JP4353339B2 - Induction gear quenching method for gears - Google Patents

Induction gear quenching method for gears Download PDF

Info

Publication number
JP4353339B2
JP4353339B2 JP14490698A JP14490698A JP4353339B2 JP 4353339 B2 JP4353339 B2 JP 4353339B2 JP 14490698 A JP14490698 A JP 14490698A JP 14490698 A JP14490698 A JP 14490698A JP 4353339 B2 JP4353339 B2 JP 4353339B2
Authority
JP
Japan
Prior art keywords
gear
tooth
gears
induction
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14490698A
Other languages
Japanese (ja)
Other versions
JPH11335726A (en
Inventor
佳孝 三阪
裕 清澤
隆雄 山崎
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP14490698A priority Critical patent/JP4353339B2/en
Publication of JPH11335726A publication Critical patent/JPH11335726A/en
Application granted granted Critical
Publication of JP4353339B2 publication Critical patent/JP4353339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歯車を高周波焼入れする高周波焼入方法、及びこの高周波焼入れに用いる冷却ジャケットに関する。
【0002】
【従来の技術】
歯車は、一般に、耐摩耗性や疲労強度などの機械的性質を向上させるために、その表面層が焼入れされて使用される。この場合、歯車の歯部のプロフィルに沿った焼入層を得る焼入れ(輪郭焼入れ)が疲労強度などの点から好ましい。この輪郭焼入れはガス浸炭焼入れで行えるが、ガス浸炭焼入れは時間もかかるし、また、焼入後の歯車に変形が多いこともある。そこで、輪郭焼入れを高周波焼入れで行うことがある。
【0003】
輪郭焼入れを高周波焼入れで行う場合、所定周波数で歯車を予熱し、その後、この所定周波数とは異なる周波数で歯車を焼入温度にまで加熱(本加熱)する。このように予熱と本加熱とで周波数が異なる場合、高周波電源が2台必要になり、その分、焼入装置に費用がかかる。
【0004】
予熱と本加熱とを同じ周波数で行うと1台の高周波電源で済むが、輪郭焼入れにならずに、歯部の全体が焼入れされることがある。1台の高周波電源を用いて予熱と本加熱とを同じ周波数にして歯車の輪郭焼入れを確実に行うために、高周波電力密度を限定して輪郭焼入れを行う技術が知られている(特公平2−14408号参照)。
【0005】
この技術では、モジュール3以下の小さな歯車が対象である。また、歯車を輪郭焼入れするに当っては、歯車の歯部を、A3変態点以上またはAcm変態点以上の温度に予熱し、一旦、A3変態点以下またはAcm変態点以下の温度にまで冷却し、その後、焼入れ温度にまで加熱して冷却する。
【0006】
【発明が解決しようとする課題】
上述したように、1台の高周波電源で歯車を輪郭焼入れする従来の技術では、モジュール3以下の小さな歯車が対象であり、モジュールの大きな歯車には適用できないという問題がある。また、歯車の歯部をA3変態点以上またはAcm変態点以上の温度に予熱した後に、一旦、A3変態点以下またはAcm変態点以下の温度にまで冷却し、その後、焼入れ温度にまで加熱して冷却するので、歯車が変態点を3度も通過することとなる。このため、焼入れ後の歯車に大きな変形が生じるおそれがあるという問題がある。
【0007】
本発明は、上記事情に鑑み、モジュールの大きな歯車であっても輪郭焼入れでき、しかも、焼入れ後の歯車に生じる歪みを低減した高周波焼入方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明の高周波焼入方法は、モジュールMの歯車を、
(1)所定周波数の交流電力でA1変態点未満の温度にまで予熱し、
(2)上記所定周波数であって、LogD=0.9−0.4M以上かつLogD=1.9−0.4M以下の範囲内の電力密度DkW/cm2 で焼入温度に誘導加熱し、
(3)冷却する
ことを特徴とするものである。
【0009】
ここで、上記歯車の歯部を加熱する際に、
(4)この歯車の歯部を歯幅方向両端側から熱伝導性部材で挟んだ状態で加熱してもよい。
【0010】
また、
(5)上記歯車を焼入温度に誘導加熱する際に、所定の回転速度で上記歯車を回転させながら誘導加熱し、
(6)上記歯車を冷却する際には、上記所定の回転速度よりも遅い回転速度で上記歯車を回転させながら該歯車に冷却液を噴射して該歯車を冷却してもよい。ここでいう、「遅い回転速度で歯車を回転させながら」という状態には、歯車を停止させた状態も含まれる。
【0011】
さらに、
(7)上記歯車を焼入温度に誘導加熱する際には100rpm以上2000rpm以下の範囲内の回転速度で上記歯車を回転し、
(8)上記歯車を冷却する際には100rpm未満の回転速度で上記歯車を回転させてもよい。
【0012】
上記目的を達成するための本発明の冷却ジャケットは、歯車を囲んだ状態でこの歯車に冷却液を噴射するリング状の冷却ジャケットにおいて、
(9)歯車の歯幅方向に並んだ、冷却液を噴射する複数の噴射孔
を備えたことを特徴とするものである。
【0013】
ここで、
(10)上記複数の噴射孔は、歯車の歯幅方向に一列に並んだものであり、
(11)この複数の噴射孔の列は、互いに隣接する歯先の間隔と同じ間隔で複数列形成されたものであってもよい。
【0014】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を説明する。
【0015】
図1から図3までを参照して、本発明の高周波焼入方法の一実施形態を説明する。
【0016】
図1は、本発明の高周波焼入方法の一実施形態の熱処理パターンを示すグラフである。図2は、熱伝導性部材を用いて歯車を歯幅方向両端側から挟んだ状態で誘導加熱している様子を示す模式図である。図3は、輪郭焼入れされた歯車の一部を模式的に示す断面図である。
【0017】
鋼製(例えば、JIS規格でS50C)の歯車10を高周波焼入れするに当っては誘導加熱コイル20を用いて、誘導加熱によって、歯車10をA1変態点未満の温度Tに予熱し、その後、焼入温度(オーステナイト化温度)TQにまで加熱(本加熱)し、その直後、歯車10を急冷する。ここで、歯車10のモジュールをMとすると、このモジュールMの歯車10を誘導加熱するときの電力密度D(kW/cm2 )は、LogD=0.9−0.4M以上かつLogD=1.9−0.4M以下の範囲内のものとした。また、予熱と本加熱の際の周波数は同一である。このように、歯車10のモジュールMと電力密度(kW/cm2 )を規定することにより、図3に示すように、歯車10を輪郭焼入れできる。しかも、歯車10が焼入温度に加熱されるまでには変態点を1度しか通過しないので、変態点を何度も通過する場合よりも焼入後の歪みを低減できる。
【0018】
また、歯車10を誘導加熱する際には、リング状の熱伝導性部材30を用いて歯車10の歯部を歯幅方向両端側から挟んだ状態で誘導加熱する。これにより、歯部の鋭角部12から熱が奪われるので、この鋭角部12が所定の焼入温度を超えて加熱される(オーバーヒートする)ことがない。また、温度Tへの予熱の際も、焼入温度TQまでの加熱の際も、高周波電源の周波数は同一のものとした。従って、1台の電源で済むので2台の電源を使う場合よりも設備費は安価で済む。
【0019】
上記した条件によって、歯車10を高周波焼入れすると、図3に示すように、歯部のプロフィルに沿った焼入層(硬化層)14が得られ、歯車10を輪郭焼入れできる。なお、歯車10の内部は、硬化されていないコア部16になっている。
【0020】
表1に、歯車のモジュールや電力密度を変えて歯車を誘導加熱した実験例を示す。表1において、「治具有り」と記載されているのは、上記した熱伝導性部材30を用いた場合であり、「治具無し」と記載されているのは、熱伝導性部材30を用いていない場合である。
【0021】
【表1】

Figure 0004353339
表1に示すように、モジュール3.0の歯車では、高周波電源(図示せず)の周波数を150kHzとして、予熱のときの電力密度と本加熱のときの電力密度を変えて実験した。予熱では、A1変態点未満の温度(例えば700℃)になる電力密度で歯車を誘導加熱した。本加熱では、焼入温度(例えば850℃)になる電力密度で歯車を誘導加熱した。本加熱の後、歯車に冷却液を噴射して歯車を急冷した。この結果、図3に示すように、歯車を輪郭焼入れすることができた。
図4にモジュールMと電力密度Dの関係を示す。
【0022】
この図は、モジュールMの歯車が輪郭焼入れされたときの電力密度Dを示すグラフであり、縦軸は電力密度D(kW/cm2 )を表わし、横軸はモジュールMを表わす。
【0023】
図4の菱形で表わした点のモジュールMと電力密度Dのときに、歯車を輪郭焼入れできた。また、電力密度D(kW/cm2 )がLogD=1.9−0.4Mを超えると、硬化層深さが深くなって輪郭焼入れができなかった。また、硬化層深さが深くなってこの焼入層の残留圧縮応力が低下し、疲労強度が低下した。一方、電力密度D(kW/cm2 )がLogD=0.9−0.4M未満のときは、加熱温度が不足して均一なマルテンサイト組織を得られず、このため、強度が低くなった。
【0024】
図5を参照して、焼入温度に加熱された歯車を冷却するときに使用する冷却ジャケットを説明する。
【0025】
図5(a)は、比較のために従来の冷却ジャケットを示す斜視図であり、(b)は、(a)に示す従来の冷却ジャケットで歯車を冷却している様子を示す模式図であり、(c)は、本発明の冷却ジャケットの一実施形態を示す斜視図である。
【0026】
図5(a)に示す従来のリング状の冷却ジャケット40では、内周面42に多数の噴射孔42aが形成されている。これら多数の噴射孔42aは、不規則的な位置もしくは無作為な位置に形成されている。このため、図5(b)に示すように、これら多数の噴射孔42aから噴射された冷却液42bが歯先10aに衝突したりしなかったりし、また、歯底10bに衝突したりしなかったりする。しかも、歯先10aに衝突した冷却液42bが跳ね返って、近くの噴射孔42aから噴射されたばかりの冷却液に衝突してこの冷却液を飛散させ、冷却効率を低下させることもある。同様に、歯面10cに衝突した冷却液42bが跳ね返って、近くの噴射孔42aから噴射されたばかりの冷却液に衝突してこの冷却液を飛散させ、冷却効率を低下させることもある。
【0027】
一方、図5(c)に示す本発明のリング状の冷却ジャケット50では、内周面52に規則正しく複数の噴射孔52aが形成されている。複数の噴射孔52aは、歯車(ここでは、ヘリカルギアである)10の歯幅方向(矢印A方向であり、図6参照)に一列に並んで複数列形成されている。各列の間隔は、歯車10の互いに隣接する歯先10aの間隔と同じ間隔であり、互いに隣接する歯底10bの間隔とも同じ間隔である。このため、後述する図6及び図7で説明するように、歯車10を回転させながら歯先10aと歯底10bに交互に冷却液を一様に噴射できる。この結果、歯車10が効率良く冷却され、一様な深さの焼入層14が得られる。さらに、このように効率良く冷却するので歯車10の各部分が均一に冷却されることとなり、焼入れ後の歯車10の変形が減少する。
【0028】
図6、図7を参照して、冷却ジャケット50を用いて歯車10を冷却する際に冷却液が歯車10に衝突する様子を説明する。
【0029】
図6は、回転している歯車の歯底に冷却ジャケットからの冷却液が衝突している様子を示す、(a)は、冷却ジャケットと歯車の一部を模式的に示す斜視図、(b)は、冷却ジャケットと歯車の全体を模式的に示す平面図である。図7は、回転している歯車の歯先に冷却ジャケットからの冷却液が衝突している様子を示す、(a)は、冷却ジャケットと歯車の一部を模式的に示す斜視図、(b)は、冷却ジャケットと歯車の全体を模式的に示す平面図である。これらの図では、図5に示す構成要素と同一の構成要素には同一の符号が付されている。
【0030】
上述したように、噴射孔52aは、歯車10の歯幅方向(矢印A方向)に一列に並んで複数列形成されている。ここでは、歯車10がヘリカルギア(はすば歯車、歯が斜めに形成されている歯車)の場合に対応する冷却ジャケット50を示しており、一列の噴射孔52aが、図7に示すように、リング状の冷却ジャケット50の中心軸に平行な直線54対して角度Θだけ傾斜して形成されている。また、噴射孔52aの各列の間隔は、歯車10の互いに隣接する歯先10aの間隔と同じ間隔であり、互いに隣接する歯底10bの間隔とも同じ間隔である。
【0031】
従って、図6に示すように、歯車10を回転させながら冷却ジャケット50でこの歯車10を冷却する際に、噴射孔52aの列が歯底10bに向き合う位置に移動してきたときは、噴射孔52aから噴射された冷却液52bは歯底10bにだけ直接に衝突する。このため、歯底10bが確実に効率良く冷却される。一方、歯車10が回転して、図7に示すように、噴射孔52aの列が歯先10aに向き合う位置に移動してきたときは、噴射孔52aから噴射された冷却液52bは歯先10aにだけ直接に衝突する。このため、歯先10aが確実に効率良く冷却される。以上の結果、回転している歯車10が効率良く冷却され、一様な深さの焼入層14を得られることとなる。さらに、このように効率良く冷却するので歯車10の各部分が均一に冷却されることとなり、焼入れ後の歯車10の変形が減少する。なお、歯車の歯が大きい場合は、歯底と歯面に冷却液を同時に噴射したほうが良いときがある。
【0032】
歯車10の加熱時間と回転速度を変えて、歯車10を高周波焼入れした実験例を説明する。
【0033】
この実験では、歯車10を誘導加熱する際に、加熱時間に応じて100rpm以上2000rpm以下の範囲内の回転速度で歯車10を回転させた。具体的には、歯車10を誘導加熱する加熱時間が短いとき、例えば加熱時間が0.1秒のときは、歯車10を1200rpmという高速で回転させて歯車10の表面層が均一に加熱されるようにした。一方、歯車10を誘導加熱する加熱時間が長いときは、歯車10を比較的低速で回転させて歯車10の表面層が均一に加熱されるようにした。
【0034】
また、歯車10を冷却する際には、30rpmの回転速度で歯車10を回転させながら、冷却ジャケット50を用いて歯車10を冷却した。このように、歯車10を冷却する際の回転速度を遅くした理由は、加熱時と同程度の回転速度で歯車10を回転させながら冷却すると、回転速度が速すぎるので冷却液が歯底10bに充分に到達せず、歯底10bを充分に冷却できないからである。この実験では、歯車10を冷却する際の歯車10の回転速度を遅くするので歯底10bまで充分に冷却できた。この結果、図3に示すように、歯車10に均一な厚さの焼入層14が形成されて歯車10を輪郭焼入れすることができた。なお、歯の形状によっては、歯車10を停止させて冷却したほうがよい場合もある。
【0035】
【発明の効果】
以上説明したように本発明の高周波焼入方法では、所定の周波数で歯車をA1変態点未満の温度に誘導加熱し、その後、焼入温度に誘導加熱するので一台の電源しか用いないで済む。このため、二台の電源を用いる場合に比べて一台の電源のコスト分が安くなる。また、焼入れされる歯車は、焼入温度に加熱されるまでに変態点を1度しか通過しない。このため、焼入れ後の歯車に生じる歪みを低減できる。さらに、焼入温度まで誘導加熱する際に、上記した所定範囲内の電力密度(kW/cm2 )で誘導加熱するので、歯車を輪郭焼入れできる。
【0036】
また、歯車の歯部を加熱する際に、この歯部を歯幅方向両端側から熱伝導性部材で挟んだ状態でこの歯部を加熱する場合は、歯部のうち歯幅方向両端部に形成されている鋭角部分が焼入温度を超えて加熱されることを防止できる。
【0037】
ここで、上記歯車を焼入温度に誘導加熱する際に、所定の回転速度でこの歯車を回転させながら誘導加熱し、上記歯車を冷却する際には、上記所定の回転速度よりも遅い回転速度でこの歯車を回転させながらこの歯車に冷却液を噴射して冷却する場合は、加熱時と同じ回転速度で歯車を回転させながら冷却すると回転速度が速過ぎるので冷却液が歯底に充分に到達せずに歯底を充分に冷却できないが、冷却時には歯車の回転速度を遅くするので歯底まで充分に冷却できる。
【0038】
さらに、上記歯車を焼入温度に誘導加熱する際には100rpm以上2000rpm以下の範囲内の回転速度でこの歯車を回転し、上記歯車を冷却する際には100rpm未満の回転速度でこの歯車を回転させる場合は、いっそう確実に歯底まで充分に冷却できる。
【0039】
また、本発明の冷却ジャケットによれば、噴射孔が歯幅方向に並んでいるので、冷却液を歯先と歯底に一様に噴射でき、歯車を効率良く冷却できる。
【0040】
さらに、上記複数の噴射孔が、歯車の歯幅方向に一列に並んだものであり、しかも、この複数の噴射孔の列は、互いに隣接する歯先の間隔と同じ間隔で複数列形成されたものである場合は、互いに隣接する歯先の間隔と同じ間隔で噴射孔の列が複数列形成されているので、歯車を回転させながら歯先と歯底に交互に冷却液を一様に噴射でき、歯車をいっそう効率良く冷却できる。
【図面の簡単な説明】
【図1】本発明の高周波焼入方法の一実施形態の熱処理パターンを示すグラフである。
【図2】熱伝導性部材を用いて歯車を歯幅方向両端側から挟んだ状態で誘導加熱している様子を示す模式図である。
【図3】輪郭焼入れされた歯車の一部を模式的に示す断面図である。
【図4】モジュールMの歯車が輪郭焼入れされたときの電力密度Dを示すグラフである。
【図5】(a)は、比較のために従来の冷却ジャケットを示す斜視図であり、(b)は、(a)に示す従来の冷却ジャケットで歯車を冷却している様子を示す模式図であり、(c)は、本発明の冷却ジャケットの一実施形態を示す斜視図である。
【図6】回転している歯車の歯底に冷却ジャケットからの冷却液が衝突している様子を示す、(a)は、冷却ジャケットと歯車の一部を模式的に示す斜視図、(b)は、冷却ジャケットと歯車の全体を模式的に示す平面図である。
【図7】回転している歯車の歯先に冷却ジャケットからの冷却液が衝突している様子を示す、(a)は、冷却ジャケットと歯車の一部を模式的に示す斜視図、(b)は、冷却ジャケットと歯車の全体を模式的に示す平面図である。
【符号の説明】
10 歯車
10a 歯先
10b 歯幅
50 冷却ジャケット
A 歯幅方向[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction hardening method for induction hardening a gear and a cooling jacket used for the induction hardening.
[0002]
[Prior art]
In general, gears are used with their surface layers quenched in order to improve mechanical properties such as wear resistance and fatigue strength. In this case, quenching (contour quenching) for obtaining a hardened layer along the profile of the gear teeth is preferable from the viewpoint of fatigue strength. Although this contour quenching can be performed by gas carburizing and quenching, gas carburizing and quenching takes time, and the gears after quenching may be often deformed. Therefore, contour quenching may be performed by induction quenching.
[0003]
When contour quenching is performed by induction hardening, the gear is preheated at a predetermined frequency, and then the gear is heated to a quenching temperature (main heating) at a frequency different from the predetermined frequency. As described above, when the preheating and the main heating have different frequencies, two high-frequency power supplies are required, and the quenching apparatus is expensive accordingly.
[0004]
If preheating and main heating are performed at the same frequency, only one high-frequency power source is required, but the entire tooth portion may be quenched without being subjected to contour quenching. In order to reliably perform contour quenching of gears by using one high-frequency power source and preheating and main heating at the same frequency, a technology for performing contour quenching with limited high-frequency power density is known (Japanese Patent Publication No. 2). -14408).
[0005]
In this technique, small gears of module 3 or less are targeted. In addition, when quenching the gear, the gear teeth are preheated to a temperature above the A3 transformation point or above the Acm transformation point and once cooled to a temperature below the A3 transformation point or below the Acm transformation point. Then, it is heated to the quenching temperature and cooled.
[0006]
[Problems to be solved by the invention]
As described above, the conventional technique in which a gear is contour-quenched with a single high-frequency power source is intended for small gears of modules 3 and below, and cannot be applied to large gears of modules. Also, after pre-heating the gear teeth to a temperature above the A3 transformation point or above the Acm transformation point, the gear teeth are once cooled to a temperature below the A3 transformation point or below the Acm transformation point, and then heated to the quenching temperature. Since it cools, the gear will pass through the transformation point three times. For this reason, there exists a problem that there exists a possibility that a big deformation | transformation may arise in the gearwheel after hardening.
[0007]
In view of the above circumstances, an object of the present invention is to provide an induction hardening method that can contour harden even a gear having a large module and reduce distortion generated in the gear after quenching.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the induction hardening method of the present invention includes the gears of the module M,
(1) Preheat to a temperature below the A1 transformation point with AC power of a predetermined frequency,
(2) Inductively heating to the quenching temperature at a power density DkW / cm 2 within the range of Log D = 0.9−0.4M and Log D = 1.9−0.4M at the predetermined frequency.
(3) It is characterized by cooling.
[0009]
Here, when heating the gear teeth,
(4) You may heat in the state which pinched the tooth | gear part of this gearwheel with the heat conductive member from the tooth width direction both ends.
[0010]
Also,
(5) When the gear is induction-heated to a quenching temperature, the gear is induction-heated while rotating at a predetermined rotation speed,
(6) When cooling the gear, the gear may be cooled by spraying a cooling liquid onto the gear while rotating the gear at a rotational speed lower than the predetermined rotational speed. Here, the state of “while rotating the gear at a low rotational speed” includes a state where the gear is stopped.
[0011]
further,
(7) When the gear is induction-heated to the quenching temperature, the gear is rotated at a rotation speed within a range of 100 rpm to 2000 rpm,
(8) When cooling the gear, the gear may be rotated at a rotational speed of less than 100 rpm.
[0012]
In order to achieve the above object, the cooling jacket of the present invention is a ring-shaped cooling jacket that injects a cooling liquid onto the gear while surrounding the gear.
(9) A plurality of injection holes for injecting the coolant are arranged in the gear width direction of the gear.
[0013]
here,
(10) The plurality of injection holes are arranged in a line in the tooth width direction of the gear,
(11) The rows of the plurality of injection holes may be formed in a plurality of rows at the same intervals as the intervals between the adjacent tooth tips.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
An embodiment of the induction hardening method of the present invention will be described with reference to FIGS.
[0016]
FIG. 1 is a graph showing a heat treatment pattern of an embodiment of the induction hardening method of the present invention. FIG. 2 is a schematic diagram showing a state in which induction heating is performed in a state where a gear is sandwiched from both ends in the tooth width direction using a heat conductive member. FIG. 3 is a cross-sectional view schematically showing a part of a contour-hardened gear.
[0017]
In induction hardening of the gear 10 made of steel (for example, S50C in JIS standard), the induction heating coil 20 is used to preheat the gear 10 to a temperature T lower than the A1 transformation point by induction heating. Heating (main heating) to the incoming temperature (austenitizing temperature) TQ, and immediately after that, the gear 10 is rapidly cooled. Here, when the module of the gear 10 is M, the power density D (kW / cm 2 ) when induction heating the gear 10 of the module M is LogD = 0.9−0.4M or more and LogD = 1. It should be within the range of 9-0.4M or less. Moreover, the frequency at the time of preheating and this heating is the same. Thus, by defining the module M of the gear 10 and the power density (kW / cm 2 ), the gear 10 can be contour-quenched as shown in FIG. Moreover, since the transformation point passes only once until the gear 10 is heated to the quenching temperature, distortion after quenching can be reduced as compared with the case where the transformation point is passed many times.
[0018]
In addition, when the gear 10 is induction-heated, the ring-shaped heat conductive member 30 is used to induction-heat the tooth portion of the gear 10 sandwiched from both ends in the tooth width direction. Thereby, since heat is taken from the acute angle portion 12 of the tooth portion, the acute angle portion 12 is not heated (overheated) beyond a predetermined quenching temperature. In addition, the frequency of the high-frequency power source is the same for both preheating to the temperature T and heating to the quenching temperature TQ. Accordingly, since only one power source is required, the equipment cost is lower than when two power sources are used.
[0019]
When the gear 10 is induction hardened under the above-described conditions, as shown in FIG. 3, a hardened layer (hardened layer) 14 along the profile of the tooth portion is obtained, and the gear 10 can be contour hardened. In addition, the inside of the gearwheel 10 is the core part 16 which is not hardened.
[0020]
Table 1 shows an experimental example in which the gear is induction-heated by changing the gear module and power density. In Table 1, “with jig” is described when the above-described thermally conductive member 30 is used, and “without jig” is described with the thermally conductive member 30 being used. This is the case when it is not used.
[0021]
[Table 1]
Figure 0004353339
As shown in Table 1, with the gear of module 3.0, the frequency of a high-frequency power source (not shown) was set to 150 kHz, and the power density during preheating and the power density during main heating were changed. In the preheating, the gear was induction-heated at a power density that became a temperature lower than the A1 transformation point (eg, 700 ° C.). In the main heating, the gears were induction-heated at a power density at a quenching temperature (for example, 850 ° C.). After the main heating, the gear was quenched by spraying the coolant onto the gear. As a result, as shown in FIG. 3, it was possible to quench the contour of the gear.
FIG. 4 shows the relationship between the module M and the power density D.
[0022]
This figure is a graph showing the power density D when the gears of the module M are contour-hardened, the vertical axis represents the power density D (kW / cm 2 ), and the horizontal axis represents the module M.
[0023]
In the case of the module M and the power density D indicated by the rhombuses in FIG. Further, when the power density D (kW / cm 2 ) exceeded Log D = 1.9-0.4M, the depth of the hardened layer was increased and contour quenching was not possible. Further, the depth of the hardened layer was increased, the residual compressive stress of the quenched layer was lowered, and the fatigue strength was lowered. On the other hand, when the power density D (kW / cm 2 ) is less than Log D = 0.9−0.4M, the heating temperature is insufficient and a uniform martensite structure cannot be obtained, and therefore the strength is lowered. .
[0024]
With reference to FIG. 5, the cooling jacket used when cooling the gear heated to the quenching temperature will be described.
[0025]
FIG. 5A is a perspective view showing a conventional cooling jacket for comparison, and FIG. 5B is a schematic view showing a state where a gear is cooled by the conventional cooling jacket shown in FIG. (C) is a perspective view which shows one Embodiment of the cooling jacket of this invention.
[0026]
In the conventional ring-shaped cooling jacket 40 shown in FIG. 5A, a large number of injection holes 42 a are formed on the inner peripheral surface 42. These many injection holes 42a are formed at irregular positions or random positions. Therefore, as shown in FIG. 5 (b), the coolant 42b sprayed from the numerous spray holes 42a does not collide with the tooth tip 10a, nor does it collide with the tooth bottom 10b. Or In addition, the coolant 42b that has collided with the tooth tip 10a rebounds, collides with the coolant just injected from the nearby injection hole 42a, scatters the coolant, and lowers the cooling efficiency. Similarly, the cooling liquid 42b that has collided with the tooth surface 10c may rebound, collide with the cooling liquid just injected from the nearby injection hole 42a, scatter the cooling liquid, and reduce cooling efficiency.
[0027]
On the other hand, in the ring-shaped cooling jacket 50 of the present invention shown in FIG. 5 (c), a plurality of injection holes 52 a are regularly formed on the inner peripheral surface 52. The plurality of injection holes 52a are formed in a plurality of rows in a row in the tooth width direction of the gear (here, a helical gear) 10 (in the direction of arrow A, see FIG. 6). The interval between the rows is the same as the interval between the adjacent tooth tips 10a of the gear 10, and the same interval as the interval between the adjacent tooth bottoms 10b. For this reason, as will be described later with reference to FIGS. 6 and 7, the coolant can be uniformly sprayed alternately on the tooth tip 10 a and the tooth bottom 10 b while rotating the gear 10. As a result, the gear 10 is efficiently cooled, and a hardened layer 14 having a uniform depth is obtained. Further, since the cooling is efficiently performed in this way, each part of the gear 10 is uniformly cooled, and the deformation of the gear 10 after quenching is reduced.
[0028]
With reference to FIGS. 6 and 7, how the cooling liquid collides with the gear 10 when the gear 10 is cooled using the cooling jacket 50 will be described.
[0029]
FIG. 6 shows a state in which the coolant from the cooling jacket collides with the bottom of the rotating gear, (a) is a perspective view schematically showing a part of the cooling jacket and the gear, (b) ) Is a plan view schematically showing the entire cooling jacket and gears. FIG. 7 shows a state in which the coolant from the cooling jacket collides with the tooth tips of the rotating gear, (a) is a perspective view schematically showing a part of the cooling jacket and the gear, (b) ) Is a plan view schematically showing the entire cooling jacket and gears. In these drawings, the same components as those shown in FIG. 5 are denoted by the same reference numerals.
[0030]
As described above, the injection holes 52a are formed in a plurality of rows in a row in the tooth width direction (arrow A direction) of the gear 10. Here, the cooling jacket 50 corresponding to the case where the gear 10 is a helical gear (helical gear, a gear whose teeth are formed obliquely) is shown, and a row of injection holes 52a are as shown in FIG. The ring-shaped cooling jacket 50 is formed so as to be inclined by an angle Θ with respect to a straight line 54 parallel to the central axis of the ring-shaped cooling jacket 50. Further, the interval between the rows of the injection holes 52a is the same as the interval between the tooth tips 10a adjacent to each other of the gear 10, and the same interval as the interval between the adjacent tooth bottoms 10b.
[0031]
Accordingly, as shown in FIG. 6, when the gear 10 is rotated by the cooling jacket 50 while the gear 10 is rotated, when the row of the injection holes 52a moves to a position facing the tooth bottom 10b, the injection holes 52a The cooling liquid 52b sprayed from directly collides only with the tooth bottom 10b. For this reason, the tooth bottom 10b is reliably cooled efficiently. On the other hand, when the gear 10 rotates and the row of the injection holes 52a moves to a position facing the tooth tip 10a as shown in FIG. 7, the coolant 52b injected from the injection hole 52a is applied to the tooth tip 10a. Only collide directly. For this reason, the tooth tip 10a is reliably cooled efficiently. As a result, the rotating gear 10 is efficiently cooled, and a hardened layer 14 having a uniform depth can be obtained. Further, since the cooling is efficiently performed in this way, each part of the gear 10 is uniformly cooled, and the deformation of the gear 10 after quenching is reduced. In addition, when the gear teeth are large, it may be better to spray the coolant simultaneously on the tooth bottom and the tooth surface.
[0032]
An experimental example in which the gear 10 is induction-hardened by changing the heating time and the rotation speed of the gear 10 will be described.
[0033]
In this experiment, when the gear 10 was induction-heated, the gear 10 was rotated at a rotational speed within a range of 100 rpm to 2000 rpm depending on the heating time. Specifically, when the heating time for induction heating of the gear 10 is short, for example, when the heating time is 0.1 second, the gear 10 is rotated at a high speed of 1200 rpm to uniformly heat the surface layer of the gear 10. I did it. On the other hand, when the heating time for induction heating of the gear 10 is long, the gear 10 is rotated at a relatively low speed so that the surface layer of the gear 10 is uniformly heated.
[0034]
Further, when the gear 10 was cooled, the gear 10 was cooled using the cooling jacket 50 while rotating the gear 10 at a rotation speed of 30 rpm. As described above, the reason why the rotational speed when cooling the gear 10 is slowed is that if the gear 10 is cooled while rotating at the same rotational speed as that during heating, the rotational speed is too high, so that the coolant enters the tooth bottom 10b. This is because the tooth bottom 10b cannot be sufficiently cooled. In this experiment, since the rotational speed of the gear 10 when the gear 10 is cooled is decreased, the gear 10 can be sufficiently cooled to the tooth bottom 10b. As a result, as shown in FIG. 3, a hardened layer 14 having a uniform thickness was formed on the gear 10 and the gear 10 was contour hardened. Depending on the shape of the teeth, it may be better to stop and cool the gear 10.
[0035]
【The invention's effect】
As described above, in the induction hardening method of the present invention, the gear is induction-heated to a temperature below the A1 transformation point at a predetermined frequency and then induction-heated to the quenching temperature, so that only one power source is used. . For this reason, compared with the case where two power supplies are used, the cost for one power supply is reduced. In addition, the gear to be quenched only passes through the transformation point once before being heated to the quenching temperature. For this reason, the distortion which arises in the gear after hardening can be reduced. Furthermore, when induction heating is performed up to the quenching temperature, induction heating is performed at the power density (kW / cm 2 ) within the predetermined range described above, so that the gear can be quenched by contour.
[0036]
In addition, when heating the tooth portion of the gear in a state where the tooth portion is sandwiched between the both ends in the width direction of the gear by the heat conductive member, the both ends in the width direction of the tooth portion are heated. It can prevent that the acute angle part currently formed exceeds the quenching temperature and is heated.
[0037]
Here, when the gear is induction-heated to the quenching temperature, the gear is rotated at a predetermined rotation speed while being induction-heated, and when the gear is cooled, the rotation speed is lower than the predetermined rotation speed. In this case, when cooling the gear by rotating the gear and cooling it with the gear, if the gear is rotated while cooling at the same rotation speed as the heating, the rotation speed will be too high and the coolant will reach the tooth bottom sufficiently. The tooth bottom cannot be sufficiently cooled without cooling, but since the rotational speed of the gear is reduced during cooling, the tooth bottom can be sufficiently cooled.
[0038]
Further, when the gear is induction-heated to the quenching temperature, the gear is rotated at a rotational speed within a range of 100 rpm to 2000 rpm, and when the gear is cooled, the gear is rotated at a rotational speed of less than 100 rpm. In this case, it is possible to sufficiently cool the tooth bottom more reliably.
[0039]
Further, according to the cooling jacket of the present invention, since the injection holes are arranged in the tooth width direction, the cooling liquid can be uniformly injected to the tooth tip and the tooth bottom, and the gear can be efficiently cooled.
[0040]
Further, the plurality of injection holes are arranged in a row in the gear width direction of the gear, and the plurality of injection hole rows are formed in a plurality of rows at the same intervals as the intervals between adjacent tooth tips. In the case of a nozzle, a plurality of rows of injection holes are formed at the same interval as the interval between adjacent tooth tips, so that the coolant is uniformly sprayed alternately on the tooth tips and the tooth bottom while rotating the gears. The gears can be cooled more efficiently.
[Brief description of the drawings]
FIG. 1 is a graph showing a heat treatment pattern of an embodiment of the induction hardening method of the present invention.
FIG. 2 is a schematic view showing a state in which induction heating is performed with a gear sandwiched from both ends in the tooth width direction using a heat conductive member.
FIG. 3 is a cross-sectional view schematically showing a part of a contour-hardened gear.
FIG. 4 is a graph showing the power density D when the gears of the module M are contour-quenched.
5A is a perspective view showing a conventional cooling jacket for comparison, and FIG. 5B is a schematic view showing a state where a gear is cooled by the conventional cooling jacket shown in FIG. 5A. (C) is a perspective view showing an embodiment of the cooling jacket of the present invention.
6A and 6B show a state in which cooling liquid from a cooling jacket collides with a tooth bottom of a rotating gear, FIG. 6A is a perspective view schematically showing a part of the cooling jacket and the gear; ) Is a plan view schematically showing the entire cooling jacket and gears.
7A and 7B show a state in which cooling liquid from a cooling jacket collides with a tooth tip of a rotating gear, FIG. 7A is a perspective view schematically showing a part of the cooling jacket and the gear; ) Is a plan view schematically showing the entire cooling jacket and gears.
[Explanation of symbols]
10 gear 10a tooth tip 10b tooth width 50 cooling jacket A tooth width direction

Claims (1)

歯車の高周波輪郭焼入方法において、歯部を歯幅方向両端側から熱伝導性部材で挟んだ状態で歯車を誘導加熱コイル内に装入し、所定周波数の交流電力でA1変態点未満の温度にまで予熱し、歯車のモジュールをMとしたときLogD=0.9−0.4M以上かつLogD=1.9−0.4M以下の範囲内の電力密度DkW/cmで、100rpm以上2000rpm以下の範囲内の回転速度で前記歯車を回転しつつ前記誘導加熱コイル内で前記所定周波数の交流電力により焼入温度に加熱し、100rpm未満の回転速度で前記歯車を回転させつつ噴射冷却することを特徴とする歯車の高周波輪郭焼入方法。 In the high-frequency contour quenching method for gears, the gear is inserted into the induction heating coil with the tooth part sandwiched between the heat conductive members from both ends in the tooth width direction, and the temperature is less than the A1 transformation point with AC power of a predetermined frequency. When the gear module is M , the power density is DkW / cm 2 in the range of Log D = 0.9-0.4M or more and Log D = 1.9-0.4M or less, and 100 rpm or more and 2000 rpm or less. The induction heating coil is heated to the quenching temperature by the alternating-current power of the predetermined frequency while rotating the gear at a rotation speed within the range, and the injection cooling is performed while rotating the gear at a rotation speed of less than 100 rpm. A high-frequency contour quenching method for gears .
JP14490698A 1998-05-26 1998-05-26 Induction gear quenching method for gears Expired - Lifetime JP4353339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14490698A JP4353339B2 (en) 1998-05-26 1998-05-26 Induction gear quenching method for gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14490698A JP4353339B2 (en) 1998-05-26 1998-05-26 Induction gear quenching method for gears

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007149949A Division JP4643614B2 (en) 2007-06-06 2007-06-06 Induction gear quenching method for gears

Publications (2)

Publication Number Publication Date
JPH11335726A JPH11335726A (en) 1999-12-07
JP4353339B2 true JP4353339B2 (en) 2009-10-28

Family

ID=15373057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14490698A Expired - Lifetime JP4353339B2 (en) 1998-05-26 1998-05-26 Induction gear quenching method for gears

Country Status (1)

Country Link
JP (1) JP4353339B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622074B2 (en) * 2010-02-22 2014-11-12 日立金属株式会社 Manufacturing method of composite magnetic member
JP2022155722A (en) * 2021-03-31 2022-10-14 高周波熱錬株式会社 Cooling jacket and hardening device
CN113584277A (en) * 2021-08-11 2021-11-02 上海格尔汽车科技发展有限公司 Steering engine rack quenching device and method

Also Published As

Publication number Publication date
JPH11335726A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
KR100303166B1 (en) Method for heat-treating a hollow cylindrical workpiece
US4855551A (en) Method and apparatus for hardening gears
JP4643614B2 (en) Induction gear quenching method for gears
JP4353339B2 (en) Induction gear quenching method for gears
JP2016011446A (en) Heat treatment system and heat treatment method
JP2004218064A (en) Partial heat treatment method for member to be heat-treated and apparatus therefor
JP5553440B2 (en) Heat treatment method and heat treatment apparatus
JP2001510509A (en) Method of hardening a camshaft and linear inductor for performing the method
JP6519282B2 (en) Ring gear manufacturing method and ring gear
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP5390868B2 (en) Induction heating coil
JP2004131823A (en) Method and apparatus for induction-hardening rack bar
JPH06102809B2 (en) Induction moving quenching and tempering device
KR20110067980A (en) Heat treatment method of pressing die
JP3698883B2 (en) Induction hardening method and cooling jacket
JP2002356719A (en) Induction hardening method for cam shaft
JP3542229B2 (en) Tempering method of steel
JP6009708B2 (en) Method for surface hardening of steel parts
JP3230822B2 (en) Gear quenching method
JP5855338B2 (en) Induction hardening method and manufacturing method of products made of steel
JP2007231367A (en) Heat treatment method and device
JP3270394B2 (en) Apparatus and method for single-side quenching of flat ring-shaped workpiece
JP3542228B2 (en) How to harden steel
JPH0144770B2 (en)
JP2017036507A (en) Method of performing surface hardening to steel component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070613

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term