-polymerized portion corresponding to one sheet thickness between each superposed portion (5), and the inner surface side of the superposed portion (5) and the inner surface side of the non-polymerized portion are flush with each other. Formed into
The height of the header portion (3) is higher than the peripheral flange and lower than the amplitude height of the corrugated heat transfer portion (4) between the pair of header portions (3), and the header portion (3) Form a flange (10) at the periphery,
The groove width matching the thickness of the pair of flange portions (10) in a state where the flange portions (10) of the pair of metal plates folded and opposed to each other are in contact with each other on the flat surface on the inner surface side. Is fitted to the pair of flange portions (10),
Seam welding is performed from above and below the groove member (11), the flange portion (10) is welded together with the groove member (11), and the uneven surface which is the overlapping portion (5) of the flange portion (10) is welded. A method for producing an element for a heat exchanger, characterized in that the heat exchanger element is flatly formed and is hermetically and integrally welded between a channel member (11) and a pair of flanges (10).

請求項2に記載の本発明は、請求項1に記載の熱交換器用エレメント製造方法において、前記ヘッダー部(3)の波形を略横断面矩形波状に形成すると共に、その一方側の第1立ち上がり面(6)を傾斜面とし且つ、稜線を平坦面とすると共に、その稜線に対して他方側の第2立ち上がり面(7)を垂直に形成する工程と、
そのヘッダー部(3)の波形面を前記傾斜方向へ押し倒して、押し潰、互いに圧接された偏平な断面S字状の重合部(5)を形成させる工程と、
を有する熱交換器用エレメントの製造方法である。
請求項3に記載の本発明は、請求項1または請求項2により形成された熱交換器用エレメントである。
The present invention is defined in claim 2, in the method for manufacturing the heat exchanger element according to claim 1, thereby forming the header portion of the waveform (3) in a substantially rectangular cross section wave, first the one side 1 Forming the rising surface (6) as an inclined surface and the ridge line as a flat surface, and forming the second rising surface (7) on the other side perpendicular to the ridge line ;
That header portion waveforms surface (3) and debt press to the tilt direction, and then press ulcers, cause form together Pressed flat S-shaped cross-section of the overlapped portion (5) step,
It is a manufacturing method of the element for heat exchangers which has these.
The present invention according to claim 3 is an element for a heat exchanger formed according to claim 1 or claim 2.

本発明の熱交換器用エレメントの製造方法は、金属板のプレス成形体からなり、波形伝熱部4の波の高さを高くしても、ヘッダー部3との境部に波形加工に伴う伸びが生じることがなく、波形伝熱部4の高さを高くしても亀裂が生じない。そのため、波形伝熱部4の波の高さが高く伝熱面積の大きなコンパンクトなエレメントを提供できる。
また、ヘッダー部3の重合部5はそこに延在する各波が進行方向の一方側へのみ断面S字状に倒されて平坦に押し潰され、その高さが周縁のフランジより高く、波形伝熱部より低く形成され、ヘッダ部3の端縁にフランジ部10を形成したものであるから、その重合部5の構造を単純化し、その縁のフランジ部10を溶着するとき漏れの生じ難いヘッダー部3を形成できる。
しかも、その縁のフランジ部10は、重合部5の内面側と非重合部の内面側とを面一の平面に形成し、折り返されて対向する一対の前記金属板のそのフランジ部10どうしを、その内面側の面一の平面で接触して、そのフランジ部10を一体に溶着固定したからさらに漏れの生じ難いヘッダー部3を形成できる。
さらに、溝形材11をその一対のフランジ部10に被嵌して、その溝形材11の上下からシーム溶接し、フランジ部10を溝形材11と共に溶着して、フランジ部10の重合部5である凹凸面をその溶着により平坦に形成し、溝形材11と一対のフランジ10との間を気密に一体的に溶着したので、信頼性の高いエレメントを提供できる。
また、対向する一対の金属板は、一枚の金属板をその側部で折返して重ね合わせ、その折返し縁をフランジ状に形成したものであるから、部品点数が最小で済むと共に、接合部が少なく、信頼性の高い熱交換器用エレメントを製造できる。
The heat exchanger element manufacturing method of the present invention comprises a press-formed body of a metal plate, and even if the wave height of the corrugated heat transfer section 4 is increased, the elongation due to corrugation is formed at the boundary with the header section 3. Will not occur, and cracks will not occur even if the height of the corrugated heat transfer section 4 is increased. Therefore, it is possible to provide a compact element having a high wave height in the corrugated heat transfer section 4 and a large heat transfer area.
In addition, the overlapping portion 5 of the header portion 3 has each wave extending there in a S-shaped cross-section only on one side in the traveling direction and is crushed flat, and its height is higher than that of the peripheral flange. Since the flange portion 10 is formed at the end edge of the header portion 3 and is formed lower than the heat transfer portion, the structure of the overlapping portion 5 is simplified, and leakage hardly occurs when the flange portion 10 at the edge is welded. The header part 3 can be formed.
Moreover, the flange portion 10 of the edge forms the inner surface side of the overlapping portion 5 and the inner surface side of the non-overlapping portion on the same plane, and the flange portions 10 of the pair of metal plates that are folded back to face each other. Since the flange portion 10 is integrally welded and fixed in contact with the same flat surface on the inner surface side, the header portion 3 that is less likely to leak can be formed.
Further, the groove member 11 is fitted to the pair of flange portions 10, and seam welding is performed from above and below the groove member 11, and the flange portion 10 is welded together with the groove member 11, so that the overlapping portion of the flange portion 10 is welded. Since the uneven surface 5 is formed flat by welding and the groove member 11 and the pair of flanges 10 are integrally and airtightly welded, a highly reliable element can be provided.
Also, the pair of metal plates facing each other is formed by folding one metal plate on its side and overlapping it, and its folded edge is formed in a flange shape. A small and highly reliable heat exchanger element can be manufactured.

上記構成のエレメントを製造する方法において、In the method of manufacturing the element having the above-described configuration,
前記ヘッダー部3の波形の一方側の第1立ち上がり面6を傾斜面とし且つ、稜線を平坦面とすると共に、その稜線に対して他方側の第2立ち上がり面7を垂直に形成する工程と、Forming a first rising surface 6 on one side of the waveform of the header portion 3 as an inclined surface and a ridge line as a flat surface, and forming a second rising surface 7 on the other side perpendicular to the ridge line;
そのヘッダー部3の波形面を前記傾斜方向へ押し倒して、押し潰し、互いに圧接された偏平な断面S字状の重合部5を形成させる工程と、Pressing the corrugated surface of the header portion 3 in the inclined direction, crushing it, and forming a superposed portion 5 having a flat cross-sectional S-shape pressed against each other;
その第1立ち上がり面6が押し倒されるように押し潰して、ヘッダー部3の重合部5を形成することができる。The overlapping portion 5 of the header portion 3 can be formed by crushing the first rising surface 6 so as to be pushed down.
この製造方法によれば、無理なくヘッダー部3に断面S字状の重合部5を形成することができる。According to this manufacturing method, the superposed part 5 having an S-shaped cross section can be formed in the header part 3 without difficulty.

次に、図面に基づいて本発明の実施の形態につき説明する。
図1は本発明の要部分解説明図であり、図2のI部拡大斜視図(その一部を分解)である。図2は本発明の熱交換器用エレメントの平面図であり、図3は図2の III− III矢視断面図である。また、図4は図2のIV−IV矢視断面図であり、図5はフランジ部10におけるシーム溶接後の溶着状態を示す断面図である。また図6は本エレメントの製造工程を示すものであり、(A)はその第1工程の平面図、(B)は同第1工程の斜視略図、(C)はその第2工程の斜視略図、(D)は(C)のD−D矢視略図である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded explanatory view of a main part of the present invention, and is an enlarged perspective view of a portion I in FIG. 2 is a plan view of the heat exchanger element of the present invention, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2, and FIG. 5 is a cross-sectional view showing a welded state after seam welding in the flange portion 10. FIG. 6 shows the manufacturing process of the element, (A) is a plan view of the first process, (B) is a schematic perspective view of the first process, and (C) is a schematic perspective view of the second process. (D) is a DD arrow schematic drawing of (C).

この熱交換器用エレメントは、排熱回収用再生器として最適なものであるが、本発明はそれに限らず各種熱交換器のエレメントとして用いることができる。
この熱交換器は図1及び図2に示す如く、一対の出入口9を除いて周縁が閉塞された一対の金属板1,金属板2からなり、その両側にヘッダー部3が位置し、それらの間に波形伝熱部4を有する。そして一対の金属板1,金属板2間に偏平な流路を形成したものである。この例では、一枚の金属板を折り返して郵便封筒状にし、一対の金属板1,金属板2を対向させ、その継目に接合部13を形成し、全体を偏平にすると共に、その両側のフランジ部10を溝形材11を介して接合し、対角位置に一対の偏平孔を形成して、そこに出入口9を設けたものある。
This heat exchanger element is optimal as an exhaust heat recovery regenerator, but the present invention is not limited to this and can be used as an element of various heat exchangers.
As shown in FIGS. 1 and 2, this heat exchanger is composed of a pair of metal plates 1 and 2 whose peripheral edges are closed except for a pair of entrances and exits 9, and header portions 3 are located on both sides thereof. A corrugated heat transfer section 4 is provided between them. A flat flow path is formed between the pair of metal plates 1 and 2. In this example, a single metal plate is folded into a postal envelope shape, a pair of metal plates 1 and 2 are made to face each other, a joint 13 is formed at the seam, and the whole is flattened. A flange portion 10 is joined via a channel member 11, a pair of flat holes are formed at diagonal positions, and an entrance 9 is provided there.

そして両側に位置するヘッダー部3間に波形伝熱部4が形成される。その波形伝熱部4の夫々の波の稜線14は、図6(B)に示す如く、その稜線が蛇行状に曲折された曲波16に形成されている。そして一対の対向する金属板1,2の波形は互いにその位相が180 度位置ずれしており、その稜線が互いに交差する。また、その波形伝熱部4の各波はその稜線方向に向かい、それらがヘッダー部3の全幅に連続的に延在する。なお、ヘッダー部3では各波の稜線14は直線状となる直線波17を形成する。
次に、エレメントの両側に位置するヘッダー部3では、その直線波17は図6(B)に示す如く、夫々の波形がその波の進行方向の一方側へ断面S字状に倒されて平坦に押し潰され、そこに金属板の板厚3枚分の多数の重合部5が断続的に形成されたものである。
And the waveform heat-transfer part 4 is formed between the header parts 3 located in both sides. As shown in FIG. 6B, the ridgeline 14 of each wave of the corrugated heat transfer section 4 is formed into a curved wave 16 in which the ridgeline is bent in a meandering manner. The waveforms of the pair of opposing metal plates 1 and 2 are 180 degrees out of phase with each other, and their ridge lines intersect each other. Further, each wave of the corrugated heat transfer section 4 goes in the direction of the ridgeline, and they continuously extend over the entire width of the header section 3. In the header portion 3, the ridgeline 14 of each wave forms a straight wave 17 that is linear.
Next, in the header portion 3 located on both sides of the element, the straight wave 17 is flattened as shown in FIG. 6 (B), with each waveform being tilted in a S-shaped cross section toward one side of the wave traveling direction. And a large number of overlapping portions 5 corresponding to the thickness of three metal plates are intermittently formed there.

このような波形伝熱部4およびヘッダー部3は、図6及び図7に示す手順により形成することができる。
即ち、先ず、図6(A)及び(B)の如く、金属板をその全幅に渡って波形に曲折する。その金属板の両側部においては、前述の如く、波の稜線14が直線状に形成された直線波17で、それらの中間においては稜線14がその平面方向に曲折する曲波16となる。夫々の高さ、即ち、振幅は同一であり、それらのピッチも同一である。曲波16と直線波17とは連続する。このような曲波16及び直線波17は、プレス機械により一体に形成することもできるが、順送りプレスによって一つずつ形成してもよい。その場合には、より振幅の大きな波を形成できる。波形伝熱部4およびヘッダー部3の各波の断面形状は矩形波であってもサインカーブ波であってもよい。
なお、図6の(A)は金属板の要部平面図であり、(B)はその斜視図である。
Such corrugated heat transfer section 4 and header section 3 can be formed by the procedure shown in FIGS.
That is, first, as shown in FIGS. 6A and 6B, the metal plate is bent into a waveform over its entire width. On both sides of the metal plate, as described above, the ridge line 14 of the wave is a linear wave 17 formed in a straight line, and the ridge line 14 is a curved wave 16 that bends in the plane direction between them. Each height, ie, amplitude, is the same, and their pitch is also the same. The curved wave 16 and the straight wave 17 are continuous. Such a curved wave 16 and a linear wave 17 can be integrally formed by a press machine, but may be formed one by one by a progressive press. In that case, a wave with a larger amplitude can be formed. The cross-sectional shape of each wave of the waveform heat transfer section 4 and the header section 3 may be a rectangular wave or a sine curve wave.
In addition, (A) of FIG. 6 is a principal part top view of a metal plate, (B) is the perspective view.

このように全幅で曲折された金属板の両側部の波を押し倒して押し潰し、図6(C)の如く重合部5を形成する。それと共に、その重合部5の縁部を立ち下げ、その先端縁にフランジ部10を形成するものである。
この例において、直線波17は図7(A)の如く、各波の一方側の第1立ち上がり面6が角θ傾斜し、他方側の第2立ち上がり面7が垂直に予め形成される。次いで、直線波17の振幅がなくなるように直線波17の上下両側から押し潰し、中心線上に図7(B)の如く押し潰した重合部5を形成する。第1立ち上がり面6のみが角θ傾斜していることにより、上下に押し潰すことで、簡単に図7(B)の如く押し潰し重合部5を形成できる。
In this way, the waves on both sides of the metal plate bent at its full width are pushed down and crushed to form the overlapped portion 5 as shown in FIG. At the same time, the edge of the overlapping portion 5 is lowered, and the flange portion 10 is formed at the leading edge.
In this example, as shown in FIG. 7A, in the straight wave 17, the first rising surface 6 on one side of each wave is inclined by the angle θ, and the second rising surface 7 on the other side is formed vertically in advance. Next, the linear wave 17 is crushed from both the upper and lower sides so that the amplitude of the linear wave 17 is eliminated, and the overlapped portion 5 is formed on the center line as shown in FIG. 7B. Since only the first rising surface 6 is inclined by the angle θ, the crushing overlapping portion 5 can be easily formed as shown in FIG.

そのとき、図7(A)における波のa部分とb部分は引き伸ばされ、c部分がb部分とd部分との間に挟持され、それらにより断面S字状の偏平な重合部5を形成する。また、d部分とe部分とは引き伸ばされる。そしてそれらで形成する重合部5の平面は、波形伝熱部4の曲波16の波の高さの中間位置に位置し、重合部5と曲波16との境は傾斜面19となる(図6(C))。
また、重合部5の側端には図6(C)の如く、傾斜面18を介してフランジ部10が形成される。そして上下一対の金属板1,2により、対向する重合部5間にヘッダー部3が形成されるものである。
At that time, the a part and the b part of the wave in FIG. 7A are stretched, and the c part is sandwiched between the b part and the d part, thereby forming a flat overlapping portion 5 having an S-shaped cross section. . Further, the d portion and the e portion are stretched. And the plane of the superposition | polymerization part 5 formed with them is located in the intermediate position of the wave height of the curved wave 16 of the waveform heat-transfer part 4, and the boundary of the superposition | polymerization part 5 and the curved wave 16 becomes the inclined surface 19 ( FIG. 6 (C)).
Further, as shown in FIG. 6C, a flange portion 10 is formed on the side end of the overlapping portion 5 via an inclined surface 18. A pair of upper and lower metal plates 1 and 2 form a header portion 3 between the overlapping overlapping portions 5.

次いで、図1の如く上下一対のフランジ部10が重ね合わせられ、そこに溝形材11が嵌着される。溝形材11の溝幅は、図3,図4の如く上下一対のフランジ部10の合計の厚さに整合する。そして、溝形材11の上下からシーム溶接によりフランジ部10を溝形材11と共に一体に溶着してエレメントを完成する。このとき、フランジ部10の重合部5である凹凸面は、溶着により平坦に形成され、フランジ部10の気密性または液密性が確保される。
なお、図2においてエレメントの上下両端(平面方向の両縁)は、図1の如く折り返されて折り返し縁12を形成するものである。その折り返し縁12には、波形は形成されていない。そして袋状の両端縁は、その平面の中央で図2の如く重ね合わされ、その重ね合わせ部が接合されて接合部13を構成する。
Next, as shown in FIG. 1, a pair of upper and lower flange portions 10 are overlapped, and a groove member 11 is fitted therein. The groove width of the groove member 11 matches the total thickness of the pair of upper and lower flange portions 10 as shown in FIGS. Then, the flange 10 is integrally welded together with the groove member 11 by seam welding from above and below the groove member 11 to complete the element. At this time, the uneven surface which is the overlapping portion 5 of the flange portion 10 is formed flat by welding, and the airtightness or liquid tightness of the flange portion 10 is ensured.
In FIG. 2, the upper and lower ends (both edges in the plane direction) of the element are folded back as shown in FIG. The folded edge 12 has no corrugation. Then, both end edges of the bag shape are overlapped as shown in FIG. 2 at the center of the plane, and the overlapped portion is joined to form the joined portion 13.

このようなエレメントの各ヘッダー部3の折り返し部に偏平孔が形成され、そこに一対の出入口9が設けられる。そして一方の出入口9から被加熱流体をヘッダー部3内に流入し、それが波形伝熱部4をその波の稜線方向に流通して他方側のヘッダー部3に導かれ、出入口9から外部に導かれる。
波形伝熱部4は、前述の如く、その平面方向に曲折する波が上下で互いに交差する。そしてエレメント内を流通する被加熱流体は、波形伝熱部4内を平面的に蛇行し、各波の交差部で攪拌されつつ移動する。そしてエレメントの外面側には高温の排ガス等が、各波の稜線方向に流通し、それと被加熱流体との間に熱交換が行われる。
なお、このようなエレメントは多数積層され、各エレメント間に前記の高温の排気ガス等が流通する。そして被加熱流体は図示しないマニホールドを介し、夫々のエレメントの出入口9に導かれる。
A flat hole is formed in the folded portion of each header portion 3 of such an element, and a pair of entrances 9 are provided there. Then, the fluid to be heated flows into the header portion 3 from the one inlet / outlet 9, flows through the corrugated heat transfer portion 4 in the direction of the ridgeline of the wave, and is guided to the header portion 3 on the other side. Led.
As described above, the corrugated heat transfer section 4 has waves that bend in the plane direction intersect each other vertically. And the to-be-heated fluid which distribute | circulates the inside of an element meanders the inside of the waveform heat-transfer part 4, and moves, stirring at the cross | intersection part of each wave. A high-temperature exhaust gas or the like circulates in the ridge line direction of each wave on the outer surface side of the element, and heat exchange is performed between it and the fluid to be heated.
A number of such elements are stacked, and the high-temperature exhaust gas or the like flows between the elements. The fluid to be heated is guided to the inlet / outlet 9 of each element via a manifold (not shown).

次に、図8は、前記図3の溝形材11の変形例であり、この例の溝形材11は溝形の両側壁部の開口縁が拡開し、その拡開縁部11aがヘッダー部3の裾部に形成された傾斜面に整合して、それに接触する。このような拡開縁部11aを溝形材11に設けることにより、エレメントの接合部近傍の強度および剛性を高めることができる。   Next, FIG. 8 shows a modification of the groove member 11 shown in FIG. 3. In the groove member 11 of this example, the opening edges of both side wall portions of the groove shape are expanded, and the expanded edge portion 11a is expanded. It aligns with and contacts the inclined surface formed at the skirt of the header 3. By providing such an expanded edge portion 11a in the groove member 11, the strength and rigidity in the vicinity of the joint portion of the element can be increased.

図2におけるII部拡大斜視説明図。II section expansion perspective explanatory drawing in FIG. 本発明の熱交換器用エレメントの平面図。The top view of the element for heat exchangers of this invention. 図2の III− III矢視断面図。III-III arrow sectional drawing of FIG. 図2の IV − IV 矢視断面図。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 2.

本発明のエレメントのフランジ部のシーム溶接後の溶着状態を示す断面図。Sectional drawing which shows the welding state after the seam welding of the flange part of the element of this invention. 本発明のエレメントのヘッダー部3の製造方法を示すものであって、(A)はその第1工程を示すの平面図、(B)は同第1工程を示す斜視略図、(C)はその第2工程の斜視略図、(D)は(C)のD−D矢視略図。The manufacturing method of the header part 3 of the element of this invention is shown, Comprising: (A) is a top view which shows the 1st process, (B) is the perspective schematic diagram which shows the 1st process, (C) is the The perspective schematic diagram of a 2nd process, (D) is the DD arrow schematic diagram of (C). ヘッダー部3の成形手順を示す断面図であって、(A)はその第1工程、(B)は同第2工程を示す説明図。It is sectional drawing which shows the shaping | molding procedure of the header part 3, Comprising: (A) is the 1st process, (B) is explanatory drawing which shows the 2nd process. 他の溝形材11を有する本発明のエレメントであって、図3に相当するもの。FIG. 3 is an element of the present invention having another channel member 11 corresponding to FIG. 3.

符号の説明Explanation of symbols

1 金属板
2 金属板
3 ヘッダー部
4 波形伝熱部
5 重合部
6 第1立ち上がり面
7 第2立ち上がり面
9 出入口
10 フランジ部
1 Metal plate 2 Metal plate 3 Header part 4 Wave heat transfer part 5 Superposition part
6 First rising surface 7 Second rising surface
9 Entrance
10 Flange

11 溝形材
11a拡開縁部
12 折り返し縁
13 接合部
14 稜線
15 溶着部
16 曲波
17 直線波
18 傾斜面
19 傾斜面
11 Channel material
11a widening edge
12 Folded edge
13 Joint
14 Ridge line
15 Welded part
16 Curve
17 Linear wave
18 Inclined surface
19 Inclined surface

Claims (3)

金属板のプレス成形体で、対向する一対の金属板の周縁をフランジ状に形成して、その周縁を互いに閉塞し、内部に熱交換媒体の流通する偏平流路を形成すると共に、その偏平流路の流路方向の両端部に一対のヘッダー部(3)を設け、そのヘッダー部(3)間に多数の並列された波形に曲折された波形伝熱部(4)を設けた熱交換器用エレメントの製造方法において、
前記対向する一対の金属板は、一枚の金属板をその側部で折返して重ね合わせ、その折返し縁(12)を前記フランジ状に形成し、
その波形伝熱部(4)の各波をその波の稜線方向両側へ連続して、一対のヘッダー部(3)の全幅に延在し、ヘッダー部(3)の各波はその稜線を直線状の直線波(14)にし、
そのヘッダー部(3)は、各波がその進行方向の一方向へのみ断面S字状に倒して平坦に押し潰し、そこに金属板の板厚3枚分の同一方向の重合部(5)を一定ピッチで形成し、各重合部(5)間に板厚1枚分の非重合部を存在させると共に、重合部(5)の内面側と非重合部の内面側とを面一の平面に形成し、
そのヘッダー部(3)の高さを前記周縁のフランジより高く且つ、一対のヘッダ部(3)間の波形伝熱部(4)の振幅の高さより低く形成し、そのヘッダー部(3)の周縁部にフランジ部(10)を形成し、
前記折り返されて対向する一対の前記金属板のフランジ部(10)どうしを、前記内面側の前記面一の平面で接触した状態で、その一対のフランジ部(10)の厚みに整合する溝幅を有する溝形材(11)をその一対のフランジ部(10)に被嵌して、
その溝形材(11)の上下からシーム溶接し、フランジ部(10)を溝形材(11)と共に溶着して、フランジ部(10)の重合部(5)である凹凸面をその溶着により平坦に形成し、溝形材(11)と一対のフランジ(10)との間を気密に一体的に溶着したことを特徴とする熱交換器用エレメントの製造方法。
In the metal plate press-molded body, the peripheral edges of a pair of opposing metal plates are formed in a flange shape, the peripheral edges are closed together to form a flat flow path through which the heat exchange medium flows, and the flat flow For heat exchangers with a pair of header sections (3) at both ends in the flow path direction of the path, and a plurality of corrugated heat transfer sections (4) bent in parallel between the header sections (3) In the element manufacturing method,
The pair of metal plates facing each other are folded by overlapping one metal plate at its side, and the folded edge (12) is formed in the flange shape,
Each wave of the corrugated heat transfer section (4) is continuous to both sides of the ridgeline of the wave and extends to the full width of the pair of header sections (3). Shape linear wave (14)
The header part (3) collapses flatly in the direction of travel of each wave in a sigmoidal shape in one direction and is flatly crushed. Is formed at a constant pitch, and there is a non-polymerized portion corresponding to one sheet thickness between each superposed portion (5), and the inner surface side of the superposed portion (5) and the inner surface side of the non-polymerized portion are flush with each other. Formed into
The height of the header portion (3) is higher than the peripheral flange and lower than the amplitude height of the corrugated heat transfer portion (4) between the pair of header portions (3), and the header portion (3) Form a flange (10) at the periphery,
The groove width matching the thickness of the pair of flange portions (10) in a state where the flange portions (10) of the pair of metal plates folded and opposed to each other are in contact with each other on the flat surface on the inner surface side. Is fitted to the pair of flange portions (10),
Seam welding is performed from above and below the groove member (11), the flange portion (10) is welded together with the groove member (11), and the uneven surface which is the overlapping portion (5) of the flange portion (10) is welded. A method for producing an element for a heat exchanger, characterized in that the heat exchanger element is flatly formed and is hermetically and integrally welded between a channel member (11) and a pair of flanges (10).
請求項1に記載の熱交換器用エレメントの製造方法において、
前記ヘッダー部(3)の波形を略横断面矩形波状に形成すると共に、その一方側の第1立ち上がり面(6)を傾斜面とし且つ、稜線を平坦面とすると共に、その稜線に対して他方側の第2立ち上がり面(7)を垂直に形成する工程と、
そのヘッダー部(3)の波形面を前記傾斜方向へ押し倒して、押し潰、互いに圧接された偏平な断面S字状の重合部(5)を形成させる工程と、
を有する熱交換器用エレメントの製造方法。
In the manufacturing method of the element for heat exchangers of Claim 1,
The waveform of the header portion (3) is formed in a substantially rectangular cross-sectional wave shape , the first rising surface (6) on one side thereof is an inclined surface , the ridge line is a flat surface, and the other side with respect to the ridge line Forming the second rising surface (7) on the side vertically ;
That header portion waveforms surface (3) and debt press to the tilt direction, and then press ulcers, cause form together Pressed flat S-shaped cross-section of the overlapped portion (5) step,
The manufacturing method of the element for heat exchangers which has this.
請求項1または請求項2により形成された熱交換器用エレメント。The element for heat exchangers formed by Claim 1 or Claim 2.
JP2003423310A 2003-12-19 2003-12-19 Heat exchanger element and manufacturing method thereof Expired - Fee Related JP4354796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423310A JP4354796B2 (en) 2003-12-19 2003-12-19 Heat exchanger element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423310A JP4354796B2 (en) 2003-12-19 2003-12-19 Heat exchanger element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005180821A JP2005180821A (en) 2005-07-07
JP4354796B2 true JP4354796B2 (en) 2009-10-28

Family

ID=34783890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423310A Expired - Fee Related JP4354796B2 (en) 2003-12-19 2003-12-19 Heat exchanger element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4354796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978291A (en) * 2014-02-10 2014-08-13 上海楷鼎化工科技有限公司 Corrugated plate, corrugated plate bundle and welding method

Also Published As

Publication number Publication date
JP2005180821A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP0865598B1 (en) Heat exchanger
US6032730A (en) Heat exchanger and method of manufacturing a heat exchanging member of a heat exchanger
JP4732609B2 (en) Heat exchanger core
JP4584524B2 (en) Plate filler for use in heat transfer plates and plate heat exchangers
JP2920696B2 (en) Plate heat exchanger with improved corrugated passage
JP2010510473A (en) Plate heat exchanger
TW200533882A (en) A plate heat exchanger
US5183106A (en) Heat exchange
CN105190217B (en) Heat exchanger with jointed frame
JP3302869B2 (en) Plate heat exchanger and method of manufacturing the same
JP3691136B2 (en) Plate stack as heat exchanger
EP0650023A1 (en) Multilayered heat exchanger
KR20010015811A (en) Heat exchanger
JP4354796B2 (en) Heat exchanger element and manufacturing method thereof
US7121330B2 (en) Heat exchange unit
JP4207184B2 (en) Plate type heat exchanger and manufacturing method thereof
JP4369223B2 (en) Element for heat exchanger
US20070151717A1 (en) Heat exchange plate
JP4354795B2 (en) Heat exchanger element and manufacturing method thereof
JPH09500958A (en) Welded plate heat exchanger and method of welding heat transfer plate to plate heat exchanger
EP0984238B1 (en) Heat exchanger
JP2000337789A (en) Method for brazing plate type heat exchanger
JP4317983B2 (en) Plate type heat exchanger
JP4340952B2 (en) Plate type heat exchanger
JP4287169B2 (en) Plate type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees