JP4354566B2 - Process for producing inorganic compounds by combustion synthesis reaction - Google Patents

Process for producing inorganic compounds by combustion synthesis reaction Download PDF

Info

Publication number
JP4354566B2
JP4354566B2 JP07813999A JP7813999A JP4354566B2 JP 4354566 B2 JP4354566 B2 JP 4354566B2 JP 07813999 A JP07813999 A JP 07813999A JP 7813999 A JP7813999 A JP 7813999A JP 4354566 B2 JP4354566 B2 JP 4354566B2
Authority
JP
Japan
Prior art keywords
powder
reaction
combustion synthesis
starting material
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07813999A
Other languages
Japanese (ja)
Other versions
JP2000262889A (en
Inventor
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Sangyo University
Original Assignee
Osaka Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sangyo University filed Critical Osaka Sangyo University
Priority to JP07813999A priority Critical patent/JP4354566B2/en
Publication of JP2000262889A publication Critical patent/JP2000262889A/en
Application granted granted Critical
Publication of JP4354566B2 publication Critical patent/JP4354566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃焼合成方法によって高純度で微細な無機化合物を製造する方法に関するものである。
【0002】
【従来の技術】
燃焼合成方法は、2種以上の固体−固体原料あるいは気体原料中で固体原料の一端を加熱することにより化学反応を起こさせ、その際に発生する生成熱によって燃焼波を生じさせ、自発的に伝播する燃焼波が次層の未反応部を励起するという連鎖反応を繰り返すことによって化合物を得る方法である。かかる燃焼合成方法は、短時間で大量の化合物粉末を得ることができると共に、化学反応熱を利用する燃焼合成反応を開始させる着火時を除いて外部加熱が不要であり、数百℃の低い予熱で燃焼合成反応が起こるため、通常の高温外部加熱による合成方法と比較して経済的であるといった利点を有する。
【0003】
従来、かかる燃焼合成反応は、反応温度がおおよそ1700℃の反応系でなければ着火させることが困難であり、1700℃以下の反応温度の反応系の無機化合物の合成には燃焼合成反応を使用することができないとされている。
【0004】
また、1700℃という高い反応温度で燃焼合成を行った場合、得られる化合物粉末の粒径が大きくなり、焼結用に求められる微細で粒径の均一な粉末を得るためには、燃焼合成後に、得られた合成粉末を粉砕しなければならず、この粉砕処理にコストがかかる上、粉砕中に不純物が混入するという問題があった。
【0005】
また、従来、固体原料粉末に燃焼合成反応を開始させる加熱方法としては、カーボンヒータ、金属線を用いた電気抵抗加熱、あるいは5kV以上の高圧電源を使用した電極棒によるアーク放電加熱が用いられているが、これらの加熱方法ではカーボンヒータや、金属線、電極棒を構成する成分元素が生成物に不純物として取り込まれるため、高純度の化合物粉末を得ることができないという問題もあった。
【0006】
そこで、この発明は、従来、燃焼合成反応が行えないとされていた1700℃以下の反応温度の反応系において、燃焼合成反応を可能とすることにより、粉砕しなくても微細な化合物粉末が得られ、しかも着火用の加熱部材からの不純物の混入もない、高純度の無機化合物を製造する方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
この発明は、出力を0.5W〜500Wで770nmよりも長い波長を有するレーザーを原料粉末に照射することにより、反応温度が500℃〜1700℃の反応系の無機化合物の燃焼合成反応を開始させるようにしたものである。
【0008】
上記の方法により、500℃〜1700℃という低い反応温度で燃焼合成反応を行うことが可能となり、粒成長が抑制された微細な化合物粉末が得られる。
【0009】
したがって、粉砕工程による不純物混入と、着火の際の不純物混入が避けられるため、高純度の無機化合物を製造することができるし、粉砕工程の省略によってコストも低減することができる。
【0010】
この発明において燃焼合成反応を開始させる着火の際に用いるレーザとしては、出力0.5W〜500Wで770nmよりも長い波長を有するものであれば特に限定されず、市販の炭酸ガス(CO2 )レーザーやイットリア・アルミナ・ガーネット(YAG)レーザーを用いることができる。
【0011】
レーザーの照射時間は、レーザーの波長や出力、および出発原料粉末の吸収率や粒径、粒子表面の酸化度合によって変化するが、出発原料粉末の表面を直径数ミリメートル程の局所加熱を行うことにより、遅くとも数十秒以内に着火が起こり、着火後はレーザー照射を止めても、発熱反応による燃焼波が連鎖的に進行して、所定の化合物が燃焼合成された。例えば、Ti粉末、Al粉末、TiAl粉末を0.5(Ti+Al)+0.5TiAl=TiAlの反応式に従って混合した出発原料を用いた場合、熱力学計算から求めた反応温度は720℃と低いため、出発原料粉末の表面を、近接させたカーボンヒータによって20秒間電気抵抗加熱を行っても、また、15kVの高圧電源の電極棒によるアーク放電加熱を5mmの距離から30秒間行っても着火は起こらないが、出力3WのCO2 レーザーを照射した場合には、約1秒後に着火が起こり、試料全体に燃焼波が広がって化合物が燃焼合成された。
【0012】
この発明において、真空中で燃焼合成を行う場合、真空容器を用い、非酸化雰囲気中で燃焼合成を行う場合には、ガス置換が可能な反応容器が用いられる。また、高圧不活性ガスを用いる場合は耐圧容器が用いられる。これらの容器内の出発原料へのレーザー照射は、容器に設けたガラス窓やガラスファイバを介して行われるが、このような場合、ガラスに吸収されにくいYAGレーザーを用いることが好ましいが、CO2 レーザーでもほぼ同じ設定条件で着火が可能である。
【0013】
この発明では、770nmよりも長い波長を有するレーザーを使用するが、この波長よりも短い波長のレーザーでは、着火せず、燃焼合成反応が開始しなかった。
【0014】
また、この発明で使用するレーザーの出力は、0.5W〜500Wとするが、これは、0.5W以下では着火せず、500W以上ではエネルギー密度が高すぎて、出発原料粉末表面から微小粉末がはじき飛ばされて着火しないためである。
【0015】
また、770nmよりも長い波長のレーザーを照射しても、熱力学計算から求めた反応温度が500℃未満の反応系の場合には、着火は起こらなかった。
【0016】
【実施例】
以下の実施形態はいずれも、出発原料粉末表面に近接または接触させたカーボンヒーターや金属線を用いた電気抵抗加熱、あるいは5kV以上の高圧電源を使用して出発原料粉末表面とわずかに離した電極棒間のアーク放電加熱を用いた方法では、着火が著しく困難もしくは不可能な反応系について、この発明によって、燃焼合成が可能となった事例を列挙してある。
【0017】
【実施例1】
Ti+Al=TiAlの反応式に従って、Ti粉末とAl粉末を乾式混合した出発原料を、カーボン製坩堝に相対密度がおおよそ50%となるように充填した。大気中で、その出発原料の表面に出力0.5WのCO2 レーザーを照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、TiAl単一相の粉末となっており、未反応のTiやAlは検出されなかった。
【0018】
【実施例2】
0.5Ti+0.5Al+0.5TiAl=TiAlの反応式に従って、Ti粉末とAl粉末とTiAl粉末を乾式混合した出発原料を、カーボン製坩堝に相対密度がおおよそ50%となるように充填した。大気中で、その出発原料の表面に出力3WのCO2 レーザーを照射したところ、約1秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。試料中央部に埋め込んだ熱電対で反応温度を測定した所、700℃であった。粉末X線回析装置を用いて、得られた生成物を同定したところ、TiAlに少量のTi3 AlとTiAl3 が混合した複合粉末となっていた。
【0019】
【実施例3】
実施例2と同じ出発原料を充填したカーボン製坩堝を反応容器内に置き、真空中でガラスファイバーを介して反応容器内に導入した出力3WのYAGレーザーを出発原料表面に照射したところ、約1秒後に着火が起こった。反応温度および得られた生成物は、実施例2と同様の結果であった。
【0020】
【実施例4】
0.75Ti+0.15TiH2 +Al=TiAl+0.15H2 の反応式に従って、Ti粉末とTiH2 粉末とAl粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約1秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、TiAl単一相の粉末となっており、未反応のTiやAlは検出されなかった。生成物の平均粒径は20micronであり、均一で微細な粉末となっていた。燃焼合成後の反応容器内のガス分析を行った結果、Arガス以外にH2 ガスが検出された。
【0021】
【実施例5】
Si+C=SiCの反応式に従って、Si粉末とC粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約1秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、SiC単一相の粉末となっていた。生成物の平均粒径は5micronであり、均一で微細な粉末となっていた。
【0022】
【実施例6】
2Si+C=Si+SiCの反応式に従って、Si粉末とC粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、SiとSiCの複合粉末となっていた。
【0023】
【実施例7】
3Ti+Si+2C=Ti3 SiC2 の反応式に従って、Ti粉末とSi粉末とC粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、Ti3 SiC2 単一相の粉末となっていた。生成物の平均粒径は5micronであり、均一で微細な粉末となっていた。
【0024】
【実施例8】
Mo+2Si=MoSi2 の反応式に従って、Mo粉末とSi粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、MoSi2 単一相の粉末となっていた。生成物の平均粒径は10micronであり、均一で微細な粉末となっていた。
【0025】
【実施例9】
Fe+2Si=FeSi2 の反応式に従って、Fe粉末とSi粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、FeSi2 単一相の粉末となっていた。生成物の平均粒径は10micronであり、均一で微細な粉末となっていた。
【0026】
【実施例10】
2Mg+Ni=Mg2 Niの反応式に従って、Mg粉末とNi粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力10WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、Mg2 Ni単一相の粉末となっていた。生成物の平均粒径は20micronであり、均一で微細な粉末となっていた。
【0027】
【実施例11】
3Nb+Al=Nb3 Alの反応式に従って、Nb粉末とAl粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。1気圧のArガス雰囲気中で、ガラスファイバーを介して反応容器内に導入した出力5WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、Nb3 Al単一相の粉末となっていた。
【0028】
【実施例12】
TiH2 +C=TiC+H2 の反応式に従って、TiH2 粉末とC粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。真空中で、ガラスファイバーを介して反応容器内に導入した出力10WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、TiC単一相の粉末となっていた。燃焼合成後の反応容器内のガス分析を行った結果、H2 ガスが形成された。
【0029】
【実施例13】
TiH2 +2B=TiB2 +H2 の反応式に従って、TiH2 粉末とB粉末を乾式混合した出発原料を充填したカーボン製坩堝を、反応容器内に置いた。真空中で、ガラスファイバーを介して反応容器内に導入した出力10WのYAGレーザーを出発原料表面に照射したところ、約2秒後に着火が起こった。レーザー照射を止めた後も、連鎖的に燃焼波が試料全体に広がり、化合物が燃焼合成された。粉末X線回析装置を用いて、得られた生成物を同定したところ、TiB2 単一相の粉末となっていた。燃焼合成後の反応容器内のガス分析を行った結果、H2 ガスが形成された。
【0030】
【発明の効果】
この発明によれば、以上のように、従来では着火が起こらないとされていた1700℃以下の反応系の無機化合物を燃焼合成することができるので、粉砕しなくても微細な無機化合物粉末が得られる。したがって、粉砕による不純物の混入もなく、また着火用の加熱部材からの不純物の混入もないので、高純度の無機化合物を製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fine inorganic compound with high purity by a combustion synthesis method.
[0002]
[Prior art]
In the combustion synthesis method, a chemical reaction is caused by heating one end of a solid raw material in two or more kinds of solid-solid raw materials or gas raw materials, and a combustion wave is generated by generated heat generated at that time. In this method, a compound is obtained by repeating a chain reaction in which a propagating combustion wave excites an unreacted portion of the next layer. This combustion synthesis method can obtain a large amount of compound powder in a short time, and does not require external heating except during ignition to start the combustion synthesis reaction using the heat of chemical reaction. Since the combustion synthesis reaction takes place in this case, it has the advantage of being economical compared with a synthesis method using ordinary high-temperature external heating.
[0003]
Conventionally, such a combustion synthesis reaction is difficult to ignite unless the reaction temperature is approximately 1700 ° C., and the combustion synthesis reaction is used to synthesize inorganic compounds in reaction systems having a reaction temperature of 1700 ° C. or lower. It is said that it cannot be done.
[0004]
In addition, when combustion synthesis is performed at a high reaction temperature of 1700 ° C., the particle size of the obtained compound powder becomes large, and in order to obtain a fine and uniform particle size powder required for sintering, The obtained synthetic powder must be pulverized, and this pulverization process is costly, and impurities are mixed during the pulverization.
[0005]
Conventionally, as a heating method for starting a combustion synthesis reaction on a solid raw material powder, an electric resistance heating using a carbon heater, a metal wire, or an arc discharge heating by an electrode rod using a high voltage power source of 5 kV or more is used. However, these heating methods have a problem that a high purity compound powder cannot be obtained because the constituent elements constituting the carbon heater, the metal wire, and the electrode rod are incorporated as impurities into the product.
[0006]
Therefore, the present invention provides a fine compound powder without pulverization by enabling a combustion synthesis reaction in a reaction system having a reaction temperature of 1700 ° C. or lower, which has been conventionally considered to be unable to perform a combustion synthesis reaction. In addition, an object of the present invention is to provide a method for producing a high-purity inorganic compound that does not contain impurities from a heating member for ignition.
[0007]
[Means for Solving the Problems]
In this invention, a raw material powder is irradiated with a laser having an output of 0.5 W to 500 W and a wavelength longer than 770 nm, thereby starting a combustion synthesis reaction of an inorganic compound in a reaction system having a reaction temperature of 500 ° C. to 1700 ° C. It is what I did.
[0008]
By the above method, it is possible to perform a combustion synthesis reaction at a reaction temperature as low as 500 ° C. to 1700 ° C., and a fine compound powder in which grain growth is suppressed is obtained.
[0009]
Accordingly, since contamination by impurities during the pulverization step and contamination during ignition can be avoided, a high-purity inorganic compound can be produced, and cost can be reduced by omitting the pulverization step.
[0010]
In the present invention, the laser used for ignition for starting the combustion synthesis reaction is not particularly limited as long as it has an output of 0.5 W to 500 W and a wavelength longer than 770 nm, and is a commercially available carbon dioxide (CO 2 ) laser. Or yttria-alumina-garnet (YAG) laser can be used.
[0011]
The laser irradiation time varies depending on the wavelength and output of the laser, the absorption rate and particle size of the starting raw material powder, and the degree of oxidation of the particle surface, but by locally heating the surface of the starting raw material powder to a diameter of several millimeters The ignition occurred within several tens of seconds at the latest, and even after the ignition, even when the laser irradiation was stopped, the combustion wave due to the exothermic reaction proceeded in a chain, and the predetermined compound was combusted and synthesized. For example, when using a starting material obtained by mixing Ti powder, Al powder, TiAl powder according to the reaction formula of 0.5 (Ti + Al) + 0.5TiAl = TiAl, the reaction temperature obtained from thermodynamic calculation is as low as 720 ° C., Even if the surface of the starting material powder is heated by electric resistance for 20 seconds with a carbon heater close to the surface, or if arc discharge heating is performed for 30 seconds from a distance of 5 mm by an electrode rod of a high voltage power source of 15 kV, ignition does not occur. However, when a CO 2 laser with an output of 3 W was irradiated, ignition occurred after about 1 second, and a combustion wave spread over the entire sample to synthesize the compound.
[0012]
In the present invention, when combustion synthesis is performed in a vacuum, a vacuum vessel is used, and when combustion synthesis is performed in a non-oxidizing atmosphere, a reaction vessel capable of gas replacement is used. Moreover, when using a high-pressure inert gas, a pressure-resistant container is used. Laser irradiation of the starting materials for these vessel is carried out through a glass window or a glass fiber provided in the container, in such a case, it is preferable to use a poorly absorbed YAG laser glass, CO 2 A laser can be ignited under almost the same setting conditions.
[0013]
In the present invention, a laser having a wavelength longer than 770 nm is used. However, a laser having a wavelength shorter than this wavelength did not ignite and the combustion synthesis reaction did not start.
[0014]
The power of the laser used in the present invention is 0.5 W to 500 W. However, this does not ignite at 0.5 W or less, and the energy density is too high at 500 W or more. This is because it is blown off and does not ignite.
[0015]
In addition, even when a laser having a wavelength longer than 770 nm was irradiated, ignition did not occur in the case of a reaction system having a reaction temperature obtained from thermodynamic calculation of less than 500 ° C.
[0016]
【Example】
In any of the following embodiments, the electrode is slightly separated from the surface of the starting material powder using an electric resistance heating using a carbon heater or a metal wire close to or in contact with the surface of the starting material powder, or a high voltage power source of 5 kV or more. In the method using arc discharge heating between the rods, examples of cases in which combustion synthesis is possible by the present invention for reaction systems in which ignition is extremely difficult or impossible are listed.
[0017]
[Example 1]
In accordance with the reaction formula of Ti + Al = TiAl, a starting material obtained by dry mixing Ti powder and Al powder was charged into a carbon crucible so that the relative density was approximately 50%. When the surface of the starting material was irradiated with a CO 2 laser having an output of 0.5 W in the atmosphere, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a TiAl single-phase powder, and unreacted Ti and Al were not detected.
[0018]
[Example 2]
In accordance with a reaction formula of 0.5Ti + 0.5Al + 0.5TiAl = TiAl, a starting material obtained by dry-mixing Ti powder, Al powder, and TiAl powder was charged into a carbon crucible so that the relative density was approximately 50%. When the surface of the starting material was irradiated with a CO 2 laser with an output of 3 W in the atmosphere, ignition occurred after about 1 second. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. It was 700 degreeC when the reaction temperature was measured with the thermocouple embedded in the center part of the sample. When the obtained product was identified using a powder X-ray diffraction apparatus, it was a composite powder in which a small amount of Ti 3 Al and TiAl 3 were mixed in TiAl.
[0019]
[Example 3]
A carbon crucible filled with the same starting material as in Example 2 was placed in the reaction vessel, and the surface of the starting material was irradiated with a YAG laser having an output of 3 W introduced into the reaction vessel through a glass fiber in a vacuum. Ignition occurred a second later. The reaction temperature and the obtained product were the same as in Example 2.
[0020]
[Example 4]
According to the reaction formula of 0.75Ti + 0.15TiH 2 + Al = TiAl + 0.15H 2 , a carbon crucible filled with a starting material obtained by dry-mixing Ti powder, TiH 2 powder and Al powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an atmosphere of Ar gas at 1 atm, ignition occurred after about 1 second. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a TiAl single-phase powder, and unreacted Ti and Al were not detected. The average particle size of the product was 20 micron and was a uniform and fine powder. As a result of analyzing the gas in the reaction vessel after the combustion synthesis, H 2 gas was detected in addition to Ar gas.
[0021]
[Example 5]
According to the reaction formula of Si + C = SiC, a carbon crucible filled with a starting material obtained by dry mixing Si powder and C powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an atmosphere of Ar gas at 1 atm, ignition occurred after about 1 second. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using the powder X-ray diffraction apparatus, it became a SiC single phase powder. The average particle size of the product was 5 micron and was a uniform and fine powder.
[0022]
[Example 6]
According to the reaction formula of 2Si + C = Si + SiC, a carbon crucible filled with a starting material obtained by dry mixing Si powder and C powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it was a composite powder of Si and SiC.
[0023]
[Example 7]
According to the reaction formula 3Ti + Si + 2C = Ti 3 SiC 2 , a carbon crucible filled with a starting material obtained by dry-mixing Ti powder, Si powder and C powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it was a Ti 3 SiC 2 single-phase powder. The average particle size of the product was 5 micron and was a uniform and fine powder.
[0024]
[Example 8]
According to the reaction formula of Mo + 2Si = MoSi 2 , a carbon crucible filled with a starting material obtained by dry-mixing Mo powder and Si powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it was a MoSi 2 single-phase powder. The average particle size of the product was 10 micron and was a uniform and fine powder.
[0025]
[Example 9]
According to the reaction formula of Fe + 2Si = FeSi 2 , a carbon crucible filled with a starting material obtained by dry mixing Fe powder and Si powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a FeSi 2 single-phase powder. The average particle size of the product was 10 micron and was a uniform and fine powder.
[0026]
[Example 10]
According to the reaction formula of 2Mg + Ni = Mg 2 Ni, a carbon crucible filled with a starting material obtained by dry mixing Mg powder and Ni powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a YAG laser having an output of 10 W introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a Mg 2 Ni single phase powder. The average particle size of the product was 20 micron and was a uniform and fine powder.
[0027]
Example 11
According to the reaction formula of 3Nb + Al = Nb 3 Al, a carbon crucible filled with a starting material obtained by dry mixing Nb powder and Al powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a 5 W YAG laser introduced into the reaction vessel through a glass fiber in an Ar gas atmosphere at 1 atm, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. Using powder X-ray diffractometer, it was identified and the resulting product has been a powder of Nb 3 Al single phase.
[0028]
Example 12
According to the reaction formula of TiH 2 + C = TiC + H 2 , a carbon crucible filled with a starting material obtained by dry-mixing TiH 2 powder and C powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a YAG laser having an output of 10 W introduced into the reaction vessel through a glass fiber in a vacuum, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a TiC single phase powder. As a result of analyzing the gas in the reaction vessel after the combustion synthesis, H 2 gas was formed.
[0029]
Example 13
According to the reaction formula of TiH 2 + 2B = TiB 2 + H 2 , a carbon crucible filled with a starting material obtained by dry-mixing TiH 2 powder and B powder was placed in a reaction vessel. When the surface of the starting material was irradiated with a YAG laser having an output of 10 W introduced into the reaction vessel through a glass fiber in a vacuum, ignition occurred after about 2 seconds. Even after the laser irradiation was stopped, the combustion wave spread throughout the sample and the compound was burned and synthesized. When the obtained product was identified using a powder X-ray diffraction apparatus, it became a TiB 2 single-phase powder. As a result of analyzing the gas in the reaction vessel after the combustion synthesis, H 2 gas was formed.
[0030]
【The invention's effect】
According to the present invention, as described above, an inorganic compound in a reaction system of 1700 ° C. or lower, which has been conventionally considered not to be ignited, can be burned and synthesized, so that a fine inorganic compound powder can be obtained without pulverization. can get. Therefore, there is no mixing of impurities due to pulverization and no mixing of impurities from the heating member for ignition, so that a high-purity inorganic compound can be produced.

Claims (2)

出力0.5W〜500Wであり、照射により着火を起こさせ、かつ、770nmよりも長い波長を有するレーザーを原料粉末に照射して、500℃〜1700℃の反応温度にて、上記原料粉末を、2秒以内に着火させて燃焼合成反応を開始させ、着火後にレーザー照射を止めることを特徴とする燃焼合成反応による無機化合物の製造方法。Output is 0.5W~500W, to cause ignition by irradiation and by irradiating a laser having a wavelength longer than 770nm in the raw material powder, at a reaction temperature of 5 00 ° C. to 1700 ° C., the raw material powder and it is ignited within 2 seconds to start the combustion synthesis reaction, method of producing an inorganic compound by the combustion synthesis reaction, characterized in Rukoto stopped laser irradiation after ignition. 原料粉末が、2種類以上の固体元素粉末の混合体もしくはそれぞれ1種以上の固体元素粉末と化合物粉末の混合体である請求項1記載の燃焼合成反応による無機化合物の製造方法。  The method for producing an inorganic compound by a combustion synthesis reaction according to claim 1, wherein the raw material powder is a mixture of two or more kinds of solid element powders or a mixture of one or more kinds of solid element powders and compound powders.
JP07813999A 1999-03-23 1999-03-23 Process for producing inorganic compounds by combustion synthesis reaction Expired - Fee Related JP4354566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07813999A JP4354566B2 (en) 1999-03-23 1999-03-23 Process for producing inorganic compounds by combustion synthesis reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07813999A JP4354566B2 (en) 1999-03-23 1999-03-23 Process for producing inorganic compounds by combustion synthesis reaction

Publications (2)

Publication Number Publication Date
JP2000262889A JP2000262889A (en) 2000-09-26
JP4354566B2 true JP4354566B2 (en) 2009-10-28

Family

ID=13653560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07813999A Expired - Fee Related JP4354566B2 (en) 1999-03-23 1999-03-23 Process for producing inorganic compounds by combustion synthesis reaction

Country Status (1)

Country Link
JP (1) JP4354566B2 (en)

Also Published As

Publication number Publication date
JP2000262889A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
Ganesh et al. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder
Yamada et al. Self-propagating high-temperature synthesis of the SiC
KR100307646B1 (en) Aluminum nitride, aluminum nitride-containing solids and aluminum nitride composites produced by the combustion synthesis method
JP4256012B2 (en) Method for producing BN, AlN or Si3N4 by combustion synthesis reaction
Narayan et al. Mechanism of combustion synthesis of silicon carbide
Gauthier et al. Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC
Gras et al. Simultaneous synthesis and consolidation of nanostructured MoSi2
JP4354566B2 (en) Process for producing inorganic compounds by combustion synthesis reaction
JP2000016805A (en) Production of aluminum nitride
Gorovenko et al. High-temperature interaction between silicon and carbon
Zhang et al. The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction
Naik et al. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NaZr 2 P 3 O12)
JP3883026B2 (en) Method for producing titanium nitride
Osso et al. Mechanical-thermal synthesis of Al2O3-Cr composite powders
JPH0556284B2 (en)
Ohyanagi et al. Synthesis of aluminum nitride–silicon carbide solid solutions by combustion nitridation
FERNANDES et al. Influence of gas environment on synthesis of silicon carbide through reaction between silicon and amorphous carbon in a solar furnace at PSA (Plataforma Solar de Almería)
Cabouro et al. In situ synchrotron investigation of MoSi2 formation mechanisms during current-activated SHS sintering
TW201609536A (en) Novel process and product
JP5499406B2 (en) Method for producing silicon nanowire
JPS6042164B2 (en) Powder manufacturing method
JP2539857B2 (en) Method for synthesizing silicon carbide powder
Shon Synthesis of Ti 5 Si 3-x Nb composites by the field-activated combustion method
US4992237A (en) Ignition of sustained high temperature synthesis reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees