JP4354265B2 - Slag separation method in silicon refining - Google Patents

Slag separation method in silicon refining Download PDF

Info

Publication number
JP4354265B2
JP4354265B2 JP2003413516A JP2003413516A JP4354265B2 JP 4354265 B2 JP4354265 B2 JP 4354265B2 JP 2003413516 A JP2003413516 A JP 2003413516A JP 2003413516 A JP2003413516 A JP 2003413516A JP 4354265 B2 JP4354265 B2 JP 4354265B2
Authority
JP
Japan
Prior art keywords
slag
silicon
refining
tundish
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413516A
Other languages
Japanese (ja)
Other versions
JP2005170746A (en
Inventor
健介 岡澤
次郎 近藤
潔 後藤
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2003413516A priority Critical patent/JP4354265B2/en
Publication of JP2005170746A publication Critical patent/JP2005170746A/en
Application granted granted Critical
Publication of JP4354265B2 publication Critical patent/JP4354265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池用高純度シリコンの製造工程に用いるスラグによるシリコン精錬方法に関する。   The present invention relates to a silicon refining method using slag used in a process for producing high-purity silicon for solar cells.

従来、スラグを用いたシリコンの精錬方法は種々提案されている。この中で、スラグとシリコンを分離することを明記している提案は、(特許文献1)と(特許文献2)が挙げられる。しかし、これらはスラグ精錬の工程の一部として分離を述べているだけであり、具体的方法については記述していない。   Conventionally, various silicon refining methods using slag have been proposed. Among these, (Patent Document 1) and (Patent Document 2) can be cited as proposals that specify the separation of slag and silicon. However, these only describe separation as part of the slag refining process, and do not describe specific methods.

(特許文献3)は、シリコンの酸化又は揮発精錬方法においての容器を提案しており、この中で、容器の底に設けた穴からシリコンを外に出す方法を提案している。図1に示すように、この提案では、プラズマ・ガスジェットや電子ビーム溶解によって、気化あるいは蒸発した不純物を多く含む物質1が上部壁に付着しているため、容器2を傾斜させてシリコン3を容器外に除去する際、これら付着物から汚染を受ける可能性があるので、底の穴4からシリコンを流し出す方法を用いている。
特開2003−12317号公報 特開平8−73209号公報 特開平11−189407号公報
(Patent Document 3) proposes a container in a method for oxidizing or volatilizing silicon, and proposes a method of taking silicon out from a hole provided in the bottom of the container. As shown in FIG. 1, in this proposal, since the substance 1 containing a large amount of impurities evaporated or evaporated by plasma / gas jet or electron beam melting adheres to the upper wall, the container 2 is tilted and the silicon 3 is deposited. When removing it out of the container, there is a possibility that it will be contaminated by these deposits.
JP 2003-12317 A JP-A-8-73209 JP-A-11-189407

スラグを用いたシリコンの精錬では、前記した不純物を含む付着物は無く、それらから汚染を受ける心配も無い。よって、図2に示すように、スラグ5を用いた精錬は、容器2を傾けてシリコン3を取り出す方法も有効である。このとき、如何に効率良く、如何に高い分離度でシリコン3をスラグ5から分離するかが要求される。   In the refining of silicon using slag, there is no deposit containing the above-mentioned impurities, and there is no fear of contamination from them. Therefore, as shown in FIG. 2, for the refining using the slag 5, a method of taking out the silicon 3 by tilting the container 2 is also effective. At this time, it is required how efficiently the silicon 3 is separated from the slag 5 with a high degree of separation.

そこで、本発明は、スラグを用いたシリコンの精錬において、精錬終了時に容器を傾動させ、スラグとシリコンが入った容器からシリコンのみを効率よく、高い分離度で取り出す方法を提供することを目的とする。   Accordingly, the present invention aims to provide a method for efficiently removing only silicon from a container containing slag and silicon at a high degree of separation by tilting the container at the end of refining in the refining of silicon using slag. To do.

本発明は、上記課題を解決するためになされたもので、
(1) アルカリ酸化物又はアルカリ炭酸化物とシリカ系のスラグを用いたシリコンの精錬において、シリコン及びスラグが入った容器を傾け、酸化物を散在させたタンディッシュにシリコンとスラグを注ぎ出し、該タンディッシュから精製したシリコンのみを鋳型に流出させることを特徴とするシリコン精錬におけるスラグ分離方法、
(2) 前記散在させる酸化物が石英ガラスである(1)記載のシリコン精錬におけるスラグ分離方法、
(3) 前記散在させる酸化物のサイズが厚み5〜30mm、幅50〜300mmの板状である(1)又は(2)に記載のシリコン精錬におけるスラグ分離方法、
(4) 前記タンディッシュが上堰を有する(1)記載のシリコン精錬におけるスラグ分離方法、
(5) 前記スラグの粘性が10poise以上である(1)記載のシリコン精錬におけるスラグ分離方法、
(6) 前記タンディッシュに注ぎ出す直前にスラグ成分を調節し、スラグの粘性を制御する(5)記載のシリコン精錬におけるスラグ分離方法、
である。
The present invention has been made to solve the above problems,
(1) In the refining of silicon using alkali oxide or alkali carbonate and silica-based slag, the container containing silicon and slag is tilted, and silicon and slag are poured into the tundish where the oxide is dispersed, A method for separating slag in silicon refining, wherein only silicon refined from tundish is allowed to flow out into a mold,
(2) The slag separation method in silicon refining according to (1), wherein the oxide to be scattered is quartz glass,
(3) The slag separation method in silicon refining according to (1) or (2), wherein the size of the oxide to be dispersed is a plate having a thickness of 5 to 30 mm and a width of 50 to 300 mm,
(4) The slag separation method in silicon refining according to (1), wherein the tundish has an upper weir,
(5) The slag separation method in silicon refining according to (1), wherein the viscosity of the slag is 10 poise or more,
(6) The slag separation method in silicon refining according to (5), wherein the slag component is adjusted immediately before pouring into the tundish, and the viscosity of the slag is controlled.
It is.

本発明方式を用いることによって、効率良くスラグとシリコンを分離し、シリコンのみを鋳型に注ぎ出すことが可能となり、精錬時のシリコンの清浄度を劣化させることなく、後工程へ提供することができる。   By using the method of the present invention, it becomes possible to efficiently separate slag and silicon and pour only silicon into the mold, and can provide it to the subsequent process without deteriorating the cleanliness of the silicon during refining. .

本発明は、LiO、NaO,KOなどのアルカリ酸化物又はLi、N、KCOなどのアルカリ金属の炭酸塩とシリカ系のスラグを用いたシリコンの精錬に関するものであり、図3に示すように、シリコン3及びスラグ5が入った容器2を傾け、酸化物6を散在させたタンディッシュ7にシリコン3とスラグ5を注ぎ出す。タンディッシュ7の出口8側には鋳型等9が配置されており、シリコン3のみを鋳型等9に注ぎ出す。タンディッシュ7中では、酸化物6に触れたスラグ5は酸化物6に付着するので、スラグ5が鋳型等9へ流れ出ることはほとんど無い。特に、酸化物6の材質として石英ガラスを用いると、スラグ5が高粘性化するので、鋳型9への流出を抑える効果は大きい。また、図4に示すように、酸化物6が板状であると、シリコン3の流れる向き10に平行に板を並べれば、酸化物の体積に対するシリコンとの接触面積の割合は大きく、より効率的にスラグを付着させることになる。 The present invention uses alkali oxides such as Li 2 O, Na 2 O, and K 2 O or alkali metal carbonates such as Li 2 O 3 , N 2 O 3 , and K 2 CO 3 and silica-based slag. As shown in FIG. 3, the container 2 containing the silicon 3 and the slag 5 is tilted, and the silicon 3 and the slag 5 are poured out into the tundish 7 in which the oxide 6 is scattered. A mold 9 or the like 9 is arranged on the outlet 8 side of the tundish 7, and only silicon 3 is poured out into the mold 9 or the like. In the tundish 7, the slag 5 that has come into contact with the oxide 6 adheres to the oxide 6, so that the slag 5 hardly flows out to the mold 9 or the like. In particular, when quartz glass is used as the material of the oxide 6, the slag 5 becomes highly viscous, so that the effect of suppressing the outflow to the mold 9 is great. As shown in FIG. 4, when the oxide 6 is plate-shaped, if the plates are arranged in parallel with the flow direction 10 of the silicon 3, the ratio of the contact area with the silicon relative to the volume of the oxide is large, and the efficiency is higher. The slag will be attached.

板状の石英ガラスを用いたとき、板厚が薄過ぎると強度が低いので割れやすく、厚過ぎると熱衝撃割れを起こしやすい。よって、板厚は5〜30mmが適当である。また、板幅は、小さ過ぎると鋳型に流れ出てしまう可能性があり、大き過ぎるとタンディッシュに並べるときの配置の自由度が小さくなってしまい、扱いづらい。よって、板幅は50〜300mmが適当である。   When a plate-like quartz glass is used, if the plate thickness is too thin, the strength is low and it is easy to crack, and if it is too thick, thermal shock cracking is likely to occur. Therefore, the plate thickness is appropriately 5 to 30 mm. On the other hand, if the plate width is too small, it may flow out into the mold, and if it is too large, the degree of freedom of arrangement when arranging in a tundish becomes small, which is difficult to handle. Therefore, the plate width is appropriately 50 to 300 mm.

図5に示すように、タンディッシュ7に上堰11を設けることも非常に有効である。タンディッシュ中でシリコン3が流れるとき、スラグ5はシリコン3の上に浮いている。当然、上堰を設けると、この堰11によってスラグ5をせき止めることができる。   As shown in FIG. 5, it is very effective to provide the upper weir 11 in the tundish 7. When the silicon 3 flows in the tundish, the slag 5 floats on the silicon 3. Naturally, when an upper weir is provided, the slag 5 can be blocked by the weir 11.

また、スラグの粘性は、スラグとシリコンの分離度を高めるための重要な因子である。粘性が高いと流動性が低くなるので、容器を傾斜したとき、スラグは流出しづらくなる。特に、10poise以上になると容器を傾斜したときに、スラグはシリコンが流出し終わってから、時間差をおいて流出し始める。よって、シリコンが流出した後に容器の傾斜を戻せば、スラグの流出を防ぐことができる。ただし、過剰にスラグの粘性が高いと、スラグは硬い膜を形成し、この膜に閉じ込められてシリコンが流出できなくなる可能性もある。よって、スラグの粘性は、通常10poise以上、好ましくは10〜100poise、さらに好ましくは10〜50poiseの範囲である。   The viscosity of slag is an important factor for increasing the degree of separation between slag and silicon. When the viscosity is high, the fluidity is low, so when the container is tilted, the slag is difficult to flow out. In particular, when the container is tilted at 10 poise or more, the slag begins to flow out after a lapse of time after silicon has flowed out. Therefore, if the inclination of the container is returned after the silicon has flowed out, the outflow of slag can be prevented. However, if the viscosity of the slag is excessively high, the slag forms a hard film, which may be trapped in this film and prevent silicon from flowing out. Accordingly, the viscosity of the slag is usually in the range of 10 poise or more, preferably 10 to 100 poise, and more preferably 10 to 50 poise.

使用するスラグ組成を調節して10poise以上にしても良い。しかし、精錬の効果を向上させることと両立できない場合も考えられる。その場合は、精錬が終了し、容器を傾斜させる直前に、二酸化珪素、アルミナ等の粘性を高める作用のある酸性酸化物を添加すれば良い。こうすれば、スラグ組成の変化の精錬に与える影響は少なく、粘性のみを高めることができる。   The slag composition used may be adjusted to 10 poise or more. However, there may be a case where it is not compatible with improving the effect of refining. In that case, it is only necessary to add an acidic oxide having an effect of increasing the viscosity, such as silicon dioxide and alumina, immediately after the refining is finished and the container is inclined. By so doing, there is little influence on the refining of the change in the slag composition, and only the viscosity can be increased.

以上のように、本発明のシリコン精錬におけるスラグ分離方法を用いると、効率良くスラグを分離し、シリコンのみを容器から取り出すことができる。   As described above, when the slag separation method in the silicon refining of the present invention is used, slag can be efficiently separated and only silicon can be taken out from the container.

スラグによるシリコンの精錬を行い、精錬後、容器を傾斜し、タンディッシュにスラグとシリコンを注ぎ出す実験を試行した。このとき、スラグはSiOとNaOの混合物で、スラグとシリコンの質量比は1:1、シリコンの質量は10kgであった。以上の条件下で、スラグ粘性が5poiseで、タンディッシュ中に酸化物がない方式(比較方式1)、スラグ粘性が10poiseで、タンディッシュ中に酸化物がない方式(比較方式2)、スラグ粘性が5poiseで、タンディッシュ中に石英ガラスを置いた方式(本発明方式1)、スラグ粘性が10poiseでタンディッシュ中に石英ガラスを置いた方式(本発明方式2)、スラグ粘性が5poiseで、上堰を設け、タンディッシュ中に石英ガラスを置いた方式(本発明方式3)を、それぞれ実施した。なお、石英ガラスを用いた方法では、厚み15mm、幅100mmの板状のものを10片使用した。 We refined silicon with slag, and after refining, we tried an experiment in which the container was tilted and slag and silicon were poured into the tundish. At this time, the slag was a mixture of SiO 2 and Na 2 O, the mass ratio of slag to silicon was 1: 1, and the mass of silicon was 10 kg. Under the above conditions, the slag viscosity is 5 poise and there is no oxide in the tundish (comparative method 1), the slag viscosity is 10 poise and there is no oxide in the tundish (comparative method 2), slag viscosity Is 5 poise, quartz glass is placed in the tundish (invention method 1), slag viscosity is 10 poise, quartz glass is placed in the tundish (invention method 2), slag viscosity is 5 poise, A method (present invention method 3) in which weirs were provided and quartz glass was placed in the tundish was carried out. In the method using quartz glass, 10 pieces of a plate having a thickness of 15 mm and a width of 100 mm were used.

Figure 0004354265
Figure 0004354265

鋳型に流れ出たスラグ質量をスラグ精錬に用いた総スラグ質量で割った値をスラグ流出率として、各方式について調べた。表1に示すように、スラグ流出率は、比較方式1、2に比べ、本発明方式1〜3は格段に低く、本発明方式1〜3の中でも2、3が特に低いことがわかった。   The value obtained by dividing the slag mass flowing out into the mold by the total slag mass used for slag refining was examined for each method as the slag outflow rate. As shown in Table 1, the slag outflow rate was significantly lower in the present invention systems 1 to 3 than in the comparison systems 1 and 2, and 2 and 3 were particularly low among the present invention systems 1 to 3.

以上の結果より、本発明方式は、酸化物をタンディッシュに置かない比較方式に比べ、スラグの鋳型への流出が極めて少ないことがわかった。   From the above results, it was found that the method of the present invention caused very little outflow of slag to the mold as compared with the comparative method in which no oxide was placed in the tundish.

従来方法を示す図面である。It is drawing which shows a conventional method. 本発明方法と従来方法の違いを説明する図面である。It is drawing explaining the difference between the method of the present invention and the conventional method. 本発明方法を説明する図面である。It is drawing explaining the method of this invention. 本発明方法での板状の酸化物の配置を表わす図面である。It is drawing which shows arrangement | positioning of the plate-shaped oxide in the method of this invention.

(a) 上から見た図
(b) 横から見た図
本発明方法で上堰を設けた場合を示す図面である。
(A) View from above (b) View from side
It is drawing which shows the case where an upper weir is provided by the method of the present invention.

符号の説明Explanation of symbols

1…不純物を多く含む物質、
2…容器、
3…シリコン、
4…穴、
5…スラグ、
6…酸化物、
7…タンディッシュ、
8…タンディッシュの出口、
9…鋳型、
10…シリコンの流れる向き、
11…上堰。
1 ... substances with a lot of impurities,
2 ... container,
3 ... Silicon,
4 ... hole,
5 ... Slag,
6 ... Oxides,
7 ... tundish,
8 ... Tundish exit,
9 ... mold,
10: Direction of silicon flow,
11 ... Upper weir.

Claims (6)

アルカリ酸化物又はアルカリ炭酸化物とシリカ系のスラグを用いたシリコンの精錬において、シリコン及びスラグが入った容器を傾け、酸化物を散在させたタンディッシュにシリコンとスラグを注ぎ出し、該タンディッシュから精製したシリコンのみを鋳型に流出させることを特徴とするシリコン精錬におけるスラグ分離方法。   In the refining of silicon using alkali oxide or alkali carbonate and silica-based slag, the container containing silicon and slag is tilted, and silicon and slag are poured out into the tundish where the oxide is scattered, A method for separating slag in silicon refining, wherein only purified silicon is allowed to flow out into a mold. 前記散在させる酸化物が石英ガラスである請求項1記載のシリコン精錬におけるスラグ分離方法。   The slag separation method in silicon refining according to claim 1, wherein the scattered oxide is quartz glass. 前記散在させる酸化物のサイズが厚み5〜30mm、幅50〜300mmの板状である請求項1又は2に記載のシリコン精錬におけるスラグ分離方法。   The slag separation method in silicon refining according to claim 1 or 2, wherein the size of the dispersed oxide is a plate having a thickness of 5 to 30 mm and a width of 50 to 300 mm. 前記タンディッシュが上堰を有する請求項1記載のシリコン精錬におけるスラグ分離方法。   The slag separation method in silicon refining according to claim 1, wherein the tundish has an upper weir. 前記スラグの粘性が10poise以上である請求項1記載のシリコン精錬におけるスラグ分離方法。   The method for separating slag in silicon refining according to claim 1, wherein the viscosity of the slag is 10 poise or more. 前記タンディッシュに注ぎ出す直前にスラグ成分を調節し、スラグの粘性を制御する請求項5記載のシリコン精錬におけるスラグ分離方法。   The method for separating slag in silicon refining according to claim 5, wherein the slag component is adjusted immediately before pouring into the tundish to control the viscosity of the slag.
JP2003413516A 2003-12-11 2003-12-11 Slag separation method in silicon refining Expired - Fee Related JP4354265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413516A JP4354265B2 (en) 2003-12-11 2003-12-11 Slag separation method in silicon refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413516A JP4354265B2 (en) 2003-12-11 2003-12-11 Slag separation method in silicon refining

Publications (2)

Publication Number Publication Date
JP2005170746A JP2005170746A (en) 2005-06-30
JP4354265B2 true JP4354265B2 (en) 2009-10-28

Family

ID=34733628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413516A Expired - Fee Related JP4354265B2 (en) 2003-12-11 2003-12-11 Slag separation method in silicon refining

Country Status (1)

Country Link
JP (1) JP4354265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986471B2 (en) * 2006-02-10 2012-07-25 新日鉄マテリアルズ株式会社 Silicon slag refining method
PL2810920T3 (en) * 2012-02-03 2018-10-31 Silicio Ferrosolar, S.L.U. Device and method for refining silicon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO180532C (en) * 1994-09-01 1997-05-07 Elkem Materials Process for removing contaminants from molten silicon
JP4456284B2 (en) * 2001-01-29 2010-04-28 新日本製鐵株式会社 Molten steel heating device using plasma torch
AU2003208106A1 (en) * 2002-02-04 2003-09-02 Sharp Kabushiki Kaisha Silicon purifying method, slag for purifying silicon, and purified silicon
JP2003277040A (en) * 2002-03-19 2003-10-02 Sharp Corp Method of purifying silicon and solar cell manufactured by using silicon purified by method thereof

Also Published As

Publication number Publication date
JP2005170746A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5424833B2 (en) Degassing isopipe material
JP5397371B2 (en) Molten glass manufacturing apparatus and molten glass manufacturing method using the same
NO311182B1 (en) Method of removing suspended particles from molten metal
US7874179B2 (en) Method for removal of gaseous inclusions from viscous liquids
JP5630265B2 (en) Defoaming equipment for molten glass
JP5446028B2 (en) Glass melting method and glass melting apparatus
JP4354265B2 (en) Slag separation method in silicon refining
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
CN105983684A (en) Low-carbon inner hole body-contained submersed nozzle
WO2012017963A1 (en) Molten glass duct structure, vacuum defoaming device provided therewith, vacuum defoaming method of molten glass, and glass product manufacturing method
JP5772823B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass, and glass product manufacturing apparatus and manufacturing method
JP5975022B2 (en) Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
JP2022507801A (en) How to shorten the bubble life on the surface of glass melt
JP2003261339A (en) Float glass melting furnace and method for float melting of glass
KR20090089349A (en) Glass melting apparatus
JP4058935B2 (en) Vacuum deaerator
US6946095B2 (en) Filter for molten aluminum alloy or molten aluminum
JP3725873B2 (en) Electron beam melting method of titanium metal
JP4354259B2 (en) Slag separation method in silicon refining
NO171044B (en) PROCEDURE FOR SEPARATION BY FILTERING OF INCLUSIONS INCLUDED IN A MOLD METAL BATH
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
WO2023210201A1 (en) Tundish and continuous casting method using same
JP2006062903A (en) Glass melting furnace
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JPH0740012A (en) Tundish for vacuum induction furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130807

LAPS Cancellation because of no payment of annual fees