JP4354754B2 - High-tensile steel plate with excellent base metal toughness and HAZ toughness - Google Patents

High-tensile steel plate with excellent base metal toughness and HAZ toughness Download PDF

Info

Publication number
JP4354754B2
JP4354754B2 JP2003287446A JP2003287446A JP4354754B2 JP 4354754 B2 JP4354754 B2 JP 4354754B2 JP 2003287446 A JP2003287446 A JP 2003287446A JP 2003287446 A JP2003287446 A JP 2003287446A JP 4354754 B2 JP4354754 B2 JP 4354754B2
Authority
JP
Japan
Prior art keywords
less
toughness
tensile steel
steel sheet
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003287446A
Other languages
Japanese (ja)
Other versions
JP2005054250A (en
Inventor
宏行 高岡
昌吾 村上
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003287446A priority Critical patent/JP4354754B2/en
Publication of JP2005054250A publication Critical patent/JP2005054250A/en
Application granted granted Critical
Publication of JP4354754B2 publication Critical patent/JP4354754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、例えば橋梁、ペンストック、タンク、その他の大型構造物に使用される、引張強さが780MPa以上の高張力鋼板に係り、特に母材靭性、HAZ靭性に優れた高張力鋼板に関する。   The present invention relates to a high-tensile steel plate having a tensile strength of 780 MPa or more, for example, used for bridges, penstocks, tanks, and other large structures, and more particularly to a high-tensile steel plate excellent in base material toughness and HAZ toughness.

近年、特に海洋構造物等の分野においては、強度のみならず、母材靭性、HAZ靭性の更なる向上が切望されており、−40℃でのHAZ靭性に優れ、かつ母材靭性がvTrs(遷移温度)で−100℃以下といった極めて高い靭性を備えた780MPa級の高張力鋼板が要望されている。   In recent years, particularly in the field of offshore structures and the like, not only strength but also further improvement of base material toughness and HAZ toughness has been eagerly desired, and HAZ toughness at −40 ° C. is excellent and base material toughness is vTrs ( There is a demand for a high-tensile steel plate of 780 MPa class having extremely high toughness such as -100 ° C. or less at the transition temperature.

従来、780MPa級以上の高張力鋼板では、低温靭性の確保が困難であったが、近年、母材靭性の改善を企図した技術が種々提案されている。例えば、特開平11−172365号公報(特許文献1)には旧オーステナイト(γ)粒のアスペクト比が3以上となるように、熱間圧延における未再結晶域圧延の累積圧下率を50%以上とすることが、特開2001−220644号公報(特許文献2)には旧γ粒の偏平率が平均で50%以下となるように圧延仕上げ温度(FRT)を850℃以下として熱間圧延をすることが、特開2001−200334号公報(特許文献3)には熱間圧延におけるAr3点以上、900℃未満の累積圧下率を10〜50%とすることによってベイナイトラス幅を小さくすることが記載されている。また、特開2003−147477号公報(特許文献4)には、ベイニティックフェライトのパケットサイズが15μm 以下となるように1000〜1250℃での累積圧下率が30%以上の圧延を施すことが記載されている。   Conventionally, it has been difficult to secure low-temperature toughness in high-tensile steel sheets of 780 MPa class or higher, but in recent years, various techniques for improving base material toughness have been proposed. For example, in JP-A-11-172365 (Patent Document 1), the cumulative reduction ratio of non-recrystallization zone rolling in hot rolling is 50% or more so that the aspect ratio of prior austenite (γ) grains is 3 or more. In Japanese Patent Application Laid-Open No. 2001-220644 (Patent Document 2), hot rolling is performed at a rolling finish temperature (FRT) of 850 ° C. or less so that the average flatness of the old γ grains is 50% or less. However, Japanese Patent Laid-Open No. 2001-200334 (Patent Document 3) discloses that the bainite lath width can be reduced by setting the cumulative rolling reduction at Ar3 point or higher and lower than 900 ° C. in hot rolling to 10 to 50%. Are listed. Japanese Patent Laid-Open No. 2003-147477 (Patent Document 4) discloses that rolling with a cumulative rolling reduction at 1000 to 1250 ° C. of 30% or more is performed so that the packet size of bainitic ferrite is 15 μm or less. Are listed.

一方、780MPa級以上の高張力鋼において、大入熱溶接時にHAZ靭性が劣化するという問題がある。その理由は、入熱が大きくなるとHAZの冷却速度が遅くなり、粗大な島状マルテンサイトを生成することにより靭性が低下するからである。この問題は、大入熱溶接を行う場合、厚物、薄物のいずれにおいても発生する。このため、溶接施工時に溶接入熱が5kJ/mm以下に制限されるのが通例であり、溶接効率の低下を余儀なくされていた。
この問題に対して、HAZ靭性を改善する技術が種々提案されている。例えば、特開2000−160281号公報(特許文献5)には低Cとし、焼き入れ性向上元素であるMn、Cr、Moを積極的に添加し、あるいはさらにTiNを微細分散させることで旧γ粒を微細化することが、特開平6−65680号公報(特許文献6)には低Cとし、さらにTa23の微細分散により旧γ粒を微細化することが、特開平5−171341号公報(特許文献7)にはTiおよびMgを必須成分として添加し、酸化物を分散させることにより旧γ粒を微細化し、粒内フェライトの生成を促進することが記載されている。
On the other hand, in a high strength steel of 780 MPa class or higher, there is a problem that HAZ toughness deteriorates during high heat input welding. The reason is that when the heat input is increased, the cooling rate of the HAZ is decreased and the toughness is reduced by generating coarse island martensite. This problem occurs in both thick and thin objects when performing high heat input welding. For this reason, it is usual that welding heat input is restricted to 5 kJ / mm or less at the time of welding construction, and the welding efficiency has been inevitably lowered.
Various techniques for improving the HAZ toughness have been proposed for this problem. For example, Japanese Patent Laid-Open No. 2000-160281 (Patent Document 5) describes the former γ by making C low and actively adding hardenability improving elements Mn, Cr, Mo, or further finely dispersing TiN. In order to refine the grains, JP-A-6-65680 (Patent Document 6) has a low C, and further refinement of the old γ grains by fine dispersion of Ta 2 O 3 is disclosed in JP-A-5-171341. Japanese Patent Publication (Patent Document 7) describes that Ti and Mg are added as essential components and oxides are dispersed to refine old γ grains and promote the formation of intragranular ferrite.

特開平11−172365号公報(特許請求の範囲)JP-A-11-172365 (Claims) 特開2001−220644号公報(特許請求の範囲)JP 2001-220644 A (Claims) 特開2001−200334号公報(特許請求の範囲)JP 2001-200334 A (Claims) 特開2003−147477号公報(特許請求の範囲)JP 2003-147477 A (Claims) 特開2000−160281号公報(特許請求の範囲)JP 2000-160281 A (Claims) 特開平6−65680号公報(特許請求の範囲)JP-A-6-65680 (Claims) 特開平5−171341号公報(特許請求の範囲)JP-A-5-171341 (Claims)

上記母材靭性の改善に関する技術は、変態点を下げる作用を有するMn、Cu、Niの添加量が概ね少なく、Ar3点が高くなるため、オーステナイトの未再結晶域における圧延温度を低下させることに限界があり、従来ではvTrsが−100℃以下というような優れた母材靭性を得ることができなかった。あるいはNb、V等のベイナイトブロックを粗大化させる元素の添加量が多く、低温圧延の効果が少ないため、優れた母材靭性を得ることができなかった。   The technique related to the improvement of the base metal toughness is to reduce the rolling temperature in the austenite non-recrystallized region because the addition amount of Mn, Cu, and Ni having the effect of lowering the transformation point is generally small and the Ar3 point is high. There is a limit, and conventionally, excellent base material toughness such as vTrs of −100 ° C. or less could not be obtained. Alternatively, since the additive amount of elements for coarsening the bainite block such as Nb and V is large and the effect of low temperature rolling is small, excellent base metal toughness cannot be obtained.

一方、前記HAZ靭性の改善に関する技術は、いずれも低C化することによって高冷却速度におけるHAZの硬化を防止するものであり、低C化による強度の低下をNb、Mo、Vのいずれか、もしくは複合して添加することによって補おうとするものである。しかし、780MPa級の高張力鋼板においては、前記元素を積極的に添加するとベイナイト変態時に亀裂伝播の抵抗として作用するベイナイト・ブロックが粗大化し、母材靭性やHAZ靭性が劣化するという問題がある。   On the other hand, the technologies related to the improvement of the HAZ toughness are to prevent the hardening of the HAZ at a high cooling rate by lowering the C, and any decrease in strength due to the lowering of C is any of Nb, Mo, V, Or it is trying to compensate by adding in combination. However, in the high-tensile steel sheet of 780 MPa class, when the above elements are positively added, there is a problem that the bainite block that acts as a resistance to crack propagation during bainite transformation becomes coarse, and the base metal toughness and the HAZ toughness deteriorate.

本発明はかかる問題に鑑みなされたものであり、引張強さが780MPa以上という高強度でありながら、母材靭性およびHAZ靭性に優れた高張力鋼板を提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide a high-tensile steel sheet having excellent base material toughness and HAZ toughness while having a high tensile strength of 780 MPa or more.

本発明は鋼成分の設計に際し、ベイニティックフェライトを主体とする鋼組織を考慮した成分設計を行うこと、さらに亀裂伝播の抵抗として作用するベイナイトブロック(結晶方位が同じであるベイニティックフェライトの束)を微細化することによって、上記課題を解決するものである。すならち、本発明鋼板は成分的には、Cを極低量に制限した上で、母材靭性、HAZ靭性に悪影響を与えるNb、V、Moの添加を抑制し、焼き入れ性向上元素であるMn、Ni、Cuを積極的に添加することによって組織を熱間圧延後の冷却速度を特に制御することなく、高冷却速度から低冷却速度のいずれにおいてもベイニティックフェライトを主体とする組織を生成させるとともに、極低温圧延を積極的に行うことによってベイナイトブロックの微細化を図ったものである。   In designing the steel composition, the present invention is designed in consideration of the steel structure mainly composed of bainitic ferrite. Furthermore, the bainitic block acting as a resistance to crack propagation (of bainitic ferrite having the same crystal orientation). The above problem is solved by miniaturizing the bundle. In other words, the steel sheet of the present invention, in terms of components, restricts C to an extremely low amount and suppresses the addition of Nb, V, and Mo that adversely affect the base material toughness and HAZ toughness, and improves the hardenability. By actively adding Mn, Ni, and Cu, the structure is mainly composed of bainitic ferrite at any of a high cooling rate and a low cooling rate without particularly controlling the cooling rate after hot rolling the structure. The bainite block is refined by generating a structure and actively performing cryogenic rolling.

すなわち、本発明の高張力鋼板は、mass%で、C:0.010〜0.080%、Mn:1.10〜3.00%、Si:0.02〜0.50%、P:0.030%以下、S:0.010%以下、Al:0.200%以下、Cu:0.10〜1.60%、Ni:0.40〜2.50%、Cr:0.30〜2.00%、Mo:0.10〜1.10%、Ti:0.008超〜0.030%、N:0.0100%以下を含み、残部がFe及び不純物からなり、かつ下記式で定義されるAS値およびDL値がAS≧3.60、DL≦2.80とし、さらに板厚1/4部位における組織が主としてベイニティックフェライトからなり、かつベイナイトブロックの円相当径の平均値を5μm 以下としたものである。前記板厚1/4部位とは板面から板厚の1/4の深さの部位をいい、また円相当径とはベイナイトブロックと同等の面積を有する円の直径をいう。なお、板厚1/4部位における組織観察面は、通例の通り、板厚方向(板面に対して垂直方向)と圧延方向(長さ方向)とを含む面(圧延直角方向断面、TD面)である。
AS=[Mn]+[Ni]+2×[Cu]
DL=2.5×[Mo]+30×[Nb]+10×[V]
ただし、[X]は元素Xの含有量(mass%)を表す。
That is, the high-tensile steel plate of the present invention is mass%, C: 0.010 to 0.080%, Mn: 1.10 to 3.00%, Si: 0.02 to 0.50%, P: 0 0.030% or less, S: 0.010% or less, Al: 0.200% or less, Cu: 0.10 to 1.60%, Ni: 0.40 to 2.50%, Cr: 0.30 to 2 0.000%, Mo: 0.10 to 1.10%, Ti: more than 0.008 to 0.030%, N: 0.0100% or less, with the balance being Fe and impurities, and defined by the following formula AS value and DL value are AS ≧ 3.60, DL ≦ 2.80, and the structure in the 1/4 thickness region is mainly composed of bainitic ferrite, and the average value of the equivalent circle diameter of the bainite block is 5 μm or less. The said board thickness 1/4 site | part means the site | part of 1/4 depth of board thickness from a board surface, and a circle equivalent diameter means the diameter of the circle | round | yen which has an area equivalent to a bainite block. In addition, as usual, the structure observation plane in the 1/4 thickness portion is a plane including the thickness direction (perpendicular to the plane) and the rolling direction (length direction) (cross section perpendicular to the rolling direction, TD plane). ).
AS = [Mn] + [Ni] + 2 × [Cu]
DL = 2.5 × [Mo] + 30 × [Nb] + 10 × [V]
However, [X] represents content (mass%) of element X.

前記組織については、ベイニティックフェライトに含まれる粗大な硬質相であるMA(Martensite-Austenite Constituent:マルテンサイトおよびオーステナイトの混合物)を面積率で5%以下とすることが好ましく、さらに板厚方向における旧オーステナイトの粒界間隔の平均値を20μm 以下とすることが好ましい。   For the structure, MA (Martensite-Austenite Constituent: a mixture of martensite and austenite), which is a coarse hard phase contained in bainitic ferrite, is preferably 5% or less in area ratio, and further in the thickness direction. The average value of the prior austenite grain boundary spacing is preferably 20 μm or less.

また、前記化学成分として、さらに(1) B:0.0050%以下、(2) Nb:0.040%以下、V:0.30%以下のいずれか1種または2種、(3) Ca:0.0005〜0.0050%、Mg:0.0001〜0.0050%のいずれか1種または2種、(4) Hf:0.050%以下、Zr:0.100%以下のいずれか1種または2種、の各群から選ばれる元素を単独で、あるいは複合して含有することができる。また、C含有量が0.03%以下の場合は、AS≧4.20とすることが好ましい。   Further, as the chemical component, (1) B: 0.0050% or less, (2) Nb: 0.040% or less, V: 0.30% or less, one or two, (3) Ca : 0.0005 to 0.0050%, Mg: Any one or two of 0.0001 to 0.0050%, (4) Hf: 0.050% or less, Zr: 0.100% or less One or two elements selected from each group can be contained alone or in combination. Further, when the C content is 0.03% or less, AS ≧ 4.20 is preferable.

本発明鋼板によれば、Cを極低量とし、Mn、Ni、CuをAS値が3.60以上になるように積極的に添加する一方、Mo、Nb、Vの添加をDL値が2.80以下となるように抑制し、特にベイナイトブロックの平均サイズを円相当径で5μm 以下としたので、熱延後の冷却速度の高低に拘わらず、また板厚が厚い場合であっても、亀裂の伝播が生じ難いベイニティックフェライトを主体とする組織とすることができ、高強度ながら、母材靭性に優れ、かつ優れた溶接性を備える。   According to the steel sheet of the present invention, C is extremely low and Mn, Ni and Cu are positively added so that the AS value is 3.60 or more, while the addition of Mo, Nb and V has a DL value of 2. The average size of the bainite block is set to 5 μm or less in terms of the equivalent circle diameter, so that even if the plate thickness is large regardless of the cooling rate after hot rolling, It is possible to obtain a structure mainly composed of bainitic ferrite in which the propagation of cracks is difficult to occur, and is excellent in base metal toughness and excellent weldability while having high strength.

本発明鋼板の成分上の要点は、C量を極低量に制限した上で、HAZ靭性、母材靭性に悪影響を与えるNb、V、Moの添加量を制限し(DL≦2.80)、焼入れ性向上元素であるMn、Ni、Cuを積極的に添加(AS≧3.60)した点にある。まず、本発明鋼板の鋼成分によって熱間圧延によって生じる組織、特性をCCT図を参照して説明する。   The main point on the composition of the steel sheet of the present invention is that the amount of Nb, V, and Mo, which adversely affects the HAZ toughness and base metal toughness, is limited (DL ≦ 2.80) after limiting the C amount to an extremely low amount. The hardenability improving elements Mn, Ni, and Cu are positively added (AS ≧ 3.60). First, the structure and characteristics produced by hot rolling with the steel components of the steel sheet of the present invention will be described with reference to the CCT diagram.

図1は本発明にかかるMn、Ni、Cuを積極的に添加した極低C系鋼のCCT図を示す。図中、BFはベイニティックフェライト、GBFはグラニュラ・ベイニティックフェライト、Mはマルテンサイト、Fはフェライトを示す。同図より、本発明の鋼板では、熱間圧延後の冷却が高冷却速度(CR1)、低冷却速度(CR2)のいずれにおいても、BFが面積率で85%以上、好ましくは90%以上生成するようになる。さらに、熱間圧延において、800℃以下の累積圧下率を50%以上とする低温圧延を行うことにより、低温圧延によるオースフォーム効果(母材強度上昇効果)に加えて、BF中のベイナイトブロックが円相当径で5μm 以下に微細化される。ベイナイトブロックの大きさは、組織中に導入された亀裂の伝播を左右し、微細なほど亀裂を伝播し難くする。このため、ベイナイトブロックが5μm 以下に微細化された、BFを主体とする組織により、肉厚が50mm以上の厚板であっても、母材の機械的性質として780MPa以上の強度が得られ、また優れた靭性を備えたものになる。
しかも、ASおよびDL値を所定の範囲に制御しているので、高冷却速度(CR1)、低冷却速度(CR2)のいずれにおいても、上記のとおり、母材のほぼ全組織が硬さの冷却速度感受性の低いBFとなるため、小入熱溶接条件においてはHAZの硬さを低減(耐低温割れ性を向上)させることができ、大入熱溶接条件においてもHAZ靭性を確保することができる。なお、組織観察部位は平均的組織を示す板厚1/4部位であり、観察面は通例に従い、TD面である。
FIG. 1 shows a CCT diagram of an ultra-low C steel to which Mn, Ni and Cu according to the present invention are positively added. In the figure, BF represents bainitic ferrite, GBF represents granular bainitic ferrite, M represents martensite, and F represents ferrite. From the figure, in the steel sheet of the present invention, BF is generated in an area ratio of 85% or more, preferably 90% or more, regardless of whether the cooling after hot rolling is high cooling rate (CR1) or low cooling rate (CR2). To come. Furthermore, in hot rolling, by performing low temperature rolling with a cumulative rolling reduction of 800 ° C. or less at 50% or more, in addition to the aus foam effect (base material strength increasing effect) by low temperature rolling, the bainite block in BF The equivalent circle diameter is reduced to 5 μm or less. The size of the bainite block affects the propagation of cracks introduced into the structure. The finer the bainite block, the more difficult it is to propagate the cracks. For this reason, the strength of 780 MPa or more is obtained as a mechanical property of the base material even if the bainite block is refined to 5 μm or less and the structure mainly composed of BF is a thick plate having a thickness of 50 mm or more, It also has excellent toughness.
In addition, since the AS and DL values are controlled within a predetermined range, as described above, the entire structure of the base metal is cooled with hardness at both the high cooling rate (CR1) and the low cooling rate (CR2). Since BF has low speed sensitivity, the hardness of HAZ can be reduced (low temperature cracking resistance improved) under small heat input welding conditions, and HAZ toughness can be ensured even under high heat input welding conditions. . It should be noted that the tissue observation site is a ¼ thickness plate showing an average tissue, and the observation surface is a TD surface as usual.

次に本発明の高張力鋼板の成分限定理由について詳細に説明する。単位は全てmass%である。
C:0.010〜0.080%
Cは母材強度を確保するために必要な元素である。0.010%未満では焼き入れ性向上元素であるMn、NiおよびCuを積極的に添加しても780MPa以上の母材強をを確保することができないようになる。一方、0.080%超になると、高冷却速度側でベイニティックフェライトではなく、マルテンサイトが生成するようになり、耐低温割れ性が劣化するようになる。C量を0.010%以上添加するとともに0.080%以下に制限し、同時に適量のMn、Ni、CuおよぴCrを添加することで、小入熱溶接時のHAZの耐低温割れ性と母材強度を両立させ、かつ大入熱時のHAZの靭性を改善することができる。このため、C量を0.010%以上、好ましくは0.030%超とし、一方その上限を0.080%、好ましくは0.060%とする。
Next, the reasons for limiting the components of the high-tensile steel sheet of the present invention will be described in detail. All units are mass%.
C: 0.010-0.080%
C is an element necessary for ensuring the strength of the base material. If it is less than 0.010%, it will not be possible to secure a base material strength of 780 MPa or more even if Mn, Ni and Cu, which are hardenability improving elements, are positively added. On the other hand, if it exceeds 0.080%, martensite is generated instead of bainitic ferrite on the high cooling rate side, and the low temperature cracking resistance deteriorates. C content is limited to 0.010% or more and limited to 0.080% or less, and at the same time, appropriate amounts of Mn, Ni, Cu and Cr are added, so that low temperature cracking resistance of HAZ during small heat input welding And the strength of the base material, and the toughness of the HAZ at the time of large heat input can be improved. For this reason, the C content is 0.010% or more, preferably more than 0.030%, while its upper limit is 0.080%, preferably 0.060%.

Si:0.02〜0.50%
Siは脱酸作用を有する元素であり、Si量が0.02%未満ではその効果が過小であり、一方0.50%を超えると溶接性および母材靭性を劣化させる。このため、Si量の下限を0.02%とし、その上限を0.50%、好ましくは0.20%とする。
Si: 0.02 to 0.50%
Si is an element having a deoxidizing action. If the Si content is less than 0.02%, its effect is too small. On the other hand, if it exceeds 0.50%, the weldability and the base metal toughness are deteriorated. For this reason, the lower limit of the Si amount is 0.02%, and the upper limit is 0.50%, preferably 0.20%.

Mn:1.10〜3.00%
Ni:0.40〜2.50%
Cu:0.10〜1.60%
これらの元素は焼き入れ性を改善する作用を有し、高冷却速度から低冷却速度に渡ってベイニティックフェライトを生成させやすくし、これらの積極的な添加と極低C化によって、小入熱溶接時のHAZ靭性と耐低温割れ性を両立させ、かつ母材強度、勒性および大入熱溶接時のHAZ靭性を改善することができる。
Mn: 1.10 to 3.00%
Ni: 0.40 to 2.50%
Cu: 0.10 to 1.60%
These elements have the effect of improving the hardenability, facilitate the formation of bainitic ferrite from high cooling rates to low cooling rates. The HAZ toughness at the time of heat welding and the low temperature cracking resistance can be made compatible, and the base metal strength, the toughness and the HAZ toughness at the time of high heat input welding can be improved.

すなわち、Mnは焼き入れ性を向上させ強度、靭性の確保に有効であり、1.10%未満ではかかる作用が過小であり、一方3.00%超では返って低温靭性が劣化する。このため、Mn量の下限を1.10%、好ましくは1.30%、より好ましくは1.40%とし、その上限を3.00%、好ましくは2.20%、より好ましくは2.10%とする。
Niも鋼の低温靭性の向上および焼き入れ性を高めて強度を向上させるとともに、熱間割れおよび溶接高温割れの防止にも効果がある。Ni量が0.40%未満ではこれらの効果が過小であり、一方2.50%を超えるとスケール疵が発生しやすくなる。このため、Ni量の下限を0.40%、好ましくは0.50%とし、その上限を2.50%、好ましくは2.00%とする。
Cuは固溶強化と析出強化によって母材強度を向上させ、またMo、Mn、Ni、Crほどではないが焼き入れ性を向上させる。かかる作用を効果的に発現させるには0.10%以上、好ましくは0.5%以上、より好ましくは0.80%以上の添加が望ましい。もっとも、1.60%を超えると母材靭性、大入熱溶接時のHAZ靭性を低下させるようになるので、Cu量の上限を1.60%、好ましくは1.40%、より好ましくは1.20%とする。
That is, Mn is effective for improving the hardenability and securing the strength and toughness, and if it is less than 1.10%, such an action is too small, while if it exceeds 3.00%, the low temperature toughness is deteriorated. Therefore, the lower limit of the amount of Mn is 1.10%, preferably 1.30%, more preferably 1.40%, and the upper limit is 3.00%, preferably 2.20%, more preferably 2.10. %.
Ni also improves the low temperature toughness and hardenability of the steel to improve the strength, and is effective in preventing hot cracking and weld hot cracking. If the amount of Ni is less than 0.40%, these effects are too small. On the other hand, if it exceeds 2.50%, scale wrinkles are likely to occur. For this reason, the lower limit of the Ni amount is 0.40%, preferably 0.50%, and the upper limit is 2.50%, preferably 2.00%.
Cu improves the base metal strength by solid solution strengthening and precipitation strengthening, and improves hardenability, although not as much as Mo, Mn, Ni, and Cr. Addition of 0.10% or more, preferably 0.5% or more, more preferably 0.80% or more is desirable in order to effectively exhibit such action. However, if it exceeds 1.60%, the toughness of the base metal and the HAZ toughness at the time of high heat input welding are lowered, so the upper limit of the Cu amount is 1.60%, preferably 1.40%, more preferably 1 20%.

AS値:3.60以上
Mn、Ni、Cuの添加量は、母材強度と密接な関係があり、CuはMn、Niに比して2倍程度、強度向上効果が高い。高冷却速度から低冷却速度の範囲で母材強度を780MPa以上にするには、後述の実施例から明らかなようにAS値を3.60以上、好ましくは4.00以上、より好ましくは4.20以上となるようにMn、Ni、Cuを添加する。特に、C量が0.03%以下となる場合、Cによる強度向上作用が低下するので、AS≧4.20とすることが好ましい。
AS value: 3.60 or more The addition amount of Mn, Ni, and Cu is closely related to the strength of the base material, and Cu is about twice as strong as Mn and Ni, and has a high strength improvement effect. In order to increase the base material strength to 780 MPa or more in the range from the high cooling rate to the low cooling rate, the AS value is 3.60 or more, preferably 4.00 or more, more preferably 4.00, as will be apparent from the examples described later. Mn, Ni and Cu are added so as to be 20 or more. In particular, when the C content is 0.03% or less, the strength improvement effect by C is reduced, and therefore AS ≧ 4.20 is preferable.

P:0.030%以下
不純物元素であるPは母材、溶接部の靭性に悪影響を及ぼすため、0.030%以下に止める。好ましくは0.010%以下とするのがよい。
P: 0.030% or less P, which is an impurity element, adversely affects the toughness of the base metal and the welded portion, so it is limited to 0.030% or less. Preferably it is 0.010% or less.

S:0.010%以下
SはMnSを形成して延性を低下させる元素であり、特に高強度鋼においてその影響が大きいため、0.010%以下、好ましくは0.005%以下に止めるのがよい。
S: 0.010% or less S is an element that forms MnS and lowers the ductility. Particularly in high-strength steel, the effect is large, so 0.010% or less, preferably 0.005% or less. Good.

Al:0.200%以下
Alは脱酸およびミクロ組織の微細化による母材靭性向上効果を有する(0%を含まない)。もっとも、過多に添加するとかえって母材靭性が低下するため、上限を0.200%とする。好ましくは0.010%以上、0.060%以下とするのがよい。
Al: 0.200% or less Al has an effect of improving the base material toughness by deoxidation and refinement of the microstructure (not including 0%). However, if added in excess, the toughness of the base material is rather lowered, so the upper limit is made 0.200%. Preferably it is 0.010% or more and 0.060% or less.

N:0.0100%以下
Nは後述のTiと結合し、TiNを形成して大入熱溶接時のオーステナイト粒を微細化し、HAZ靭性を向上させる効果を有する。しかし、N量の増加は母材靭性、HAZ靭性に悪影響を与えるため、その上限を0.0100%とする。好ましくは0.0020%以上、0.0080%以下である。
N: 0.0100% or less N has an effect of combining with Ti described later to form TiN to refine the austenite grains during high heat input welding and improve the HAZ toughness. However, an increase in the amount of N adversely affects the base metal toughness and HAZ toughness, so the upper limit is made 0.0100%. Preferably it is 0.0020% or more and 0.0080% or less.

Cr:0.30〜2.00%
Crは母材、溶接部の強度を高めるが、Cr量が0.30%未満ではかかる効果が過小であり、一方2.00%を超えると溶接性やHAZ靭性を劣化させるようになる。このため、Cr量の下限を0.30%、好ましくは0.50%、より好ましくは0.70%とし、その上限を2.00%、好ましくは1.50%、より好ましくは1.00%とする。
Cr: 0.30 to 2.00%
Cr increases the strength of the base metal and the welded portion. However, if the Cr content is less than 0.30%, such an effect is too small. On the other hand, if it exceeds 2.00%, the weldability and the HAZ toughness are deteriorated. For this reason, the lower limit of the Cr content is 0.30%, preferably 0.50%, more preferably 0.70%, and the upper limit is 2.00%, preferably 1.50%, more preferably 1.00. %.

Mo:0.10〜1.10%
Moは焼き入れ性を向上させ、高強度を確保するために有効であり、焼き戻し脆性を防止する効果を有する。Mo量が0.10%未満ではかかる作用が過小であるので、Mo量の下限を0.10%、好ましくは0.15%とする。一方、Moは再結晶抑制作用があり、過多に添加すると、圧延後に粗大なオーステナイト粒となり、変態後のベイナイトブロックが粗大化し、母材の靭性が劣化する。また、Moはオーステナイト粒界に偏析しやすく、過剰に添加すると変態時の核生成頻度を低下させ、変態後のベイナイトブロックを粗大化させて、母材靭性、HAZ靭性を劣化させる。このため、Mo量の上限を1.10%、好ましくは0.60%とする。
Mo: 0.10 to 1.10%
Mo is effective for improving hardenability and ensuring high strength, and has the effect of preventing temper brittleness. If the amount of Mo is less than 0.10%, this effect is too small, so the lower limit of the amount of Mo is 0.10%, preferably 0.15%. On the other hand, Mo has an effect of suppressing recrystallization, and if added excessively, it becomes coarse austenite grains after rolling, bainite blocks after transformation become coarse, and the toughness of the base material deteriorates. Moreover, Mo is easily segregated at the austenite grain boundary, and if added excessively, the frequency of nucleation during transformation is lowered, and the bainite block after transformation is coarsened to deteriorate the base material toughness and HAZ toughness. For this reason, the upper limit of the Mo amount is 1.10%, preferably 0.60%.

DL値:2.80以下
Moおよび後述のNb、Vは焼き入れ性を向上させる作用があるが、その一方でベイナイトブロックを粗大化させ、母材靭性、HAZ靭性を劣化させる。このような母材靭性の劣化作用は各元素について一様ではなく、発明者等の実験によりMoを1としたとき、Nbは12倍程度、Vは4倍程度である。後述の実施例から明らかなようにDL値を2.80以下、好ましくは2.50以下、より好ましくは2.00以下となるようにMo、Nb、Vの添加を抑制することによって、ベイナイトブロックを微細化し、さらに低温圧延によってベイナイトブロックを5μm 以下にすることによって、vTrsが−100℃以下の母村靭性と良好なHAZ靭性とを兼ね備えることができる。
DL value: 2.80 or less Mo and Nb and V described later have the effect of improving the hardenability, but on the other hand, the bainite block is coarsened and the base material toughness and the HAZ toughness are deteriorated. Such a deterioration effect of the base material toughness is not uniform for each element. When Mo is set to 1 through experiments by the inventors, Nb is about 12 times and V is about 4 times. As will be apparent from Examples described later, by suppressing the addition of Mo, Nb and V so that the DL value is 2.80 or less, preferably 2.50 or less, more preferably 2.00 or less, a bainite block is obtained. By further reducing the size of the bainite block to 5 μm or less by low-temperature rolling, it is possible to combine the Hamura toughness with a vTrs of −100 ° C. or less and good HAZ toughness.

Ti:0.008超〜0.030%
TiはNと結合して窒化物を形成し、溶接時におけるHAZのオーステナイト粒を微細化し、HAZ靭性改善に有効な元素である。Ti量が0.008%以下では細粒化効果が過小であり、一方0.030%を超えるとかえってHAZ靭性を劣化させる。このため、Ti量を0.008%超、好ましくは0.010%以上とし、その上限を0.030%、好ましくは0.020%とする。
Ti: more than 0.008 to 0.030%
Ti combines with N to form nitrides, refines the HAZ austenite grains during welding, and is an effective element for improving HAZ toughness. If the amount of Ti is 0.008% or less, the effect of refining is too small, whereas if it exceeds 0.030%, the HAZ toughness is deteriorated. For this reason, the amount of Ti is more than 0.008%, preferably 0.010% or more, and the upper limit is 0.030%, preferably 0.020%.

本発明の鋼板は以上の成分のほか、残部Feおよび不純物によって形成されるが、上記成分の作用、効果を損なわない範囲で特性をより向上させる元素の添加を妨げるものではない。例えば、(1) 下記範囲のB、(2) 下記範囲のNb、Vのいずれか1種または2種、(3) 下記範囲のCa、Mgのいずれか1種または2種、(4) 下記範囲のZr、Hfのいずれか1種または2種、の各群から選ばれた元素を単独で、あるいは複合してさらに添加することができる。   The steel plate of the present invention is formed by the balance Fe and impurities in addition to the above components, but does not hinder the addition of elements that further improve the characteristics within a range that does not impair the function and effect of the above components. For example, (1) B in the following range, (2) One or two of Nb and V in the following range, (3) One or two of Ca and Mg in the following range, (4) Any one or two elements selected from the group consisting of Zr and Hf in the range can be added alone or in combination.

B:0.0050%以下
Bは焼き入れ性を向上させてHAZ靭性を改善する作用を有する。特に、入熱量の大きい溶接の際にその効果は大きい。かかる作用を効果的に発現させるためには、0.0005%以上の添加が好ましい。もっとも多量に添加すると、かえって母材靭性、HAZ靭性を劣化させる。このため、B量の上限を0.0050%、好ましくは0.045%とする。より好ましくは0.0010〜0.0040%とするのがよい。
B: 0.0050% or less B has an action of improving the hardenability and improving the HAZ toughness. In particular, the effect is great when welding with a large heat input. Addition of 0.0005% or more is preferable in order to effectively exhibit such action. When added in a large amount, the base material toughness and HAZ toughness are deteriorated. For this reason, the upper limit of the amount of B is made 0.0050%, preferably 0.045%. More preferably, the content is 0.0010 to 0.0040%.

Nb:0.040%以下
固溶Nbは素地の焼き入れ性を向上させて母材強度、溶接継手強度を向上させる効果があり、必要に応じて添加することができる。その一方、固溶Nbは加工オーステナイトの回復を抑制し、再結晶を抑制させるため、圧延後に粗大なオーステナイト粒となり、変態後のベイナイトブロックが粗大化し、母材靭性を著しく低下させる。また、Nbはオーステナイト粒界に偏析しやすく、過剰に添加すると変態時の核生成頻度を低下させ、変態後のベイナイトブロックを粗大化させて、母材靭性、HAZ靭性を劣化させる。このため、Nb量の上限を0.040%、好ましくは0.020%、より好ましくは0.015%とする。
Nb: 0.040% or less Solid solution Nb has the effect of improving the hardenability of the base material and improving the strength of the base metal and the welded joint, and can be added as necessary. On the other hand, solute Nb suppresses the recovery of processed austenite and suppresses recrystallization, so that coarse austenite grains are formed after rolling, the bainite block after transformation becomes coarse, and the base metal toughness is significantly reduced. Nb tends to segregate at the austenite grain boundaries, and if added excessively, the frequency of nucleation during transformation is reduced, and the bainite block after transformation is coarsened to deteriorate the base metal toughness and HAZ toughness. For this reason, the upper limit of the amount of Nb is made 0.040%, preferably 0.020%, more preferably 0.015%.

V:0.30%以下
Vは少量の添加により焼き入れ性および焼き戻し軟化抵抗を高くする効果があり、必要に応じて添加することができる。一方、Vは加工オーステナイトの回復を抑制し、再結晶を抑制させるため、圧延後に粗大なオーステナイト粒となり、変態後のベイナイトブロックが粗大化し、母材靭性を著しく低下させる。また、Vはオーステナイト粒界に偏析しやすく、過剰に添加すると変態時の核生成頻度を低下させ、変態後のベイナイトブロックを粗大化させて、母材靭性、HAZ靭性を劣化させる。このため、V量の上限を0.30%、好ましくは0.05%、より好ましくは0.04%とする。
V: 0.30% or less V has the effect of increasing hardenability and temper softening resistance when added in a small amount, and can be added as necessary. On the other hand, V suppresses the recovery of processed austenite and suppresses recrystallization, so that coarse austenite grains are formed after rolling, the bainite block after transformation becomes coarse, and the base material toughness is significantly reduced. V is easily segregated at the austenite grain boundary, and if added excessively, the nucleation frequency at the time of transformation is lowered, the bainite block after transformation is coarsened, and the base metal toughness and the HAZ toughness are deteriorated. For this reason, the upper limit of the V amount is set to 0.30%, preferably 0.05%, and more preferably 0.04%.

Ca:0.0005〜0.0050%
Mg:0.0001〜0.0050%
CaはMnSを球状化するという介在物の形態制御により異方性を低減する効果を有する。一方、MgはMgOを形成し、HAZのオーステナイト粒の粗大化を抑制することによってHAZ靭性を向上させる効果を有する。Ca0.0005%未満、Mg0.0001%未満では、このような効果は過小であり、一方Ca.0050%超、Mg0.0050%超では添加量が過剰なため母材の靭性をかえって劣化させる。このため、Ca量の下限を0.0005%とし、その上限を0.0050%、好ましくは0.0030%とする。また、Mg量の下限を0.0001%とし、その上限を0.0050%、好ましくは0.0035%とする。
Ca: 0.0005 to 0.0050%
Mg: 0.0001 to 0.0050%
Ca has the effect of reducing anisotropy by controlling the form of inclusions to spheroidize MnS. On the other hand, Mg has the effect of improving the HAZ toughness by forming MgO and suppressing the coarsening of the austenite grains of the HAZ. When Ca is less than 0.0005% and Mg is less than 0.0001%, such an effect is too small, while Ca. If it exceeds 0050% and Mg exceeds 0.0050%, the added amount is excessive, so that the toughness of the base material is deteriorated. For this reason, the lower limit of Ca content is 0.0005%, and the upper limit is 0.0050%, preferably 0.0030%. Further, the lower limit of the Mg amount is 0.0001%, and the upper limit is 0.0050%, preferably 0.0035%.

Zr:0.100%以下
Hf:0.050%以下
Zr、HfはTiと同様、Nと窒化物を形成して溶接時におけるHAZのオーステナイト粒を微細化し、HAZ靭性改善に有効な元素である。しかし、過剰に添加するとかえって母材靭性、HAZ靭性を低下させる。このため、Zr量の上限を0.100%、Hf量の上限を0.050%とする。
Zr: 0.100% or less Hf: 0.050% or less Zr and Hf are elements that are effective in improving HAZ toughness by forming nitrides with N to refine HAZ austenite grains during welding. . However, if added excessively, the base metal toughness and HAZ toughness are reduced. For this reason, the upper limit of the Zr amount is 0.100%, and the upper limit of the Hf amount is 0.050%.

次に、本発明鋼板のミクロ組織を製造方法と共に説明する。
本発明の高張力鋼板は、典型的には前記成分の鋼片をAC3 〜1350℃程度に加熱後、800℃以下の累積圧下率が50%以上となるように熱間圧延を行い、熱間圧延終了後、一般的な冷却速度である0.05〜50℃/s程度で冷却することによって製造される。本発明の成分系では、熱間圧延後の冷却速度が高速から低速に渡り、板厚1/4部位における組織においてベイニティックフェライトが面積%で85%以上、好ましくは90%以上を含み、残部がほぼグラニュラ・ベイニティックフェライトおよびMAで形成された高強度、高靭性組織が得られる。
Next, the microstructure of the steel sheet of the present invention will be described together with the manufacturing method.
The high-strength steel sheet of the present invention is typically heated by heating the steel slab of the above components to about AC 3 to 1350 ° C., and then hot rolling so that the cumulative reduction ratio of 800 ° C. or less is 50% or more. It manufactures by cooling at about 0.05-50 degreeC / s which is a general cooling rate after completion | finish of cold rolling. In the component system of the present invention, the cooling rate after hot rolling ranges from high speed to low speed, and bainitic ferrite is 85% or more in area%, preferably 90% or more in the structure at the thickness 1/4 part, A high-strength and high-toughness structure is obtained, the balance of which is substantially formed of granular bainitic ferrite and MA.

前記ベイニティックフェライトやグラニュラ・ベイニティックフェライトの界面には粗大な硬質のMAが生成する場合がある。MAは粗大な硬質相であるため、亀裂発生の起点となり、母材靭性を劣化させるので、面積率で5%以下に止めることが好ましい。MAを低減するには、熱間圧延後の冷却速度を前記範囲内で高く設定すればよい。   Coarse hard MA may be generated at the interface between the bainitic ferrite and granular bainitic ferrite. Since MA is a coarse hard phase, it becomes a starting point of crack generation and deteriorates the base material toughness. Therefore, it is preferable to keep the area ratio at 5% or less. In order to reduce MA, the cooling rate after hot rolling may be set high within the above range.

また、オーステナイト粒を微細化することによって母材靭性をより向上させることができ、旧オーステナイトの板厚方向の粒界間隔の平均値を20μm 以下、好ましくは15μm 以下にすることが望ましい。オーステナイト粒を微細化するには、鋼片加熱温度をできるだけ低温域に設定すればよい。   Further, it is possible to further improve the base material toughness by making the austenite grains finer, and it is desirable that the average value of the grain boundary distance in the thickness direction of the prior austenite is 20 μm or less, preferably 15 μm or less. In order to refine the austenite grains, the steel piece heating temperature may be set as low as possible.

本発明鋼板は、熱延後に焼き戻し熱処理が不要な非調質鋼板であるが、必要により上記冷却後、さらに300℃以上、800℃未満の温度域に再加熱保持する焼き戻し熱処理を行うことによって、母材の靭性をさらに改善すると共に耐力を向上させることができる。前記焼き戻し処理を行った場合でも、前記ベイニティックフェライト主体の組織に変化はない。   The steel sheet of the present invention is a non-tempered steel sheet that does not require a tempering heat treatment after hot rolling, but if necessary, after the cooling, a tempering heat treatment that is reheated to a temperature range of 300 ° C. or higher and lower than 800 ° C. is performed. Thus, the toughness of the base material can be further improved and the proof stress can be improved. Even when the tempering treatment is performed, the structure mainly composed of the bainitic ferrite is not changed.

本発明の鋼板は、上記のとおり、熱間圧延において所定の成分系の鋼片に対して低温圧延を積極的に行うので、圧延後の冷却速度にかかわらず、ベイナイトブロックの平均サイズが円相当径で5μm 以下であるベイニティックフェライトを主体とした組織が得られる。このため、比較的厚い鋼板、例えば板厚が50mm以上のものでも780MPa以上の強度を有しながら、良好な母材靭性、HAZ靭性、耐低温割れ性を有するものとなる。
次に、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものはでない。
As described above, the steel sheet of the present invention actively performs low-temperature rolling on a steel slab of a predetermined component system in hot rolling, so that the average size of the bainite block is equivalent to a circle regardless of the cooling rate after rolling. A structure mainly composed of bainitic ferrite having a diameter of 5 μm or less is obtained. For this reason, even if it is a comparatively thick steel plate, for example, a plate thickness of 50 mm or more, it has good base material toughness, HAZ toughness and cold cracking resistance while having a strength of 780 MPa or more.
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

下記表1〜表3に示す鋼を常法により溶製し、その溶湯を鋳造して得られたスラブ(厚さ250mm)を表4〜6に示す加熱温度にて加熱した後、同表に示す条件にて熱間圧延を行い、仕上圧延温度(FRT)にて熱間圧延を終了し、同表に示す冷却速度(CR)にて冷却した。また、一部の試料については、冷却後、同表に示す焼戻温度にて15min 程度保持する焼き戻し熱処理を行った。   The steels shown in Tables 1 to 3 below were melted by a conventional method, and the slabs (thickness 250 mm) obtained by casting the molten metal were heated at the heating temperatures shown in Tables 4 to 6, and then in the same table. Hot rolling was performed under the conditions shown, hot rolling was finished at the finish rolling temperature (FRT), and cooling was performed at the cooling rate (CR) shown in the same table. In addition, some samples were subjected to tempering heat treatment for about 15 minutes at the tempering temperature shown in the table after cooling.

Figure 0004354754
Figure 0004354754

Figure 0004354754
Figure 0004354754

Figure 0004354754
Figure 0004354754

得られた熱延板に対し、熱延板の板厚の1/4部位から組織観察試験片を採取し、光学顕微鏡観察(倍率400倍)を行ったところ、ベイニティックフェライトを主体とし、残部がほぼグラニュラ・ベイニティックフェライトであって、ベイニティックフェライトやグラニュラ・ベイニティックフェライトの界面にMAが生成した組織となっていた。また、ベイニティックフェライトおよびMAの面積分率を測定するため、組織観察試験片をナイタール腐食後、SEM(走査電子顕微鏡)を用いて倍率1000倍で組織を撮影し、撮影した画像を画像解析ソフト(名称 Image-Pro、プラネトロン社製)を用いて解析し、ベイニティックフェライトおよびMAの面積率を求めた。なお、本実施例におけるベイニティックフェライト面積率の値はその界面に形成されたMAの面積率も含んだ値である。ベイニティックフェライトとグラニュラ・ベイニティックフェライトとは、その形態が前者は針状ないし柱状であり、一方後者は塊状であり、形態が異なるため判別することができる。また、EBSP(Electron Backscatter Diffraction Pattern)によりベイナイトブロックを観察し、撮影した画像を用いてベイナイトブロックの円相当径の平均値を前記画像解析ソフトにより求めた。また、旧オーステナイトの板厚方向の粒界間隔は、撮影した画像から切断法によりその平均値を求めた。これらの測定結果を表4〜6に併せて示す。   With respect to the obtained hot-rolled sheet, a structure observation specimen was collected from ¼ part of the thickness of the hot-rolled sheet and subjected to optical microscope observation (magnification 400 times). As a result, bainitic ferrite was the main component, The balance was almost granular bainitic ferrite, and the structure was such that MA was formed at the interface between bainitic ferrite and granular bainitic ferrite. In addition, to measure the area fraction of bainitic ferrite and MA, the structure observation specimen was subjected to nital corrosion, and then the structure was photographed at a magnification of 1000 using a scanning electron microscope (SEM), and the photographed image was subjected to image analysis. Analysis was performed using software (name: Image-Pro, manufactured by Planetron), and area ratios of bainitic ferrite and MA were obtained. In addition, the value of the bainitic ferrite area ratio in a present Example is a value also including the area ratio of MA formed in the interface. The form of bainitic ferrite and granular bainitic ferrite can be distinguished because the former is needle-like or columnar, while the latter is massive and has different forms. Moreover, the bainite block was observed by EBSP (Electron Backscatter Diffraction Pattern), and the average value of the equivalent circle diameter of the bainite block was obtained by the image analysis software using the photographed image. Moreover, the grain boundary space | interval of the plate thickness direction of prior austenite calculated | required the average value by the cutting method from the image | photographed image. These measurement results are also shown in Tables 4-6.

また下記要領にて引張試験、衝撃試験を行い、母材の機械的性質を調べた。
引張試験は、各鋼板の板厚1/4部位から採取したJIS4号試験片を用いて行い、0.2%耐力、引張強さを測定した。また、衝撃試験は各鋼板の板厚1/4部位から採取したJIS4号試験片を用いてシャルピー衝撃試験を行い、脆性破面率を求めた。
In addition, a tensile test and an impact test were performed in the following manner to examine the mechanical properties of the base material.
The tensile test was performed using a JIS No. 4 test piece taken from a 1/4 thickness portion of each steel plate, and 0.2% proof stress and tensile strength were measured. Moreover, the impact test performed the Charpy impact test using the JIS4 test piece extract | collected from the board thickness 1/4 site | part of each steel plate, and calculated | required the brittle fracture surface rate.

さらに、引張強さが780MPa以上、母材靭性がvTrs=−100℃以下のものを合格として、合格基準に達した試料の全てと、合格基準に達しなかったものの一部に対して、下記の要領にてHAZ靭性、耐低温割れ性を調べた。
HAZ靭性は、入熱5kJ/mm、10kJ/mm、さらに15kJ/mmで溶接(サブマージアーク溶接)を行い、ボンド部を含む図2に示す試験片採取部位3からJIS4号試験片を採取し、シャルピー衝撃試験を行い、ボンド部の吸収工ネルギ(vE-40 )を求め、これによって評価した。図中、1は鋼板、2は溶接金属部であり、試験片採取部位3は板厚中心から開先開き側に位置している。入熱が15kJ/mmの超大入熱溶接は、冷却速度が非常に遅くなった場合の合金元素の影響を見るために実施したものである。
耐低温割れ性はJISZ3158に規定されたy形溶接割れ試験方法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。予熱温度が0℃とあるのは、試験に供した鋼板を0℃に冷やした状態で溶接を行い、溶接後に割れが生じなかったものを示す。
Furthermore, with a tensile strength of 780 MPa or more and a base material toughness of vTrs = −100 ° C. or less as a pass, all of the samples that have passed the pass standard and some of the samples that did not reach the pass standard are listed below. The HAZ toughness and cold cracking resistance were examined as described above.
The HAZ toughness is welded (submerged arc welding) at a heat input of 5 kJ / mm, 10 kJ / mm, and 15 kJ / mm, and a JIS No. 4 test piece is taken from the test piece collection site 3 shown in FIG. A Charpy impact test was performed to determine the absorption energy (vE -40 ) of the bond part, and this was evaluated. In the figure, 1 is a steel plate, 2 is a weld metal part, and the specimen collection site 3 is located on the groove opening side from the center of the plate thickness. Super large heat input welding with a heat input of 15 kJ / mm was carried out in order to see the influence of alloy elements when the cooling rate was very slow.
The low temperature cracking resistance was measured based on the y-type weld cracking test method defined in JISZ3158 by covering arc welding with a heat input of 1.7 kJ / mm and measuring the root cracking prevention preheating temperature. The preheating temperature of 0 ° C. indicates that the steel plate subjected to the test was welded in a state cooled to 0 ° C., and no crack was generated after welding.

Figure 0004354754
Figure 0004354754

Figure 0004354754
Figure 0004354754

Figure 0004354754
Figure 0004354754

上記調査結果を表4〜表6に併せて示す。また、AS値と強度との関係を図3に、800℃以下の累積圧下率と母材靭性(遷移温度vTrs)との関係を図4に示す。図中、プロットの添え字は試料No. を示す。なお、煩雑さを避けるため、図3では発明範囲外の例は比較例のうちAS値外の個々の成分が本発明範囲内のものを、発明範囲内の例は発明例(800℃以下の累積圧下率が50%以上のもの)から適宜選んだ。図4ではAS値が3.6未満および3.6以上のグループに分けて示し、AS値が3.6以上のグループのうち累積圧下率が50%以上の例は発明例から適宜選んだ。   The survey results are shown in Tables 4-6. FIG. 3 shows the relationship between the AS value and strength, and FIG. 4 shows the relationship between the cumulative rolling reduction of 800 ° C. or less and the base material toughness (transition temperature vTrs). In the figure, the subscript of the plot indicates the sample number. In order to avoid complications, in FIG. 3, the examples outside the scope of the invention are those in the comparative examples where the individual components outside the AS value are within the scope of the present invention, and the examples within the scope of the invention are invention examples (800 ° C. (The cumulative rolling reduction is 50% or more). In FIG. 4, the AS value is divided into groups of less than 3.6 and 3.6 or more, and an example in which the cumulative reduction ratio is 50% or more among the groups having the AS value of 3.6 or more was appropriately selected from the invention examples.

図3より、AS値を3.60以上、800℃以下の累積圧下率を50%以上にすることによって、引張強さが780MPa以上の高強度鋼板が得られ、さらにAS値を4.00以上とすることによって800MPa以上の高強度となることがわかる。一方、図4より、AS値を3.60以上、800℃以下の累積圧下率を50%以上にすることによって、vTrs=−100℃以下の優れた母材靭性が得られることがわかる。   From FIG. 3, by setting the AS value to 3.60 or more and the cumulative reduction ratio of 800 ° C. or less to 50% or more, a high-strength steel sheet having a tensile strength of 780 MPa or more is obtained, and the AS value is 4.00 or more. It turns out that it becomes high intensity | strength of 800 Mpa or more. On the other hand, it can be seen from FIG. 4 that an excellent base material toughness of vTrs = −100 ° C. or less can be obtained by setting the AS value to 3.60 or more and the cumulative reduction ratio of 800 ° C. or less to 50% or more.

また、表4〜表6より、発明例は、母材靭性についてはvTrsがすべて−100℃以下であり、また耐低温割れ性については鋼板温度が0℃でもルート割れが生じず、母材靭性および耐低温割れ性が優れている。また、HAZ靭性についても、小入熱溶接、大入熱溶接のいずれにおいてもボンド部の靭性が優れていることが確かめられた。
また、発明例において、Bを0.0005%以上添加したものは15kJ/mmの超大入熱溶接を行った場合においても、常に150J以上の優れたHAZ靭性が得られることが確認された。
Further, from Tables 4 to 6, the inventive examples have all the vTrs of −100 ° C. or less for the base metal toughness, and the low temperature crack resistance does not cause root cracking even when the steel plate temperature is 0 ° C. And low temperature cracking resistance. Moreover, also about the HAZ toughness, it was confirmed that the toughness of the bond part is excellent in both the small heat input welding and the large heat input welding.
In addition, in the inventive examples, it was confirmed that an excellent HAZ toughness of 150 J or more can always be obtained when B is added by 0.0005% or more even when super-high heat input welding of 15 kJ / mm is performed.

一方、合金組成(AS値、DL値を含む。)が発明範囲を外れる比較例は、表6に示すように、引張強さが780MPa未満となったり、母材靭性が−100℃より高くなり、合格レベルに達しなかった。また、合金組成が発明範囲内であっても、製造条件が不適切で、800℃以下の累積圧下率が50%に達しなかったNo. 73は、やはり母材靭性が劣化した。   On the other hand, as shown in Table 6, in comparative examples where the alloy composition (including AS value and DL value) is out of the scope of the invention, the tensile strength is less than 780 MPa or the base material toughness is higher than -100 ° C. , Did not reach the passing level. Moreover, even if the alloy composition was within the scope of the invention, No. 73 in which the manufacturing conditions were inappropriate and the cumulative rolling reduction at 800 ° C. or less did not reach 50% also deteriorated the base material toughness.

本発明鋼の製造時における冷却速度と組織との関係を説明するための模式的CCT図を示す。The typical CCT figure for demonstrating the relationship between the cooling rate at the time of manufacture of this invention steel and a structure | tissue is shown. 実施例におけるHAZ靭性を調べるための試験片の採取部位を示す鋼板溶接部の断面説明図を示す。Sectional explanatory drawing of the steel plate weld part which shows the extraction | collection site | part of the test piece for investigating the HAZ toughness in an Example is shown. 実施例におけるAS値と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between AS value and tensile strength in an Example. 実施例における800℃以下の累積圧下率と母材靭性(遷移温度:vTrs)との関係を示すグラフである。It is a graph which shows the relationship between the cumulative reduction rate of 800 degrees C or less and base material toughness (transition temperature: vTrs) in an Example.

Claims (8)

mass%で、
C:0.010〜0.080%、
Mn:1.10〜3.00%、
Si:0.02〜0.50%、
P:0.030%以下、
S:0.010%以下、
Al:0.200%以下、
Cu:0.10〜1.60%、
Ni:0.40〜2.50%、
Cr:0.30〜2.00%、
Mo:0.10〜1.10%、
Ti:0.008超〜0.030%、
N:0.0100%以下
を含み、残部がFe及び不純物からなり、かつ下記式で定義されるAS値およびDL値がAS≧3.60、DL≦2.80であり、板厚1/4部位における組織が主としてベイニティックフェライトからなり、かつベイナイトブロックの円相当径の平均値が5μm 以下であることを特徴とする母材靭性およびHAZ靭性に優れた高張力鋼板。
AS=[Mn]+[Ni]+2×[Cu]
DL=2.5×[Mo]+30×[Nb]+10×[V]
ただし、[X]は元素Xの含有量(mass%)を表す。
mass%
C: 0.010 to 0.080%,
Mn: 1.10 to 3.00%
Si: 0.02 to 0.50%,
P: 0.030% or less,
S: 0.010% or less,
Al: 0.200% or less,
Cu: 0.10 to 1.60%,
Ni: 0.40 to 2.50%,
Cr: 0.30 to 2.00%,
Mo: 0.10 to 1.10%,
Ti: more than 0.008 to 0.030%,
N: 0.0100% or less, the balance being Fe and impurities, AS value and DL value defined by the following formula are AS ≧ 3.60, DL ≦ 2.80, and plate thickness is 1/4 A high-strength steel sheet excellent in base metal toughness and HAZ toughness, characterized in that the structure in the part is mainly composed of bainitic ferrite and the average value of the equivalent circle diameter of the bainite block is 5 μm or less.
AS = [Mn] + [Ni] + 2 × [Cu]
DL = 2.5 × [Mo] + 30 × [Nb] + 10 × [V]
However, [X] represents content (mass%) of element X.
前記組織において、さらにベイニティックフェライト中に含まれるMAが面積率で5%以下である、請求項1に記載した高張力鋼板。   The high-tensile steel sheet according to claim 1, wherein, in the structure, MA contained in bainitic ferrite is 5% or less in terms of area ratio. 前記組織において、さらに板厚方向における旧オーステナイトの粒界間隔の平均値が15μm 以下である、請求項1または2に記載した高張力鋼板。   The high-tensile steel sheet according to claim 1 or 2, wherein in the structure, an average value of a grain boundary interval of prior austenite in the sheet thickness direction is 15 µm or less. 前記成分として、さらにB:0.0050%以下を含有する請求項1から3のいずれか1項に記載した高張力鋼板。   The high-tensile steel sheet according to any one of claims 1 to 3, further containing B: 0.0050% or less as the component. 前記成分として、さらに
Nb:0.040%以下、
V:0.30%以下
のいずれか1種または2種を含有する請求項1から4のいずれか1項に記載した高張力鋼板。
As the component, Nb: 0.040% or less,
V: The high-tensile steel plate according to any one of claims 1 to 4, containing any one or two of 0.30% or less.
前記成分として、さらに
Ca:0.0005〜0.0050%、
Mg:0.0001〜0.0050%
のいずれか1種または2種を含有する請求項1から5のいずれか1項に記載した高張力鋼板。
As the component, Ca: 0.0005 to 0.0050%,
Mg: 0.0001 to 0.0050%
The high-tensile steel sheet according to any one of claims 1 to 5, comprising any one or two of the above.
前記成分として、さらに
Hf:0.050%以下、
Zr:0.100%以下
のいずれか1種または2種を含有する請求項1から6のいずれか1項に記載した高張力鋼板。
As said component, Hf: 0.050% or less,
The high-tensile steel sheet according to any one of claims 1 to 6, containing any one or two of Zr: 0.100% or less.
前記成分において、C:0.03%以下のとき、AS≧4.20である請求項1から7のいずれか1項に記載した高張力鋼板。   The said component WHEREIN: When C: 0.03% or less, it is AS> = 4.20, The high-tensile steel plate of any one of Claim 1 to 7.
JP2003287446A 2003-08-06 2003-08-06 High-tensile steel plate with excellent base metal toughness and HAZ toughness Expired - Fee Related JP4354754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287446A JP4354754B2 (en) 2003-08-06 2003-08-06 High-tensile steel plate with excellent base metal toughness and HAZ toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287446A JP4354754B2 (en) 2003-08-06 2003-08-06 High-tensile steel plate with excellent base metal toughness and HAZ toughness

Publications (2)

Publication Number Publication Date
JP2005054250A JP2005054250A (en) 2005-03-03
JP4354754B2 true JP4354754B2 (en) 2009-10-28

Family

ID=34366420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287446A Expired - Fee Related JP4354754B2 (en) 2003-08-06 2003-08-06 High-tensile steel plate with excellent base metal toughness and HAZ toughness

Country Status (1)

Country Link
JP (1) JP4354754B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058097B2 (en) 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5776398B2 (en) * 2011-02-24 2015-09-09 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5741379B2 (en) * 2011-10-28 2015-07-01 新日鐵住金株式会社 High tensile steel plate with excellent toughness and method for producing the same
JP5741378B2 (en) * 2011-10-28 2015-07-01 新日鐵住金株式会社 High tensile steel plate with excellent toughness and method for producing the same
JP5849940B2 (en) * 2011-12-22 2016-02-03 Jfeスチール株式会社 Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP6540545B2 (en) * 2016-02-29 2019-07-10 Jfeスチール株式会社 High strength thick steel plate with excellent heat input at high heat input weld toughness
KR101879068B1 (en) * 2016-12-13 2018-07-16 주식회사 포스코 High strength wire rod having excellent impact toughness and method for manufacturing the same

Also Published As

Publication number Publication date
JP2005054250A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
KR100705889B1 (en) Low yield ratio high tension steel plate having small acoustic anistropy and excellent weldability, and its producing method
KR100967498B1 (en) Thick plate for high heat-input welding excellent in brittle crack arrestibility
KR100714540B1 (en) High strength steel having superior toughness in weld heat-affected zone
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JPWO2013089156A1 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
KR20190076758A (en) High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
JP5612532B2 (en) Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
KR20120034094A (en) Manufacturing method for thick high strength steel sheet for high heat input welding having small deviation in low temperature toughness of parent material and excellent toughness in heat affected zone
JP2009041057A (en) Thick steel plate for high-heat-input welding superior in shear cutting
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness
KR100748809B1 (en) High Strength High Toughness Bainite Non-heat-treated Steel Plate of Low Acoustic Anisotropy
JP3970801B2 (en) High strength high toughness steel plate
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
JP2017082267A (en) Thick steel plate
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP4313730B2 (en) High-tensile steel plate with low material anisotropy and excellent low-temperature toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2006169591A (en) Non-heat treated steel plate with high yield strength
KR102109277B1 (en) Steel plate having low yield ratio and excellent heat affected zone toughness and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Ref document number: 4354754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees