JP4353949B2 - Covering member - Google Patents

Covering member Download PDF

Info

Publication number
JP4353949B2
JP4353949B2 JP2006047784A JP2006047784A JP4353949B2 JP 4353949 B2 JP4353949 B2 JP 4353949B2 JP 2006047784 A JP2006047784 A JP 2006047784A JP 2006047784 A JP2006047784 A JP 2006047784A JP 4353949 B2 JP4353949 B2 JP 4353949B2
Authority
JP
Japan
Prior art keywords
concentration
film
covering member
zone
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006047784A
Other languages
Japanese (ja)
Other versions
JP2007222995A (en
Inventor
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006047784A priority Critical patent/JP4353949B2/en
Publication of JP2007222995A publication Critical patent/JP2007222995A/en
Application granted granted Critical
Publication of JP4353949B2 publication Critical patent/JP4353949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本願発明は、SiとBを含有した硬質皮膜を被覆した被覆部材に関し、より詳細には、各Si、B濃度に差のある帯域の積層構造により、高温環境下においてもチッピングや膜剥離が発生し難い被覆部材に関する。   The present invention relates to a coating member coated with a hard film containing Si and B, and more specifically, chipping and film peeling occur even in a high temperature environment due to a laminated structure of zones having different Si and B concentrations. It is related with a covering member which is hard to do.

皮膜の高硬度化、耐熱性を改善することを目的として、SiBを含有した硬質皮膜が以下の特許文献1から3に開示されている。 For the purpose of increasing the hardness and heat resistance of the coating, hard coatings containing Si and B are disclosed in Patent Documents 1 to 3 below.

特許3586218号公報Japanese Patent No. 3586218 特開平09−125229号公報JP 09-125229 A 特開2004−34186号公報JP 2004-34186 A

特許文献1は、SiとBを含有した硬質皮膜において、高Si濃度領域と低Si濃度領域を有する相を有する被覆切削工具を開示している。また、高Si濃度領域と低Si濃度領域のSi濃度比が3.2となる例が記載されている。特許文献2は、ウルツ鉱型結晶構造を有するBxAl1−xNy被膜に関する技術が開示され、硬度、耐食性、耐摩耗性、耐酸化性、耐熱性が優れた硬質皮膜が得られることが記載されている。しかし、この硬質皮膜はSi含有により圧縮残留応力が多大になり、皮膜が著しく脆く、SiBを含有した硬質皮膜の微細構造を全く検討しておらず、靱性にも劣る欠点がある。特許文献3は、このSi含有の欠点を解消するため、Si、B含有皮膜の結晶形態が結晶質相と非晶質相とからなり、該結晶質相内に含まれる結晶粒子の粒径を、最小結晶粒径が0.5nm以上、20nm未満にすることにより、Si含有硬質皮膜の高硬度と耐酸化性を犠牲にすることなく、靱性を改善し、耐チッピング性に優れる、長寿命並びに高速切削加工に適した耐摩耗皮膜被覆切削工具を実現している。しかし、特許文献3は、結晶質部と非晶質部の界面領域においてO元素が拡散し易いことから耐熱性が低く、また硬質皮膜の微細構造を全く検討しておらず、靭性の改善が十分ではないことから、高温環境下において、皮膜にチッピングや膜剥離が発生する欠点がある。そこで、本願発明の目的は、SiとBを含有した硬質皮膜の耐摩耗性と耐熱性を活かし、靭性を高め、高温環境下においても、チッピングや膜剥離が発生し難く、長時間安定して使用可能な、優れた寿命を有する被覆部材を提供することである。 Patent Document 1 discloses a coated cutting tool having a phase having a high Si concentration region and a low Si concentration region in a hard coating containing Si and B. In addition, an example is described in which the Si concentration ratio between the high Si concentration region and the low Si concentration region is 3.2. Patent Document 2 discloses that a technique relating to a ( BxAl1-x ) Ny coating having a wurtzite crystal structure is disclosed, and a hard coating excellent in hardness, corrosion resistance, wear resistance, oxidation resistance, and heat resistance is obtained. Has been. However, this hard film has a large compressive residual stress due to the Si content, the film is extremely brittle, the microstructure of the hard film containing Si and B has not been studied at all, and the toughness is inferior. Patent Document 3 discloses that in order to eliminate this Si-containing defect, the crystal form of the Si and B-containing film is composed of a crystalline phase and an amorphous phase, and the particle size of the crystal particles contained in the crystalline phase is determined. By making the minimum crystal grain size 0.5 nm or more and less than 20 nm, the toughness is improved without sacrificing the high hardness and oxidation resistance of the Si-containing hard film, and the chipping resistance is excellent. A wear-resistant coating coated cutting tool suitable for high-speed cutting is realized. However, Patent Document 3 has low heat resistance because the O element is easily diffused in the interface region between the crystalline part and the amorphous part, and has not studied the fine structure of the hard coating at all, so that the toughness is improved. Since it is not sufficient, there is a drawback that chipping or film peeling occurs in the film under a high temperature environment. Therefore, the object of the present invention is to utilize the wear resistance and heat resistance of the hard coating containing Si and B, to improve toughness, and in a high temperature environment, chipping and film peeling hardly occur, and it is stable for a long time. It is to provide a covering member that can be used and has an excellent lifetime.

本願発明の被覆部材は、基材表面に硬質皮膜を被覆した被覆部材において、該硬質皮膜は、SiとBを含有し、帯域Aが硼化物を含まないターゲット、帯域BがSiを含まないターゲットを用いて交互積層され、該交互積層が膜厚方向に1〜60nmの層厚であり、該積層における帯域AのSi濃度の最大値をSihとし、帯域BのSi濃度の最低値をSilとしたとき、Sih/Silが1.5以上、22.5以下で、且つ、該Sil値は、帯域AのSiから相互拡散した混合層の値で、該帯域Aを高Si濃度、低B濃度、該帯域Bを低Si濃度、高B濃度、としたことを特徴とする被覆部材である。この構成を採用することにより、SiとBを含有する硬質皮膜の耐摩耗性と耐熱性を活かし、靭性を更に高めることができ、高温環境下においても、チッピングや膜剥離が発生し難く、長時間安定して使用可能な、優れた寿命を有する被覆部材を実現できる。
The coating member of the present invention is a coating member in which a hard film is coated on the surface of a base material, the hard film contains Si and B, zone A contains no boride, and zone B contains no Si are alternately stacked with, the alternate lamination is a layer thickness of 1~60nm in the film thickness direction, a maximum value of the Si concentration of the band a in the laminate as Sih, and Sil the minimum value of the Si concentration in band B In this case, Sih / Sil is 1.5 or more and 22.5 or less, and the Sil value is a value of a mixed layer interdiffused from Si in the band A, and the band A has a high Si concentration and a low B concentration. The covering member is characterized in that the zone B has a low Si concentration and a high B concentration . By adopting this configuration, the wear resistance and heat resistance of the hard coating containing Si and B can be utilized to further enhance the toughness, and chipping and film peeling hardly occur even under high temperature environments. A covering member having an excellent life that can be used stably over time can be realized.

本願発明の被覆部材は、該SiとBを含有した硬質皮膜のBの一部を、N、O、Sから選択される少なくとも1種以上の元素と置換することが好ましい。該SiとBを含有した硬質皮膜のSiの1部をTi、Zr、Hf、V、Nb、Ta、Cr、W、Al、Yから選択される1種以上の元素と置換することが好ましい。該SiとBを含有した硬質皮膜は、ナノインデンテーションにより求められる弾性回復率Eが30%以上、50%以下であることが好ましい。該SiとBを含有した硬質皮膜とは別の下層又は上層を被覆することが好ましい。 In the covering member of the present invention, it is preferable that a part of B of the hard coating containing Si and B is replaced with at least one element selected from N, O, and S. It is preferable to replace one part of Si of the hard coating containing Si and B with one or more elements selected from Ti, Zr, Hf, V, Nb, Ta, Cr, W, Al, and Y. The hard coating containing Si and B preferably has an elastic recovery rate E determined by nanoindentation of 30% or more and 50% or less. It is preferable to coat a lower layer or an upper layer different from the hard coating containing Si and B.

本願発明により、SiBを含有する硬質皮膜の耐摩耗性と耐熱性を活かし、靭性を高め、高温環境下においても、チッピングや膜剥離が発生し難く、長時間安定して使用可能な、優れた寿命を有する被覆部材を実現できた。 By utilizing the wear resistance and heat resistance of the hard coating containing Si and B according to the present invention, toughness is increased, and even under high temperature environments, chipping and film peeling hardly occur and can be used stably for a long time. A covering member having an excellent life could be realized.

本願発明のSiBを含有した硬質皮膜は、高Si濃度であり低B濃度である帯域Aと、低Si濃度であり高B濃度である帯域Bとが交互積層し、該積層が膜厚方向に1〜60nmの層厚であることにより、帯域Aの高Si濃度による高硬度、高耐摩耗性と、帯域Bの高B濃度による高耐熱性、高靭性の両特性が発現される。これにより、耐チッピング性等の靱性が改善される。その理由は、高Si濃度と高B濃度とが、膜厚方向に1〜60nmの層厚で交互に形成されることにより、高B濃度で耐熱性が優れる帯域と、高Si濃度で耐摩耗性が優れる帯域とが、高密度、且つ、密着性良く積層されているため、両者の優れた特性が発現される。しかも、積層されているためクラックが進展し難くなり、靱性が飛躍的に優れる硬質皮膜が実現される。更に、高Si濃度と高B濃度とを交互積層として、膜厚方向に1〜60nmの範囲内の層厚で積層すると、高Si濃度と高B濃度との間でSiやB元素が相互拡散し、混合層が形成される。この混合層が帯域Aの高Si濃度と帯域Bの高B濃度の間に優れた密着性が実現し、膜剥離が発生し難くなる。これは、高Si濃度と高B濃度とを個別に成膜して積層した場合も同様な効果を得られる。
本願発明のB化合物の薄膜は低硬度で、Si化合物の薄膜は高硬度になる傾向がある。その理由は明確ではないが、イオン半径の小さいBやSiが含有されていることにより、皮膜内に大きな残留応力が発生するためであると考えられる。この大きい残留応力が、本願発明の形態の様に、帯域Aの高Si濃度と帯域Bの高B濃度とが積層された形状からなり、各積層、混合層間で緩和されることにより、BとSiの長所が顕著に現れ、優れた耐摩耗性、耐酸化性、高靭性が同時に得られるようになる。
一方、帯域Aの層厚が60nmを超えて大きいと、帯域Aの高Si濃度と帯域Bの高B濃度とを層状に分けて積層する効果が見られなくなり、帯域Bの高B濃度による低硬度と、帯域Aの高Si濃度による低脆性の両欠点が現れる。Si濃度の層厚が1nm未満であると、帯域Bの高B濃度と、帯域Aの高Si濃度とを区分して積層する効果が薄れる。また、SihとSilの変動が膜厚方向に確認されなくなる。従って、硬質皮膜が脆くなり、耐チッピング性に乏しく、硬質皮膜にクラックが入り易い欠点が現れる。
Sih/Sil値が1.5以上であることにより、帯域Aの高Si濃度の高強度特性と帯域Bの高B濃度の高耐熱性、高靭性とが、より区分して発現され、SiとBを含有した硬質皮膜全体に、優れた耐熱性と機械強度とが得られる。Sih/Sil値が1.5未満では、帯域Bの高B濃度と、帯域Aの高Si濃度とを区分して積層する効果が薄れる。SiとBを含有した硬質皮膜全体の耐熱性と機械強度とが低下する欠点が現れ、硬質皮膜にクラックが入り易くなる。帯域Aの高Si濃度と帯域Bの低Si濃度とが交互に検出されれば良く、必ずしも、別個の層として区別される必要はない。
Hard coating containing Si and B of the present invention, a band A is a low B concentration be a high Si concentration, and the band B is a high B concentration be low Si concentration alternate lamination, the lamination thickness By having a layer thickness of 1 to 60 nm in the direction, both high hardness and high wear resistance due to high Si concentration in zone A, and high heat resistance and high toughness due to high B concentration in zone B are manifested. Thereby, toughness, such as chipping resistance, is improved. The reason is that a high Si concentration and a high B concentration, by being alternately formed at a layer thickness of 1~60nm in the film thickness direction, a band in which the heat resistance is excellent in high B concentration, the wear at high Si concentration Since the band having excellent properties is laminated with high density and good adhesion, the excellent characteristics of both are exhibited. And since it is laminated | stacked, it becomes difficult for a crack to advance and the hard film | membrane which toughness is remarkably excellent is implement | achieved. Furthermore, when high Si concentration and high B concentration are alternately stacked and stacked with a layer thickness in the range of 1 to 60 nm in the film thickness direction, Si and B elements are interdiffused between the high Si concentration and the high B concentration. As a result, a mixed layer is formed. This mixed layer realizes excellent adhesion between the high Si concentration in the zone A and the high B concentration in the zone B , and film peeling hardly occurs. The same effect can be obtained when a high Si concentration and a high B concentration are separately formed and laminated.
The B compound thin film of the present invention has a low hardness, and the Si compound thin film tends to have a high hardness. The reason is not clear, but it is considered that a large residual stress is generated in the film due to the inclusion of B or Si having a small ion radius. The large residual stress, as in the form of the present invention consists of the shape of the high B concentration in the high Si concentration and the band B of the band A is laminated, by the lamination, it is relaxed between the mixed layer, B The advantages of Si and Si are prominent, and excellent wear resistance, oxidation resistance, and high toughness can be obtained at the same time.
On the other hand, if the layer thickness of the zone A is larger than 60 nm, the effect of layering the high Si concentration of the zone A and the high B concentration of the zone B in layers is not seen, and the low B due to the high B concentration of the zone B Both defects of hardness and low brittleness due to the high Si concentration in zone A appear. If the layer thickness of the Si concentration is less than 1 nm, the effect of layering the high B concentration in the zone B and the high Si concentration in the zone A is reduced. In addition, variations in Sih and Sil are not confirmed in the film thickness direction. Therefore, the hard film becomes brittle, chipping resistance is poor, and the hard film tends to crack.
When the Sih / Sil value is 1.5 or more, the high strength characteristic of the high Si concentration in the zone A and the high heat resistance and high toughness of the high B concentration in the zone B are expressed more separately. Excellent heat resistance and mechanical strength can be obtained over the entire hard coating containing B. When the Sih / Sil value is less than 1.5, the effect of layering the high B concentration in the zone B and the high Si concentration in the zone A is reduced. The defect that the heat resistance and mechanical strength of the entire hard coating containing Si and B are reduced appears, and the hard coating tends to crack. It is sufficient that the high Si concentration in the zone A and the low Si concentration in the zone B are detected alternately, and it is not always necessary to distinguish them as separate layers.

本願発明のSiとBを含有した硬質皮膜のBの一部を、N、O、Sから選択される少なくとも1種以上の元素と置換することにより、高硬度、高耐酸化性、高潤滑性、低摩擦抵抗になる。これより優れた被覆部材が実現できて好ましい。例えば、より好ましい積層構造の組み合わせは、Si窒化物とB炭化物、Si窒化物と金属硼化物、等が挙げられる。
本願発明のSiとBを含有した硬質皮膜のSiの1部をTi、Zr、Hf、V、Nb、Ta、Cr、W、Al、Yから選択される1種以上の元素と置換することが好ましい。例えば、Siの1部をW、Ti、Zr、Hf、V、Nbから選択される1種以上の元素と置換することは皮膜の高硬度化に寄与する効果を有し、またTa、Nb、Hf、Nb等の1種以上と置換することは耐熱性の向上、Nb、Al、Y、Cr等の1種以上と置換することは耐酸化性の向上、W、Cr等の1種以上と置換することは強度と耐塑性変形性の改善、V、Zr、Cr、Al等の1種以上と置換することは摺動性を向上させる効果を有し、好ましい。特に改善が著しい添加元素は、Ti、Al、Cr、Nb等が挙げられる。
本願発明のSiとBを含有した硬質皮膜は、E値が30%以上、50%以下であることにより、耐チッピング性と耐摩耗性のバランスが最適になる。このため優れた被覆部材が実現でき、好ましい。E値が30%未満の場合、皮膜硬度と耐摩耗性が低下する傾向が現れ、50%を超えて大きい場合は、皮膜が脆化し、耐チッピング性が低下する傾向が現れる。本願発明のE値は、例えば、被覆条件により制御することができる。皮膜を成膜するときに、基板に負のバイアス電圧を加え、バイアス電圧の絶対値を大きくすると、E値がある一定値まで増加したのちに、ゆるやかに減少する傾向を示す。また、Ar流量を増加しても同様な傾向を示す。また基材温度を上昇させるとE値がある一定値までは減少する傾向を示し、その後増加に転じる。また、皮膜を成膜するときに、基板に、正負パルス状のバイアス電圧を印加し、負パルス状バイアス電圧の絶対値の幅を大きくすると、幅が大きくなるにつれて、ある一定値までは増加する傾向を示し、その後ゆるやかに減少する傾向を示す。
本願発明の被覆部材は、SiとBを含有した硬質皮膜とは別の下層又は上層を被覆することが好ましい。この理由は、下層を設けることにより、基材とSiとBを含有した硬質皮膜間の密着性が向上するからである。例えば下層として、(AlTi)N、(AlCr)N、(AlCrSi)N、(AlNbCr)N、(AlTiSi)Nである。上層を設けることにより、優れた耐摩耗性が得られる。例えば上層として、SiC、SiN、Si(CN)、BN、BC、AlN、AlO、(TiSi)N、(TiCrSi)N、(AlSiTi)N等である。
By replacing a part of B of the hard coating containing Si and B of the present invention with at least one element selected from N, O, and S, high hardness, high oxidation resistance, high lubricity It becomes low friction resistance. A coating member superior to this can be realized, which is preferable. For example, more preferable combinations of laminated structures include Si nitride and B carbide, Si nitride and metal boride, and the like.
Substituting one part of Si of the hard coating containing Si and B of the present invention with one or more elements selected from Ti, Zr, Hf, V, Nb, Ta, Cr, W, Al, and Y preferable. For example, replacing one part of Si with one or more elements selected from W, Ti, Zr, Hf, V, and Nb has an effect that contributes to increasing the hardness of the film, and Ta, Nb, Substitution with one or more of Hf, Nb, etc. improves heat resistance, substitution with one or more of Nb, Al, Y, Cr, etc. improves oxidation resistance, with one or more of W, Cr, etc. Substitution is preferred because it improves the strength and plastic deformation resistance, and substitution with one or more of V, Zr, Cr, Al, etc. has the effect of improving slidability. Examples of additive elements that are particularly remarkably improved include Ti, Al, Cr, and Nb.
The hard film containing Si and B of the present invention has an E value of 30% or more and 50% or less, so that the balance between chipping resistance and wear resistance is optimal. For this reason, an excellent covering member can be realized, which is preferable. When the E value is less than 30%, the film hardness and wear resistance tend to decrease, and when it exceeds 50%, the film becomes brittle and chipping resistance tends to decrease. The E value of the present invention can be controlled by, for example, the coating conditions. When forming a film, if a negative bias voltage is applied to the substrate and the absolute value of the bias voltage is increased, the E value increases to a certain value and then gradually decreases. Moreover, the same tendency is shown even if the Ar flow rate is increased. Further, when the substrate temperature is raised, the E value tends to decrease to a certain value, and then increases. In addition, when a film is formed, if a bias voltage in the form of positive and negative pulses is applied to the substrate and the width of the absolute value of the negative pulse bias voltage is increased, it increases to a certain value as the width increases. It shows a tendency, and then shows a tendency to decrease gradually.
The covering member of the present invention preferably covers a lower layer or an upper layer different from the hard coating containing Si and B. This is because the adhesion between the base material and the hard coating containing Si and B is improved by providing the lower layer. For example, the lower layers are (AlTi) N, (AlCr) N, (AlCrSi) N, (AlNbCr) N, and (AlTiSi) N. By providing the upper layer, excellent wear resistance can be obtained. For example, the upper layer is SiC, SiN, Si (CN), BN, BC, AlN, AlO, (TiSi) N, (TiCrSi) N, (AlSiTi) N, or the like.

本願発明の被覆部材は、切削工具、例えばエンドミル、ドリル、リーマ、ブローチ、ホブ、マイクロドリル、ルーター、ミーリングインサート、ターニングインサート等やカッターに用いることが好ましい。本願発明の被覆部材は、基材が立方晶窒化硼素焼結体であることにより、更に優れた耐摩耗性と耐塑性変形性が得られ、好ましい。立方晶窒化硼素焼結体は、cBN含有率が55体積%以上、cBN平均粒子径が3μm未満、主バインダーがTiN、Ti(CN)、TiCの何れかである事が、耐摩耗性と機械強度がバランス良く、密着性に優れており、好ましい。基材がWC−Co系超硬合金であることにより、優れた密着強度を有する皮膜と耐チッピング性が得られ、好ましい。WC−Co系超硬合金は、WC平均粒子径が0.6μm以下、Coバインダーが8重量%以下、VCrを含んでいることにより、耐摩耗性に加えて機械強度が最も優れ、好ましい。
本願発明の硬質皮膜を被覆する製造方法は、特に限定するものではないが、スパッタリング法アーク放電式イオンプレーティング(以下、AIPと記す。)法により被覆することが好ましい。この場合、SiとB含有ターゲットを個別の蒸発源に設置し、同時にスパッタリングすることによっても製造することが可能であるが、SiとBの濃度が異なるSiとBを含有した複合ターゲットを複数個、組み合わせて用いることが好ましい。また、SiとBを含有した硬質皮膜の下層又は上層の被覆には、スパッタリング法AIP法が好適である。以下、本願発明を実施例に基づいて説明する。
The covering member of the present invention is preferably used for a cutting tool such as an end mill, a drill, a reamer, a broach, a hob, a micro drill, a router, a milling insert, a turning insert, or the like. The covering member of the present invention is preferable because the base material is a cubic boron nitride sintered body, and thus further excellent wear resistance and plastic deformation resistance can be obtained. The cubic boron nitride sintered body has a cBN content of 55% by volume or more, an average particle size of cBN of less than 3 μm, and the main binder is any one of TiN, Ti (CN), and TiC. The strength is well balanced and the adhesiveness is excellent, which is preferable. When the substrate is a WC-Co based cemented carbide, a film having excellent adhesion strength and chipping resistance can be obtained, which is preferable. The WC-Co cemented carbide has a WC average particle size of 0.6 μm or less, a Co binder of 8 wt% or less, and V and Cr. .
The production method for coating the hard coating of the present invention is not particularly limited, but it is preferable to coat by a sputtering method or an arc discharge ion plating (hereinafter referred to as AIP) method. In this case, it is possible to manufacture by setting Si and B-containing targets in separate evaporation sources and simultaneously performing sputtering, but a plurality of composite targets containing Si and B having different concentrations of Si and B are used. Are preferably used in combination. Moreover, sputtering method and AIP method are suitable for coating the lower layer or upper layer of the hard coating containing Si and B. Hereinafter, the present invention will be described based on examples.

本願発明の被覆部材を評価するために、試料1、2として、基材、Co:6質量%、WC平均粒径が0.2μm、VN:0.3質量%、Cr:0.5質量%を含有し、HRA94.3の超微粒子超硬合金製のナノインデンテーション用の試験片と、直径1mmの2枚刃ボールエンドミルを用いた。
本発明例1は、試料1、2を脱脂洗浄し、スパッタリング装置にセットし、SiとBを含有した硬質皮膜を成膜した。成膜には、スパッタリング蒸発源を4基(以下、蒸発源1〜4と記す。)搭載し、自公転式の試料ホルダーを有しているスパッタリング装置を用いた。そのうちの1基(以下、蒸発源1と記す。)帯域A用のSiターゲットを設置し、Siターゲットに対向する位置にある蒸発源(以下、蒸発源2と記す。)帯域B用のCターゲットを設置した。ターゲットには、熱間静水圧焼結したものをバッキングプレートに多数個張り付けたものを用いた。上記脱脂洗浄後の基材を、スパッタリング装置内の試料ホルダーに装着し、500℃で加熱脱ガス処理した。装置内の真空度を4×10−4Pa以下に真空排気後、Arを装置内に導入し、圧力を8×10−1Paにして、基材にDC:200Vの負バイアス電圧を印加した。基材のArイオンクリーニングを略60分間実施し後、連続して装置内にArガスを導入し、装置内の圧力を5×10−1Pa、成膜温度を480℃にして、基材にパルス状バイアス電圧を印加した。パルス状バイアス電圧は、−150Vと+0Vの間で、周波数2kHz、反転時間1600nsとした。Siターゲットに2kWの電力を供給しSiの成膜を開始すると同時に、BCターゲットにも1.5kWの電力を供給し、SiとBCの両ターゲットに電流を供給することにより、SiとBを含有した硬質皮膜を略約3μm厚被覆した。この成膜中に、試料ホルダーを毎分2回転の公転速度で回転させた。基材をSiターゲット近傍のプラズマ領域と、BCターゲット近傍のプラズマ領域とを交互に通過させることにより、帯域Aと帯域Bとを交互に成膜した。
In order to evaluate the covering member of the present invention, as Samples 1 and 2 , the substrate, Co: 6% by mass, WC average particle size is 0.2 μm, VN: 0.3% by mass, Cr: 0.5% by mass And a test piece for nanoindentation made of HRA94.3 ultrafine particle cemented carbide and a 2-flute ball end mill with a diameter of 1 mm were used.
In Invention Example 1, samples 1 and 2 were degreased and washed, set in a sputtering apparatus, and a hard film containing Si and B was formed. For film formation, a sputtering apparatus equipped with four sputtering evaporation sources (hereinafter referred to as evaporation sources 1 to 4) and having a self-revolving sample holder was used. One of them (hereinafter referred to as evaporation source 1) is provided with an Si target for zone A, and an evaporation source (hereinafter referred to as evaporation source 2) at a position facing the Si target is used for zone B. A B 4 C target was installed. As the target, a hot-water isostatic sintered material stuck on a backing plate was used. The substrate after degreasing and cleaning was mounted on a sample holder in a sputtering apparatus and subjected to heat degassing at 500 ° C. After evacuating the vacuum in the apparatus to 4 × 10 −4 Pa or less, Ar was introduced into the apparatus, the pressure was set to 8 × 10 −1 Pa, and a negative bias voltage of DC: 200 V was applied to the substrate. . After performing Ar ion cleaning of the substrate for approximately 60 minutes, Ar gas was continuously introduced into the apparatus, the pressure in the apparatus was set to 5 × 10 −1 Pa, the film formation temperature was set to 480 ° C., and A pulsed bias voltage was applied. The pulsed bias voltage was between −150 V and +0 V, the frequency was 2 kHz, and the inversion time was 1600 ns. Si targets simultaneously provides power 2kW starts deposition of Si, also provides power 1.5kW to B 4 C target, by supplying current to both targets of Si and B 4 C, Si A hard film containing 2 and B was coated to a thickness of about 3 μm. During the film formation, the sample holder was rotated at a revolution speed of 2 revolutions per minute. By alternately passing the plasma region near the Si target and the plasma region near the B 4 C target through the substrate, the band A and the band B were alternately formed.

本発明例2は、本発明例1と略同じ成膜条件を用いて、試料ホルダーの公転速度のみを毎分1回転に変えて成膜した。本発明例3は、試料ホルダーの公転速度を毎分1回転に変え、さらにSiターゲットの電力値を4kWに、BCターゲットの電力値を3kWに変えて成膜した。本発明例4は、帯域Aを厚くするために、Siターゲットによる成膜後、Siターゲットへの電力供給を中断し、その後BCターゲットによる成膜し、これを繰り返すことにより、帯域A、Bの層厚を大きくした。本発明例5〜7は、本発明例1の条件に、反応ガスとしてOガス、NガスまたはNOを微少量加えて成膜した。本発明例は、蒸発源1にSiとWSからなる複合ターゲットを用い、本発明例6と略同じ条件で成膜した。本発明例9〜17は、蒸発源1にTiとSiからなる複合ターゲット(以下、Ti−Siと記す。)、Zr−Si、Hf−Si、V−Si、Nb−Si、Ta−Si、Cr−Si、Al−Si、Y−Siを用いて、本発明例6と略同じ条件で成膜した。複合ターゲットのターゲット表面のSi面積率は略10%にした。本発明例18〜25は蒸発源1に、SiC、Ti−SiC、Ti−AlSi、Cr−AlSi、AlSi−Cr−Nb、TiSi、AlSiターゲット、蒸発源2にTiBを用い、本発明例6と略同じ条件で成膜した。本発明例26は、本発明例24と同じ、蒸発源1にTi−Si、蒸発源2にTiBのターゲットを用い、装置内圧力5×10−1Pa、成膜温度480℃で、負のバイアス電圧を50V印加して成膜した。本発明例27〜30は、本発明例26と略同じ条件で、印加する負のバイアス電圧を100、150、200、250Vに変えて成膜した。
本発明例31は、下層として、残2基のスパッタリング蒸発源(以下、蒸発源3、4と記す。)に、TiAlターゲットを設置し、N、Ar混合ガスを装置内に導入し、装置内圧力5.8×10−1Pa、成膜温度480℃で、負のバイアス電圧を90V印加して、(TiAl)N膜を略2.0μm成膜後、本発明例6と同じSiとBを含有した硬質皮膜を被覆した。本発明例32〜34は、下層として、(AlCrY)N、(AlTiW)N、(AlCrNbSi)Nを夫々略2.0μm成膜した。 本発明例35は、本発明例と略同じ条件で被覆したSiとBを含有した硬質皮膜の上層に、蒸発源3、4に、TiSiターゲットを設置し、N、Ar混合ガスを装置内に導入し、装置内圧力5.8×10−1Pa、成膜温度480℃で、負のバイアス電圧を120V印加して成膜して、(TiSi)N膜を0.5μm成膜した。本発明例35〜37は、本発明例35と同様にして、上層に、(TiSi)N、(TiSi)(BCN)、(AlSi)Nを夫々0.5μm成膜した。本発明例36の上層にBCの添加には、蒸発源2のB ターゲットを同時に稼動させることにより作製した。本発明例38は、本発明例31の下層、SiとBを含有した硬質皮膜、更に本発明例35と略同じ条件で上層を被覆した。本発明例39、40は、本発明例38と同様、下層に、(AlCr)N、(AlCrSi)Nを夫々略2.0μm成膜した。本発明例1〜40の皮膜構成を表1、表2に示す。
Inventive Example 2 was formed using substantially the same film forming conditions as in Inventive Example 1, changing only the revolution speed of the sample holder to one revolution per minute. In Invention Example 3, film formation was performed by changing the revolution speed of the sample holder to 1 revolution per minute, further changing the power value of the Si target to 4 kW, and the power value of the B 4 C target to 3 kW. In Example 4 of the present invention, in order to increase the thickness of the zone A , the power supply to the Si target is interrupted after the film formation with the Si target, and then the film formation with the B 4 C target is performed . The layer thickness of B was increased. Inventive Examples 5 to 7 were formed by adding a small amount of O gas, N gas or NO as a reaction gas to the conditions of Inventive Example 1 . In Example 8 of the present invention, a composite target composed of Si and WS 2 was used as the evaporation source 1, and the film was formed under substantially the same conditions as Example 6 of the present invention. In Invention Examples 9 to 17, the evaporation source 1 is a composite target composed of Ti and Si (hereinafter referred to as Ti-Si), Zr-Si, Hf-Si, V-Si, Nb-Si, Ta-Si, A film was formed using Cr—Si, Al—Si, and Y—Si under substantially the same conditions as Example 6 of the present invention. The Si area ratio of the target surface of the composite target was about 10%. Inventive Example 18 to 25, the evaporation source 1, using SiC, Ti-SiC, Ti- AlSi, Cr-AlSi, AlSi-Cr-Nb, TiSi, AlSi target, the TiB 2 in the evaporation source 2, the present invention embodiment The film was formed under substantially the same conditions as in FIG. Inventive Example 26 is the same as Inventive Example 24 in that Ti—Si is used as the evaporation source 1 and TiB 2 is used as the evaporation source 2 , the apparatus pressure is 5 × 10 −1 Pa, the film forming temperature is 480 ° C., and negative. A bias voltage of 50 V was applied to form a film. Inventive Examples 27 to 30 were formed under substantially the same conditions as Inventive Example 26 except that the negative bias voltage to be applied was changed to 100, 150, 200, and 250V .
In Invention Example 31, as the lower layer , a TiAl target was installed in the remaining two sputtering evaporation sources (hereinafter referred to as evaporation sources 3 and 4) , and a mixed gas of N and Ar was introduced into the apparatus. A pressure of 5.8 × 10 −1 Pa, a film forming temperature of 480 ° C., a negative bias voltage of 90 V was applied, and a (TiAl) N film was formed to be approximately 2.0 μm. A hard coating containing was coated. In inventive examples 32-34 , (AlCrY) N, (AlTiW) N, and (AlCrNbSi) N were deposited as approximately 2.0 μm as lower layers. In Invention Example 35 , a TiSi target is installed in evaporation sources 3 and 4 on a hard film containing Si and B coated under substantially the same conditions as in Invention Example 1, and a mixed gas of N and Ar is placed in the apparatus. Then, a film was formed by applying a negative bias voltage of 120 V at an apparatus internal pressure of 5.8 × 10 −1 Pa and a film forming temperature of 480 ° C. to form a (TiSi) N film of 0.5 μm. In Invention Examples 35 to 37, in the same manner as in Invention Example 35, (TiSi) N, (TiSi) (BCN), and (AlSi) N were formed in a thickness of 0.5 μm on the upper layers, respectively. To add B 2 and C to the upper layer of Invention Example 36, the B 4 C target of the evaporation source 2 was simultaneously operated. Inventive Example 38 covered the lower layer of Inventive Example 31, a hard film containing Si and B, and the upper layer under substantially the same conditions as in Inventive Example 35. In the inventive examples 39 and 40, as in the inventive example 38, (AlCr) N and (AlCrSi) N were formed in a thickness of approximately 2.0 μm in the lower layer, respectively. Tables 1 and 2 show the film configurations of Examples 1 to 40 of the present invention.

Figure 0004353949
Figure 0004353949

Figure 0004353949
Figure 0004353949

比較例41は、本発明例4と略同じ成膜条件を用い、帯域Aの層厚が略約65〜75nmになるよう、各ターゲットへの電力供給の時間を本発明例4よりも長くした。比較例42は、蒸発源1にTiターゲットを設置し、TiとBからなりSiを含有しない硬質皮膜を被覆した。比較例43は、蒸発源2にTiターゲットを設置し、SiとTiからなりBを含有しない硬質皮膜を被覆した。比較例44は、蒸発源1、2にSiとBCの複合ターゲットを設置し、SiとBを含有した硬質皮膜を被覆した。比較例41〜44の皮膜構成を表1、表2に併記する。 Comparative Example 41 uses substantially the same film formation conditions as Example 4 of the present invention, and the power supply time to each target is longer than that of Example 4 of the present invention so that the layer thickness of zone A is about 65 to 75 nm . . In Comparative Example 42, a Ti target was installed in the evaporation source 1, and a hard film made of Ti and B and containing no Si was coated. In Comparative Example 43, a Ti target was installed in the evaporation source 2 and a hard film made of Si and Ti and containing no B was coated. In Comparative Example 44, a composite target of Si and B 4 C was installed in the evaporation sources 1 and 2 and a hard coating containing Si and B was coated. The film configurations of Comparative Examples 41 to 44 are also shown in Tables 1 and 2.

本発明例と比較例のSi濃度分布は、次の方法で定量評価した。即ち、日本電子製JEM−2010F型の電界放射型TEMにより、加速電圧を200kVで皮膜の断面構造を観察し、略240万倍の暗視野像から組成が異なる帯域を区別した後、Noran社製のEDXのビームを1nm未満に絞り、各帯域をスポット分析することにより、帯域A、BのSi濃度を測定するとともに、隣接するSiの高、低濃度帯域の濃度の最大値をSihとし、最低値をSilとした。このようにして測定した、各試料のSih/Silの分析結果を表1にまとめて記した。 The Si concentration distributions of the inventive examples and comparative examples were quantitatively evaluated by the following method. That is, after observing the cross-sectional structure of the film with a JEM-2010F type field emission TEM manufactured by JEOL at an acceleration voltage of 200 kV and distinguishing a band having a different composition from a dark field image of about 2.4 million times, the product manufactured by Noran By narrowing the EDX beam to less than 1 nm and spot analyzing each band , the Si concentration in the bands A and B is measured, and the maximum value of the concentration in the adjacent high and low concentration bands is set to Sih. The value was Sil. The results of Sih / Sil analysis of each sample measured in this manner are summarized in Table 1.

E値の測定は、試料1を5度傾斜させ鏡面研磨した硬質皮膜の研磨表面を用いて測定した。このとき最大荷重時における最大押し込み深さhmaxは試料1の厚さtに対して、通常t:hmax=10:1の位置で測定した値は、試料1そのものが有する値であると考えられている。しかし、本測定においてはt:hmax=5:1の位置以降で硬度変化が認められなかったことから、深さがhmaxの5倍まで押し込まれる押し込み荷重49mNで押し込み、弾性回復率Eを10点測定し、その平均値を表1中に併記した。ここで、E値は、W.C.Oliver and、G.M.Pharr著の文献“J.Mater.Res.,Vol.7,No.6,June 1992 1572−1574”記載の方法を参考にして、ナノインデンテーション装置により測定した。三角錐圧子に圧子定数εが0.75のBerkovich圧子を使用して、荷重変位曲線から、初期除荷の点における除荷の初期スロープに相当する、接触剛性Sを求め、該S値最大荷重Pmaxから化1により、接触深さhcを求めた。E値は、化2により求めた。図1に、この測定方法で測定した代表的な荷重変位曲線を示す。図1はhcが接触深さ、hmaxが最大変位量、Sが接触剛性、Pmaxが最大荷重である。 The E value was measured using a polished surface of a hard coating obtained by tilting Sample 1 by 5 degrees and mirror polishing. At this time, the maximum indentation depth hmax at the maximum load is considered to be a value that the sample 1 itself has a value measured at a position of t: hmax = 10: 1 with respect to the thickness t of the sample 1. Yes. However, in this measurement, since no change in hardness was observed after the position of t: hmax = 5: 1, the indentation was pushed in with an indentation load of 49 mN that was pushed up to 5 times the hmax, and the elastic recovery rate E was 10 points. The average value was measured and listed in Table 1. Here, the E value is equal to the W.W. C. Oliver and G.G. M.M. Measured with a nanoindentation apparatus with reference to the method described by Pharr, "J. Mater. Res., Vol. 7, No. 6, June 1992 1572-1574". Using a Berkovich indenter with an indenter constant ε of 0.75 for the triangular pyramid indenter, the contact stiffness S corresponding to the initial unloading slope at the initial unloading point is obtained from the load displacement curve, and the S value , maximum The contact depth hc was determined from the load Pmax according to Formula 1. The E value was obtained from Chemical Formula 2. FIG. 1 shows a typical load displacement curve measured by this measuring method. In FIG. 1, hc is the contact depth, hmax is the maximum displacement, S is the contact rigidity, and Pmax is the maximum load.

Figure 0004353949
Figure 0004353949

Figure 0004353949
Figure 0004353949

試料2の工具寿命を、逃げ面摩耗幅が0.1mmに達した切削長若しくは著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ、焼け等などの状態に達した時の切削長を工具寿命と判断した。10m未満は切り捨てて表記した。評価結果を表3に併記した。
(切削条件)
切削方法:超高速仕上げ加工
被削材:FCD540
切り込み:軸方向、0.05mm、径方向、0.01mm
主軸回転数:20kmin−1
テーブル送り:4m/min
切削油:無し、ドライ切削
When the tool life of Sample 2 reaches the cutting length where the flank wear width has reached 0.1 mm or a significantly unstable machining state, such as sparking, abnormal noise, flaking of the machining surface, burning, etc. The cutting length was determined as the tool life. Less than 10m was rounded down. The evaluation results are also shown in Table 3.
(Cutting conditions)
Cutting method: Super-high-speed finishing Work material: FCD540
Cutting: axial direction, 0.05 mm, radial direction, 0.01 mm
Spindle speed: 20kmin- 1
Table feed: 4m / min
Cutting oil: None, dry cutting

Figure 0004353949
Figure 0004353949

表3より、本発明例1〜本発明例4は、いずれも工具寿命が220m以上と、比較例41〜44の2倍以上長く、格段に優れていた。これは、帯域Aが、膜厚方向に1〜60nmで交互に形成されており、且つ、Sih/Silの値が1.5以上である、SiとBを含有した硬質皮膜が被覆されていたからである。帯域A、Bが、膜厚方向に1〜60nmで交互に形成されていることにより、帯域Bによって高耐熱性、高靭性、帯域Aによって高硬度、高耐摩耗性が優れ、高密度に、且つ、密着性良く積層されており、しかも、Sih/Silの値が1.5以上であることにより、高Si濃度による高硬度、高耐摩耗性と、高B濃度による高耐熱性・高靭性とが、より区分して発現されるため、両者の優れた特性が、各帯域で発現された。しかも、各帯域は層状に積層されているためクラックが進展し難くなり、靱性が飛躍的に優れる硬質皮膜が実現された。本発明例3と4の工具寿命が220m以下であるのに対して、本発明例1と2の工具寿命が270m以上と、1.2倍以上長く優れていた。そこで、帯域Aが、膜厚方向に1〜15nmで交互に形成されていることが、より好ましい。基材が略同じであり、SiとBを含有した硬質皮膜を成膜するときに、非金属元素として、N、O、S元素を加えて成膜した本発明例5〜8と、炭素元素のみを加えて成膜した本発明例1とを比較する。他の元素を加えずに成膜した本発明例1の工具寿命が270mであるのに対して、Si、Bと共にN、O、S元素を含有する皮膜を形成した本発明例5、6、7、8の工具寿命は360、420、390、360mと、本発明例1の1.3倍以上長く、優れていた。本発明例9〜25と、本発明例6とを比較する。他の金属を加えずに成膜した本発明例6の工具寿命が420mであるのに対して、Si、Bに加えて、Ti、Zr、Hf、V、Nb、Ta、Cr、Al、Yから選択される1種以上を含有している本発明例9〜25は、工具寿命が570m以上と、本発明例6の1.3倍以上長く、優れていた。本発明例26〜30は、E値が28、52%である本発明例26と30の工具寿命が、夫々、580、550mであるのに対して、E値が30〜50%の範囲内である本発明例27〜29の工具寿命はいずれも700m以上と、本発明例26、30の1.2倍以上長く、優れていた。本発明例31〜40と本発明例6を比較する。下層と上層とを被覆することなく、基材の表面に直接、SiとBを含有した硬質皮膜を被覆した本発明例6の工具寿命が420mであるのに対して、SiとBを含有した硬質皮膜の下層、上層として被覆した本発明例31〜40の工具寿命は、何れも640m以上となり、本発明例1の1.5倍以上長く優れていた。特に、SiとBを含有した硬質皮膜の下層を成膜したものは、本発明例6の2倍以上であった。下層に加えてSiとBを含有した硬質皮膜の上層を成膜した本発明例38〜40は、本発明例6の2.3倍以上長く優れていた。 From Table 3, the inventive examples 1 to 4 were all excellent in tool life, which was 220 m or more, which was twice as long as that of the comparative examples 41 to 44. This is because the band A was alternately formed in the film thickness direction at 1 to 60 nm, and the Sih / Sil value of 1.5 or more was coated with a hard coating containing Si and B. is there. By forming the zones A and B alternately in the film thickness direction at 1 to 60 nm, the zone B has high heat resistance and high toughness, the zone A has high hardness and high wear resistance, and has a high density. In addition, it is laminated with good adhesion, and since the Sih / Sil value is 1.5 or more, it has high hardness and high wear resistance due to high Si concentration and high heat resistance and high toughness due to high B concentration. Are expressed more separately, so that the excellent characteristics of both were expressed in each band. In addition, since each zone is laminated in layers, it is difficult for cracks to progress, and a hard coating with significantly improved toughness has been realized. The tool life of Invention Examples 3 and 4 is 220 m or less, whereas the tool life of Invention Examples 1 and 2 is 270 m or more, which is 1.2 times longer. Therefore, it is more preferable that the bands A are alternately formed at 1 to 15 nm in the film thickness direction. When the base material is substantially the same and a hard film containing Si and B is formed, N, O, and S elements are added as nonmetallic elements to form Examples 5 to 8 of the present invention, and carbon element The present invention is compared with Example 1 of the present invention formed by adding only the film. While the tool life of Inventive Example 1 formed without adding other elements is 270 m, Inventive Examples 5, 6 in which films containing N, O, and S elements together with Si and B are formed. The tool life of Nos. 7 and 8 was 360, 420, 390, and 360 m, which was 1.3 times longer than that of Invention Example 1 and was excellent. Invention Examples 9 to 25 are compared with Invention Example 6. In contrast to Si and B, the tool life of Inventive Example 6 formed without adding other metals is 420 m, whereas in addition to Si and B, Ti, Zr, Hf, V, Nb, Ta, Cr, Al, Y Invention Examples 9 to 25 containing one or more selected from the above were excellent, with a tool life of 570 m or longer, 1.3 times longer than that of Invention Example 6. Inventive Examples 26 to 30 have E values of 28 and 52%, while the tool life of Inventive Examples 26 and 30 is 580 and 550 m, respectively, while the E value is in the range of 30 to 50%. The tool life of each of the inventive examples 27 to 29 was 700 m or longer, 1.2 times longer than the inventive examples 26 and 30, and excellent. Invention Examples 31 to 40 are compared with Invention Example 6. The tool life of Example 6 of the present invention in which the hard film containing Si and B was directly coated on the surface of the base material without coating the lower layer and the upper layer was 420 m, whereas Si and B were contained . The tool life of Inventive Examples 31 to 40 coated as the lower layer and the upper layer of the hard coating was 640 m or more, which was 1.5 times longer than that of Inventive Example 1, and was excellent. In particular, what formed the lower layer of the hard film containing Si and B was twice or more of Example 6 of the present invention. Invention Examples 38 to 40, in which the upper layer of the hard coating containing Si and B in addition to the lower layer was formed, were 2.3 times longer than Invention Example 6 and were excellent.

比較例41は、切削評価において皮膜の脱落から異常摩耗が発生し、工具寿命が50mであった。帯域Aの層厚が60nmを超えている比較例41は、ターゲットAからのSi元素が、ターゲットBからの高B濃度層中に拡散していなかった。比較例42は、皮膜の剥離並びに摩耗進行が早く、工具寿命が90mであった。比較例43は、皮膜の剥離並びに摩耗進行が早く、工具寿命が60mであった。帯域A、Bが無い比較例44は、切削評価において、層内での膜チッピングが多数発生し、工具寿命が110mであった。 In Comparative Example 41, abnormal wear occurred due to the removal of the film in the cutting evaluation, and the tool life was 50 m. In Comparative Example 41 in which the layer thickness of the zone A exceeds 60 nm, the Si element from the target A was not diffused into the high B concentration layer from the target B. In Comparative Example 42, the peeling of the film and the progress of wear were fast, and the tool life was 90 m. In Comparative Example 43, the peeling of the film and the progress of wear were fast, and the tool life was 60 m. In Comparative Example 44 without the zones A and B , in the cutting evaluation, many film chippings in the layer occurred, and the tool life was 110 m.

図1は、荷重変位曲線を示す。FIG. 1 shows a load displacement curve.

Claims (5)

基材表面に硬質皮膜を被覆した被覆部材において、該硬質皮膜は、SiとBを含有し、帯域Aが硼化物を含まないターゲット、帯域BがSiを含まないターゲットを用いて交互積層され、該交互積層が膜厚方向に1〜60nmの層厚であり、該積層における帯域AのSi濃度の最大値をSihとし、帯域BのSi濃度の最低値をSilとしたとき、Sih/Silが1.5以上、22.5以下で、且つ、該Sil値は、帯域AのSiから相互拡散した混合層の値で、該帯域Aを高Si濃度、低B濃度、該帯域Bを低Si濃度、高B濃度、としたことを特徴とする被覆部材。 In the covering member in which the base material surface is coated with a hard film, the hard film contains Si and B, zone A is alternately laminated using a target not containing boride, and zone B is a target not containing Si , When the alternate stack has a layer thickness of 1 to 60 nm in the film thickness direction, Sih is the maximum value of Si concentration in zone A and Sih is the minimum value of Si concentration in zone B, and Sih / Sil is The Sil value is 1.5 or more and 22.5 or less, and the Sil value is a value of a mixed layer interdiffused from Si in the band A. The band A has a high Si concentration, a low B concentration, and the band B has a low Si. A covering member characterized by having a concentration and a high B concentration . 請求項1記載の被覆部材において、該SiとBを含有した硬質皮膜のBの一部を、N、O、Sから選択される少なくとも1種以上の元素と置換したことを特徴とする被覆部材。 The covering member according to claim 1, wherein a part of B of the hard coating containing Si and B is substituted with at least one element selected from N, O, and S. . 請求項1又は2記載の被覆部材において、該SiとBを含有した硬質皮膜のSiの1部をTi、Zr、Hf、V、Nb、Ta、Cr、W、Al、Yから選択される1種以上の元素と置換したことを特徴とする被覆部材。 The covering member according to claim 1 or 2, wherein 1 part of Si of the hard film containing Si and B is selected from Ti, Zr, Hf, V, Nb, Ta, Cr, W, Al, Y A covering member that is substituted with an element of at least a seed. 請求項1乃至3何れかに記載の被覆部材において、該SiとBを含有した硬質皮膜は、ナノインデンテーションにより求められる弾性回復率Eが30%以上、50%以下であることを特徴とする被覆部材。 The covering member according to any one of claims 1 to 3, wherein the hard coating containing Si and B has an elastic recovery rate E determined by nanoindentation of 30% or more and 50% or less. Covering member. 請求項1乃至4何れかに記載の被覆部材において、該SiとBを含有した硬質皮膜とは別の下層又は上層を被覆したことを特徴とする被覆部材。 5. The covering member according to claim 1, wherein a lower layer or an upper layer different from the hard coating containing Si and B is coated.
JP2006047784A 2006-02-24 2006-02-24 Covering member Active JP4353949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047784A JP4353949B2 (en) 2006-02-24 2006-02-24 Covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047784A JP4353949B2 (en) 2006-02-24 2006-02-24 Covering member

Publications (2)

Publication Number Publication Date
JP2007222995A JP2007222995A (en) 2007-09-06
JP4353949B2 true JP4353949B2 (en) 2009-10-28

Family

ID=38545273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047784A Active JP4353949B2 (en) 2006-02-24 2006-02-24 Covering member

Country Status (1)

Country Link
JP (1) JP4353949B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003947B2 (en) * 2007-06-07 2012-08-22 住友電工ハードメタル株式会社 Surface coated cutting tool
JP4388582B2 (en) 2008-06-09 2009-12-24 株式会社神戸製鋼所 Hard coating layer and method for forming the same
JP5472678B2 (en) * 2009-03-30 2014-04-16 三菱マテリアル株式会社 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5436486B2 (en) * 2011-04-15 2014-03-05 株式会社豊田中央研究所 Sliding member

Also Published As

Publication number Publication date
JP2007222995A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP6687390B2 (en) Tool with TiAlCrSiN coating by PVD
CN107636190B (en) Cutting tool with multilayer arc PVD coating
US8623525B2 (en) Cutting tool
JP6386457B2 (en) TiAlN coated tool
JP4975193B2 (en) Cutting tools
JP4072155B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP4578382B2 (en) Hard coating and hard coating tool
JP2007001007A (en) Composite coating film for finishing hardened steel
JP2008240079A (en) Coated member
JP5348223B2 (en) Covering member
JP2009203489A (en) Coating member
JP2009203485A (en) Coating member
WO2013015302A1 (en) Cutting tool
JP2011011286A (en) Surface coated cutting tool
JP4405835B2 (en) Surface coated cutting tool
JP3963354B2 (en) Coated cutting tool
JP4353949B2 (en) Covering member
JP2009197268A (en) Coated member
JP2008238281A (en) Coated tool
JP4916021B2 (en) Film
JP4721281B2 (en) Oxidation resistant film and member coated with the film
CN114761606B (en) Cutting tool with hard coating film formed thereon
JP2005262355A (en) Surface-coated cutting tool
JP4080481B2 (en) Surface-coated cutting tool and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Ref document number: 4353949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350