JP4352133B2 - Adhesion method for adjacent optical components - Google Patents

Adhesion method for adjacent optical components Download PDF

Info

Publication number
JP4352133B2
JP4352133B2 JP2006035356A JP2006035356A JP4352133B2 JP 4352133 B2 JP4352133 B2 JP 4352133B2 JP 2006035356 A JP2006035356 A JP 2006035356A JP 2006035356 A JP2006035356 A JP 2006035356A JP 4352133 B2 JP4352133 B2 JP 4352133B2
Authority
JP
Japan
Prior art keywords
optical components
compound
silica glass
gap
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006035356A
Other languages
Japanese (ja)
Other versions
JP2007211328A (en
Inventor
昌幸 大越
成美 井上
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2006035356A priority Critical patent/JP4352133B2/en
Publication of JP2007211328A publication Critical patent/JP2007211328A/en
Application granted granted Critical
Publication of JP4352133B2 publication Critical patent/JP4352133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、隣接した光学部品の接着法に係り、とくに化学気相成長(chemical vapor
deposition;CVD)を利用した隣接した光学部品の接着法に関する。
The present invention relates to a method for bonding adjacent optical components, and more particularly to chemical vapor deposition.
The present invention relates to a method of adhering adjacent optical components using deposition (CVD).

シリカガラス微小球とその整列構造は、光回路やセンサー等、先端的光デバイス製作に有用である。しかし、微小球列に光を伝送させる場合、ウィスパリング・ギャラリー・モード(Wispering Gallery Mode)に代表されるように、微小球同士の接触が重要であり、振動等により隙間が形成されては安定な光伝送は実現できない。そこで最近、基板にV字溝を予め形成し、そこに微小球を整列させることにより、ウィスパリング・ギャラリー・モードを介した光遅延回路が実現している。しかし現状では、いずれの手法においても、微小球同士の接着がされていないため、使用には制限がありそれが実用化への障害となり得る。   Silica glass microspheres and their alignment structures are useful for manufacturing advanced optical devices such as optical circuits and sensors. However, when transmitting light to a microsphere array, contact between microspheres is important, as represented by Wispering Gallery Mode, and it is stable if gaps are formed due to vibration or the like. Optical transmission cannot be realized. Therefore, recently, an optical delay circuit via a whispering gallery mode has been realized by previously forming a V-shaped groove on a substrate and aligning microspheres there. However, at present, in any of the methods, since the microspheres are not bonded to each other, the use is limited, and this can be an obstacle to practical use.

従来の方法では困難とされてきた、微小球列を代表とする隣接した光学部品同士を接着することを可能にする、光学部品の接着法の確立を課題とする。   An object of the present invention is to establish an optical component bonding method that makes it possible to bond adjacent optical components represented by a microsphere array, which has been difficult in the conventional method.

本発明は、上記の点に鑑み、微小球列等の隣接した光学部品を相互に確実に接着可能な接着法を提供することを目的とする。   In view of the above points, an object of the present invention is to provide an adhesion method capable of reliably adhering adjacent optical components such as microsphere arrays to each other.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明の第1の態様に係る隣接した光学部品の接着法は、材料を球状光学部品同士の間隙に化学気相成長させることを特徴としている。 In order to achieve the above object, the adhering method for adjacent optical components according to the first aspect of the present invention is characterized by chemical vapor deposition of a material in a gap between spherical optical components.

本発明の第2の態様に係る隣接した光学部品の接着法は、球状光学部品と同一もしくは類似の材料、あるいは同一もしくは類似の屈折率の材料を、前記光学部品同士の間隙に化学気相成長させることを特徴としている。 The adhering method for adjacent optical components according to the second aspect of the present invention is the chemical vapor deposition method in which the same or similar material as the spherical optical component or the material having the same or similar refractive index is formed in the gap between the optical components. It is characterized by letting.

本発明の第3の態様に係る隣接した光学部品の接着法は、Si−O−Si結合を含む化合物に、400nm以下の波長域を含む光を照射し、前記化合物から放出される気体を利用して、球状光学部品同士の間隙に酸化ケイ素膜を形成することを特徴としている。 In the adhering method of adjacent optical components according to the third aspect of the present invention, a compound containing a Si—O—Si bond is irradiated with light containing a wavelength region of 400 nm or less, and a gas released from the compound is used. Thus, a silicon oxide film is formed in the gap between the spherical optical components.

本発明の第4の態様に係る隣接した光学部品の接着法は、Si−O−Si結合を含む化合物上に、隣接した球状光学部品を配置し、400nm以下の波長域を含む光を照射して、Si−O−Si結合を含む化合物上に前記光学部品を接合するとともに、前記化合物から放出される気体を利用して、前記光学部品同士の間隙に酸化ケイ素膜を形成することを特徴としている。 In the adhering method for adjacent optical components according to the fourth aspect of the present invention, adjacent spherical optical components are arranged on a compound containing Si—O—Si bonds, and light containing a wavelength region of 400 nm or less is irradiated. The optical component is bonded onto a compound containing a Si-O-Si bond, and a silicon oxide film is formed in a gap between the optical components using a gas released from the compound. Yes.

本発明の第5の態様に係る隣接した光学部品の接着法は、Si−O−Si結合を含む化合物と、形成膜の屈折率を変化させるための元素を含む材料とに、400nm以下の波長域を含む光を同時に又は個別に照射し、前記化合物及び材料から放出される気体を利用して、球状光学部品同士の間隙に屈折率を変化させるための元素を含む酸化ケイ素膜を形成することを特徴としている。 The adhering method for adjacent optical components according to the fifth aspect of the present invention is based on a compound containing a Si—O—Si bond and a material containing an element for changing the refractive index of the formed film at a wavelength of 400 nm or less. Forming a silicon oxide film containing an element for changing a refractive index in a gap between spherical optical components by irradiating light including a region simultaneously or individually and utilizing a gas released from the compound and the material It is characterized by.

本発明の第6の態様に係る隣接した光学部品の接着法は、Si−O−Si結合を含む化合物上に、隣接した球状光学部品を配置し、前記化合物と、形成膜の屈折率を変化させるための元素を含む材料とに、400nm以下の波長域を含む光を同時に又は個別に照射して、前記化合物上に前記光学部品を接合するとともに、前記化合物及び材料から放出される気体を利用して、前記光学部品同士の間隙に屈折率を変化させるための元素を含む酸化ケイ素膜を形成することを特徴としている。 In the adhering method of adjacent optical components according to the sixth aspect of the present invention, adjacent spherical optical components are arranged on a compound containing Si—O—Si bond, and the refractive index of the compound and the formed film is changed. The material containing the element to be irradiated is irradiated with light including a wavelength region of 400 nm or less simultaneously or individually to join the optical component on the compound and use the gas released from the compound and the material. A silicon oxide film containing an element for changing the refractive index is formed in the gap between the optical components.

前記第3又は4の態様において、前記化合物及び前記光学部品が減圧した容器内に設置されているとよい。   In the third or fourth aspect, the compound and the optical component may be installed in a decompressed container.

前記第5又は6の態様において、前記化合物、前記材料及び前記光学部品が減圧した容器内に設置されているとよい。   In the fifth or sixth aspect, the compound, the material and the optical component may be placed in a decompressed container.

本発明によれば、従来困難とされてきた微小球列を代表とする隣接した光学部品同士を、任意の材料(特に好ましくは光学部品と同一もしくは類似の材料、あるいは同一もしくは類似の屈折率の材料)を前記光学部品同士の間隙に化学気相成長させることで接着することを可能にする光学部品の接着法が確立でき、光デバイス製作の基盤技術として利用可能である等、フォトニクスにおいて必要不可欠な技術となる。また本発明は、これら光工学の分野にとどまらず、今後マイクロ・ナノマシーニング技術を利用して発展するデバイス製作の分野に多大に利用可能である。   According to the present invention, adjacent optical components represented by a microsphere array, which has conventionally been considered difficult, can be made of any material (particularly preferably the same or similar material as the optical component, or the same or similar refractive index). It is indispensable in photonics, for example, to establish a bonding method for optical components that can be bonded by chemical vapor deposition in the gaps between the optical components, and to be used as a basic technology for optical device manufacturing. Technology. The present invention is not limited to these fields of optical engineering, but can be used greatly in the field of device fabrication that will be developed using micro / nano machining technology in the future.

以下、本発明を実施するための最良の形態として、隣接した光学部品の接着法の実施の形態を図面に従って説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an adhering method for adjacent optical components will be described below with reference to the drawings as the best mode for carrying out the present invention.

図1は本発明に係る隣接した光学部品の接着法の実施の形態1を示す。この図において、真空容器1内は真空排気手段により実質的に真空状態に減圧されており、この内部にSi−O−Si結合を含む化合物としてのシリコーンゴム10及びシリコーンゴム10上に互いに隣接するように配列された光学部品としての多数のシリカガラス微小球20が収容されている。ここで、光学部品とは、光の透過、屈折又は反射機能の少なくともいずれかを有するものであり、シリカガラス微小球20は光を透過させる材質である。また、ここで、「隣接」とは、微小球が相互に接触していることに限定されず、相互に近接している状態も含むものとする。   FIG. 1 shows Embodiment 1 of the adhering method for adjacent optical components according to the present invention. In this figure, the inside of the vacuum vessel 1 is depressurized to a substantially vacuum state by a vacuum evacuation means, and the silicone rubber 10 as a compound containing a Si—O—Si bond therein and the silicone rubber 10 are adjacent to each other. A large number of silica glass microspheres 20 as optical components arranged in this manner are accommodated. Here, the optical component has at least one of light transmission, refraction, and reflection functions, and the silica glass microsphere 20 is a material that transmits light. Here, “adjacent” is not limited to the fact that the microspheres are in contact with each other, but includes a state in which they are close to each other.

前記真空容器1には外部より400nm以下(紫外線及びそれよりやや長い波長)の波長域を含む光をシリコーンゴム10及びシリカガラス微小球20に照射するために、MgF入射窓2が設けられている。前記400nm以下の波長域を含む光をシリコーンゴム10及びシリカガラス微小球20に照射する露光光源としては例えばFレーザーが使用でき、Fレーザー使用の場合、波長157nmのレーザー光がシリコーンゴム10及びシリカガラス微小球20に照射されることになる。なお、400nm以下の波長域を含まない光照射では、シリコーンゴム10からの低分子量シリコーンガスの放出が不十分であり好ましくない。 The vacuum container 1 is provided with an MgF 2 incident window 2 for irradiating the silicone rubber 10 and the silica glass microspheres 20 with light including a wavelength region of 400 nm or less (ultraviolet rays and slightly longer wavelengths) from the outside. Yes. As an exposure light source for irradiating the silicone rubber 10 and the silica glass microspheres 20 with light having a wavelength range of 400 nm or less, for example, an F 2 laser can be used. In the case of using an F 2 laser, a laser beam having a wavelength of 157 nm is emitted from the silicone rubber 10. Then, the silica glass microspheres 20 are irradiated. It should be noted that light irradiation not including a wavelength region of 400 nm or less is not preferable because the release of the low molecular weight silicone gas from the silicone rubber 10 is insufficient.

前記真空容器1にはさらに不活性ガスの導入手段としてのガス導入パイプ3が貫通し、真空容器1内にHe等の不活性ガスを導入可能となっている。   Further, a gas introduction pipe 3 as an inert gas introduction means passes through the vacuum vessel 1 so that an inert gas such as He can be introduced into the vacuum vessel 1.

上記構成を用いた隣接した光学部品としてのシリカガラス微小球同士の接着は以下のようにして行う。   Adhesion between silica glass microspheres as adjacent optical components using the above configuration is performed as follows.

真空容器1内のシリコーンゴム10上にシリカガラス微小球20を整列配置した状態で、真空容器1内を排気して真空近くまで減圧し、真空容器1に付属しているMgF入射窓2を通してシリカガラス微小球20の上方より400nm以下の波長域を含む光を露光光源よりシリコーンゴム10及びシリカガラス微小球20に向けて照射(露光)する。光照射中、微量の不活性ガスをガス導入パイプ3からシリカガラス微小球20の表面に吹き付け、シリカガラス微小球間隙部分でのみ化学気相成長が起こるようにする。その結果、まずシリカガラス微小球20とシリコーンゴム10との界面でシリカガラスへの光化学改質に伴う接合が起こり、シリカガラス微小球20とシリコーンゴム10とが固定される。さらに、減圧下でのシリコーンゴム10への波長400nm以下の光照射により、低分子量シリコーンガスが放出され、そのシリコーンガスと残留酸素ガスとが照射光により光分解されると同時に、前記照射光により表面励起されたシリカガラス微小球20の間隙部分で化学気相成長が起こり、シリカガラス微小球同士をシリカガラス(酸化ケイ素)膜によって接着する。 With the silica glass microspheres 20 aligned on the silicone rubber 10 in the vacuum vessel 1, the inside of the vacuum vessel 1 is evacuated and decompressed to near vacuum, and passed through the MgF 2 incident window 2 attached to the vacuum vessel 1. Light including a wavelength region of 400 nm or less from above the silica glass microspheres 20 is irradiated (exposed) from the exposure light source toward the silicone rubber 10 and the silica glass microspheres 20. During light irradiation, a small amount of inert gas is blown from the gas introduction pipe 3 onto the surface of the silica glass microsphere 20 so that chemical vapor deposition occurs only at the gap portion of the silica glass microsphere. As a result, first, bonding accompanying photochemical modification to silica glass occurs at the interface between the silica glass microspheres 20 and the silicone rubber 10, and the silica glass microspheres 20 and the silicone rubber 10 are fixed. Further, when the silicone rubber 10 is irradiated with light having a wavelength of 400 nm or less to the silicone rubber 10 under reduced pressure, a low molecular weight silicone gas is released, and the silicone gas and residual oxygen gas are photodegraded by the irradiated light. Chemical vapor deposition occurs in the gaps between the surface-excited silica glass microspheres 20, and the silica glass microspheres are bonded to each other by a silica glass (silicon oxide) film.

この実施の形態1によれば、次の通りの効果を得ることができる。   According to the first embodiment, the following effects can be obtained.

(1) Si−O−Si結合を含む化合物としてのシリコーンゴム10上に、隣接した光学部品としてのシリカガラス微小球20を整列配置し、それらに波長400nm以下の光を照射して、シリコーンゴム10上に各シリカガラス微小球20を接合するとともに、シリコーンゴム10から放出される低分子量シリコーンガスを利用して、シリカガラス微小球同士の間隙に化学気相成長による酸化ケイ素膜を形成して隣接シリカガラス微小球同士の接着が可能である。つまり、従来困難とされてきた微小光学部品同士の接着が可能となる。 (1) Silica glass microspheres 20 as adjacent optical components are aligned on a silicone rubber 10 as a compound containing a Si—O—Si bond, and irradiated with light having a wavelength of 400 nm or less to form a silicone rubber. Each silica glass microsphere 20 is bonded onto 10 and a silicon oxide film is formed by chemical vapor deposition in the gap between the silica glass microspheres using a low molecular weight silicone gas released from the silicone rubber 10. Adjacent silica glass microspheres can be bonded together. That is, it becomes possible to bond the micro optical components that have been considered difficult in the past.

(2) この場合、光学部品としてのシリカガラス微小球20に対して、化学気相成長による酸化ケイ素膜はシリカガラス微小球20と同一もしくは類似の材料(組成の大部分が同じ材料)に相当し、所要の光透過率を有するから、ウィスパリング・ギャラリー・モードに代表されるような、微小球同士の接触が重要な光デバイス製作に適用可能になる等、その用途は電気、電子のみならずあらゆる分野で有用である。 (2) In this case, in contrast to the silica glass microsphere 20 as an optical component, the silicon oxide film formed by chemical vapor deposition corresponds to the same or similar material as the silica glass microsphere 20 (most of the composition is the same material). However, because it has the required light transmittance, it can be applied to the production of optical devices where contact between microspheres is important, as represented by whispering gallery mode. It is useful in all fields.

図2は本発明の実施の形態2であって、Si−O−Si結合を含む化合物としてのシリコーンゴム10とは別に、形成膜(シリカガラス微小球同士を接着する膜)の屈折率を変化させるための元素(例えばフッ素)を含む材料(例えばフッ素樹脂)30を真空容器1内に配置する。その他の構成は図1の実施の形態1と同様であり、同一又は相当部分に同一符号を付して説明を省略する。   FIG. 2 shows a second embodiment of the present invention, in which the refractive index of the formed film (film for bonding silica glass microspheres) is changed separately from the silicone rubber 10 as the compound containing Si—O—Si bonds. A material (for example, a fluororesin) 30 containing an element (for example, fluorine) to be disposed is disposed in the vacuum vessel 1. Other configurations are the same as those of the first embodiment shown in FIG. 1, and the same or corresponding parts are denoted by the same reference numerals and the description thereof is omitted.

上記構成を用いた隣接した光学部品としてのシリカガラス微小球同士の接着は以下のようにして行う。   Adhesion between silica glass microspheres as adjacent optical components using the above configuration is performed as follows.

真空容器1内のシリコーンゴム10上にシリカガラス微小球20を整列配置した状態で、真空容器1内を排気して真空近くまで減圧し、真空容器1に付属しているMgF入射窓2を通してシリカガラス微小球20の上方より400nm以下の波長域を含む光を露光光源よりシリコーンゴム10、材料30及びシリカガラス微小球20に向けて照射(露光)する。光照射中、微量の不活性ガスをガス導入パイプ3からシリカガラス微小球20の表面に吹き付け、シリカガラス微小球間隙部分でのみ化学気相成長が起こるようにする。その結果、まずシリカガラス微小球20とシリコーンゴム10との界面でシリカガラスへの光化学改質に伴う接合が起こり、シリカガラス微小球20とシリコーンゴム10とが固定される。さらに、減圧下でのシリコーンゴム10への波長400nm以下の光照射により、低分子量シリコーンガスが放出され、そのシリコーンガスと残留酸素ガスとが照射光により光分解されると同時に、前記照射光により表面励起されたシリカガラス微小球20の間隙部分で化学気相成長が起こるが、このとき形成膜の屈折率を変化させる元素を含むガスが材料30から放出されているため、シリカガラス微小球20の間隙部分で化学気相成長する形成膜は前記屈折率を変化させる元素を含有したシリカガラス(酸化ケイ素)膜となる。 With the silica glass microspheres 20 aligned on the silicone rubber 10 in the vacuum vessel 1, the inside of the vacuum vessel 1 is evacuated and decompressed to near vacuum, and passed through the MgF 2 incident window 2 attached to the vacuum vessel 1. Light including a wavelength region of 400 nm or less from above the silica glass microspheres 20 is irradiated (exposed) from the exposure light source toward the silicone rubber 10, the material 30 and the silica glass microspheres 20. During light irradiation, a small amount of inert gas is blown from the gas introduction pipe 3 onto the surface of the silica glass microsphere 20 so that chemical vapor deposition occurs only at the gap portion of the silica glass microsphere. As a result, first, bonding accompanying photochemical modification to silica glass occurs at the interface between the silica glass microspheres 20 and the silicone rubber 10, and the silica glass microspheres 20 and the silicone rubber 10 are fixed. Further, when the silicone rubber 10 is irradiated with light having a wavelength of 400 nm or less to the silicone rubber 10 under reduced pressure, a low molecular weight silicone gas is released, and the silicone gas and residual oxygen gas are photodegraded by the irradiated light. Although chemical vapor deposition occurs in the gap portions of the surface-excited silica glass microspheres 20, since the gas containing an element that changes the refractive index of the formed film is released from the material 30, the silica glass microspheres 20. The formed film that undergoes chemical vapor deposition in the gap portion becomes a silica glass (silicon oxide) film containing the element that changes the refractive index.

なお、材料30への光照射はシリコーンゴム10への光照射と同時でもよいし、別々に光照射してもよく、例えば材料30への光照射を先に行うようにすることもできる。   The light irradiation to the material 30 may be performed simultaneously with the light irradiation to the silicone rubber 10 or may be performed separately. For example, the light irradiation to the material 30 may be performed first.

この実施の形態2によれば、実施の形態1の効果に加えて次の通りの効果を得ることができる。   According to the second embodiment, the following effects can be obtained in addition to the effects of the first embodiment.

(1) Si−O−Si結合を含む化合物としてのシリコーンゴム10上に、隣接した光学部品としてのシリカガラス微小球20を配置し、シリコーンゴム10と、形成膜の屈折率を変化させるための元素(例えばフッ素)を含む材料(例えばフッ素樹脂)30とに、波長400nm以下の光を同時に又は個別に照射して、シリコーンゴム10上に各シリカガラス微小球20を接合するとともに、シリコーンゴム10及び材料30から放出される気体を利用して、シリカガラス微小球同士の間隙に屈折率を変化させるための元素を含む酸化ケイ素膜を形成可能である。 (1) Silica glass microspheres 20 as adjacent optical components are arranged on the silicone rubber 10 as a compound containing a Si—O—Si bond to change the refractive index of the silicone rubber 10 and the formed film. The material (for example, fluorine resin) 30 containing an element (for example, fluorine) is irradiated with light having a wavelength of 400 nm or less simultaneously or individually to join the silica glass microspheres 20 on the silicone rubber 10, and the silicone rubber 10 In addition, by using the gas released from the material 30, it is possible to form a silicon oxide film containing an element for changing the refractive index in the gap between the silica glass microspheres.

(2) この結果、微小光学部品同士を所要屈折率の形成膜で接着でき、多様な光デバイス製作に適用可能となる。 (2) As a result, micro optical components can be bonded to each other with a film having a required refractive index, and can be applied to various optical device manufacturing.

なお、実施の形態1及び実施の形態2は光学部品としてのシリカガラス微小球と同一又は類似の材料である酸化ケイ素膜を化学気相成長させた例であるが、光学部品と材料の組成は異なっても屈折率が同一もしくは類似(近似)の材料を、前記光学部品同士の間隙に化学気相成長させるようにしてもよい。   Embodiments 1 and 2 are examples in which a silicon oxide film, which is the same as or similar to the silica glass microsphere as an optical component, is chemically vapor-grown, but the composition of the optical component and the material is Even if different, materials having the same refractive index or similar (approximate) may be subjected to chemical vapor deposition in the gap between the optical components.

また、実施の形態1,2において、真空近くまで減圧された真空容器を使用する代わりに、大気中において光学部品と同一もしくは類似の材料、あるいは同一もしくは類似の屈折率の材料を、前記光学部品同士の間隙に化学気相成長させることも可能である。但し、形成膜の材料を含む物質と光学部品との距離が近接していること(例えば1mm以下)が必要で、配置の自由度は無くなる。真空容器を用いた方が形成膜の質は良好となる。   In the first and second embodiments, instead of using a vacuum container whose pressure is reduced to near vacuum, the optical component is made of the same or similar material as that of the optical component in the atmosphere, or the same or similar refractive index material. It is also possible to perform chemical vapor deposition in the gap between them. However, it is necessary that the distance between the substance including the material of the forming film and the optical component is close (for example, 1 mm or less), and the degree of freedom in arrangement is lost. The quality of the formed film is better when a vacuum container is used.

以下、本発明の隣接した光学部品の接着法を実施例1で詳述する。   Hereinafter, a method for bonding adjacent optical components according to the present invention will be described in detail in Example 1.

図1は、実施例1の概略を示している。光学部品としての直径2.5μmのシリカガラス製微小球20を分散させたアルコール溶液を、厚さ2mmのシリコーンゴム10(Si−O−Si結合を含む化合物の例)上に置かれたシリカガラス製細丸棒に沿って滴下し、アルコールの蒸発に伴う自己整列効果によりシリコーンゴム10上にシリカガラス微小球20を整列させた。   FIG. 1 shows an outline of the first embodiment. Silica glass in which an alcohol solution in which silica glass microspheres 20 having a diameter of 2.5 μm as an optical component are dispersed is placed on a silicone rubber 10 (an example of a compound containing a Si—O—Si bond) having a thickness of 2 mm. The silica glass microspheres 20 were aligned on the silicone rubber 10 due to the self-alignment effect accompanying the evaporation of the alcohol.

その後、試料を真空容器1としてのステンレス製容器内に保持し、真空排気手段としての油回転ポンプにより0.2Torrまで真空排気した。そしてFレーザー(波長157nm)を、容器に付属しているMgF入射窓2を通して、シリカガラス微小球上方より照射した。レーザー照射条件は、フルエンス(エネルギー密度)が約10mJ/cm(アブレーションしきい値以下)、パルス繰り返し周波数10Hz、照射時間5分であった。 Thereafter, the sample was held in a stainless steel vessel as the vacuum vessel 1 and evacuated to 0.2 Torr by an oil rotary pump as a vacuum evacuation means. The F 2 laser (wavelength 157 nm), through the MgF 2 entrance window 2 that comes in a container, and irradiated from the silica glass microspheres upward. The laser irradiation conditions were a fluence (energy density) of about 10 mJ / cm 2 (below the ablation threshold), a pulse repetition frequency of 10 Hz, and an irradiation time of 5 minutes.

シリコーンゴム10及びシリカガラス微小球20へのFレーザー光の照射中、微量の不活性ガス(Heガス)をシリカガラス微小球表面に吹きつけ、微小球間隙部分でのみレーザー化学気相成長が起こるようにした。 During irradiation of F 2 laser light onto the silicone rubber 10 and the silica glass microspheres 20, a trace amount of inert gas (He gas) is blown onto the surface of the silica glass microspheres, and laser chemical vapor deposition is performed only at the microsphere gaps. To make it happen.

その結果、まずシリカガラス微小球20とシリコーンゴム10との界面でシリカガラスへの光化学改質に伴う接合が起こり、微小球20とシリコーンゴム10とが固定された。さらに、減圧下でのシリコーンゴム10へのFレーザー光照射により、低分子量シリコーンガスが放出され、そのシリコーンガスと残留酸素ガスとがFレーザー光分解されると同時に、Fレーザー光により表面励起されたシリカガラス微小球20の間隙部分で化学気相成長が起こり、シリカガラス微小球同士をシリカガラス(酸化ケイ素)膜によって接着できることが判明した。 As a result, first, bonding accompanying photochemical modification to silica glass occurred at the interface between the silica glass microspheres 20 and the silicone rubber 10, and the microspheres 20 and the silicone rubber 10 were fixed. In addition, the F 2 laser beam irradiation of the silicone rubber 10 under reduced pressure, the low molecular weight silicone gas are released at the same time its silicone gas and residual oxygen gas is decomposed F 2 laser, the F 2 laser beam It has been found that chemical vapor deposition occurs in the gaps between the surface-excited silica glass microspheres 20 and the silica glass microspheres can be bonded together by a silica glass (silicon oxide) film.

図3は本発明によりSiO微小球(シリカ微小球)同士をSiO膜で接着した実例の拡大写真図である。微小球同士が確実に化学気相成長による形成膜で接着されていることがわかる。 FIG. 3 is an enlarged photograph of an actual example in which SiO 2 microspheres (silica microspheres) are bonded to each other with a SiO 2 film according to the present invention. It can be seen that the microspheres are securely bonded to each other with a film formed by chemical vapor deposition.

以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.

本発明に係る隣接した光学部品の接着法の実施の形態1及び実施例1を示す概略構成図である。It is a schematic block diagram which shows Embodiment 1 and Example 1 of the adhesion method of the adjacent optical component which concerns on this invention. 本発明の実施の形態2を示す概略構成図である。It is a schematic block diagram which shows Embodiment 2 of this invention. 本発明によりSiO微小球(シリカ微小球)をSiO膜で接着した実例の拡大写真図である。SiO 2 microspheres by the present invention (silica microspheres) is an enlarged photograph of examples adhered with SiO 2 film.

符号の説明Explanation of symbols

1 真空容器
2 入射窓
3 ガス導入パイプ
10 シリコーンゴム
20 シリカガラス微小球
30 材料
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Incident window 3 Gas introduction pipe 10 Silicone rubber 20 Silica glass microsphere 30 Material

Claims (8)

材料を球状光学部品同士の間隙に化学気相成長させることを特徴とする隣接した光学部品の接着法。 A method of bonding adjacent optical components, characterized by chemical vapor deposition of a material in a gap between spherical optical components. 球状光学部品と同一もしくは類似の材料、あるいは同一もしくは類似の屈折率の材料を、前記光学部品同士の間隙に化学気相成長させることを特徴とする隣接した光学部品の接着法。 A method of adhering adjacent optical components, characterized by subjecting a material identical or similar to a spherical optical component or a material having the same or similar refractive index to chemical vapor deposition in a gap between the optical components. Si−O−Si結合を含む化合物に、400nm以下の波長域を含む光を照射し、前記化合物から放出される気体を利用して、球状光学部品同士の間隙に酸化ケイ素膜を形成することを特徴とする隣接した光学部品の接着法。 Irradiating a compound containing a Si-O-Si bond with light having a wavelength region of 400 nm or less, and using a gas released from the compound to form a silicon oxide film in a gap between spherical optical components. Adhesive method for adjacent optical components. Si−O−Si結合を含む化合物上に、隣接した球状光学部品を配置し、400nm以下の波長域を含む光を照射して、Si−O−Si結合を含む化合物上に前記光学部品を接合するとともに、前記化合物から放出される気体を利用して、前記光学部品同士の間隙に酸化ケイ素膜を形成することを特徴とする隣接した光学部品の接着法。 Adjacent spherical optical components are arranged on a compound containing Si—O—Si bonds, and the optical components are bonded onto the compounds containing Si—O—Si bonds by irradiating light containing a wavelength region of 400 nm or less. And forming a silicon oxide film in the gap between the optical components by utilizing a gas released from the compound. Si−O−Si結合を含む化合物と、形成膜の屈折率を変化させるための元素を含む材料とに、400nm以下の波長域を含む光を同時に又は個別に照射し、前記化合物及び材料から放出される気体を利用して、球状光学部品同士の間隙に屈折率を変化させるための元素を含む酸化ケイ素膜を形成することを特徴とする隣接した光学部品の接着法。 A compound containing a Si—O—Si bond and a material containing an element for changing the refractive index of the formed film are irradiated with light containing a wavelength region of 400 nm or less simultaneously or individually, and emitted from the compound and the material. A method for adhering adjacent optical components, wherein a silicon oxide film containing an element for changing a refractive index is formed in a gap between spherical optical components using a gas that is produced. Si−O−Si結合を含む化合物上に、隣接した球状光学部品を配置し、前記化合物と、形成膜の屈折率を変化させるための元素を含む材料とに、400nm以下の波長域を含む光を同時に又は個別に照射して、前記化合物上に前記光学部品を接合するとともに、前記化合物及び材料から放出される気体を利用して、前記光学部品同士の間隙に屈折率を変化させるための元素を含む酸化ケイ素膜を形成することを特徴とする隣接した光学部品の接着法。 Light having a wavelength range of 400 nm or less is disposed on a compound containing a Si—O—Si bond and an adjacent spherical optical component is disposed, and the compound and a material containing an element for changing the refractive index of the formed film are included. Simultaneously or individually to join the optical component on the compound and to change the refractive index in the gap between the optical components using the gas released from the compound and the material A method of adhering adjacent optical components, comprising forming a silicon oxide film containing 前記化合物及び前記光学部品が減圧した容器内に設置されている請求項3又は4記載の隣接した光学部品の接着法。   The method for adhering adjacent optical components according to claim 3 or 4, wherein the compound and the optical component are placed in a decompressed container. 前記化合物、前記材料及び前記光学部品が減圧した容器内に設置されている請求項5又は6記載の隣接した光学部品の接着法。   The method for adhering adjacent optical components according to claim 5 or 6, wherein the compound, the material, and the optical component are installed in a decompressed container.
JP2006035356A 2006-02-13 2006-02-13 Adhesion method for adjacent optical components Active JP4352133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035356A JP4352133B2 (en) 2006-02-13 2006-02-13 Adhesion method for adjacent optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035356A JP4352133B2 (en) 2006-02-13 2006-02-13 Adhesion method for adjacent optical components

Publications (2)

Publication Number Publication Date
JP2007211328A JP2007211328A (en) 2007-08-23
JP4352133B2 true JP4352133B2 (en) 2009-10-28

Family

ID=38490021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035356A Active JP4352133B2 (en) 2006-02-13 2006-02-13 Adhesion method for adjacent optical components

Country Status (1)

Country Link
JP (1) JP4352133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142711B2 (en) 2015-04-14 2018-11-27 International Business Machines Corporation Low-crosstalk electro-optical Mach-Zehnder switch

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223095B2 (en) * 2010-03-26 2013-06-26 防衛省技術研究本部長 Manufacturing method of hard super water-repellent material using compound containing Si-O-Si bond and hard super water-repellent element
JP5364891B2 (en) * 2011-07-11 2013-12-11 防衛省技術研究本部長 Photochemical bonding method and device using compound containing Si-O-Si bond
JP2017155182A (en) * 2016-03-04 2017-09-07 信越化学工業株式会社 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217633A (en) * 1986-03-19 1987-09-25 Fujitsu Ltd Planar plate bonding method
JPH11305338A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Reflection type screen
JP2000035617A (en) * 1998-07-16 2000-02-02 Sony Corp Transparent very-small spherical body arrangement sheet and manufacture of transmission type screen having transparent very-small spherical body arrangement layer using this sheet
GB0123731D0 (en) * 2001-10-03 2001-11-21 Qinetiq Ltd Optical bonding technique
JP3947791B2 (en) * 2004-01-22 2007-07-25 防衛省技術研究本部長 Formation of fluorine-doped silicon oxide film by light irradiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142711B2 (en) 2015-04-14 2018-11-27 International Business Machines Corporation Low-crosstalk electro-optical Mach-Zehnder switch
US10349155B2 (en) 2015-04-14 2019-07-09 International Business Machines Corporation Low-crosstalk electro-optical Mach-Zehnder switch
US10674239B2 (en) 2015-04-14 2020-06-02 International Business Machines Corporation Low-crosstalk electro-optical mach-zehnder switch
US10743092B2 (en) 2015-04-14 2020-08-11 International Business Machines Corporation Low-crosstalk electro-optical Mach-Zehnder switch

Also Published As

Publication number Publication date
JP2007211328A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US11571860B2 (en) Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding
US6548176B1 (en) Hydroxide-catalyzed bonding
JP5624165B2 (en) Optical component bonding method and optical component
JP4352133B2 (en) Adhesion method for adjacent optical components
JP2010102046A (en) Optical element and method of producing optical element
US20070058908A1 (en) Semiconductor laser module for optical scanner
JP2017126416A (en) Method for manufacturing light guide device
JP2003201153A (en) Method of joining transparent substance and joined quartz glass sheet and apparatus using the same
JP4453335B2 (en) Optical circuit pattern and method for producing polymer optical waveguide
US7287918B2 (en) Semiconductor laser module
JP2006098428A (en) Replica diffraction grating
KR100486729B1 (en) Compression bonding method and apparatus using UV light
Gwo Hydroxide-catalyzed bonding
JP2013137351A (en) Optical element
JP2006053078A (en) Optical type detection microcell, and manufacturing method therefor
JP2004179595A (en) Optical recording device
JP2008290899A (en) Method for manufacturing layered structure of insulator and silicon, layered structure of insulator and silicon, and detecting device
JP2019177635A (en) Adhering method of optical component and optical component
JPH0727952A (en) Optical fiber partially having metallized surface and its production
JP2010102272A (en) Method of producing optical element, and optical element
JP2003012349A (en) Joining optical element for use in uv region
JP2004171696A (en) Optical disk
JP2005249995A (en) Waveguide and its manufacturing method
JP2007065277A (en) Method for improving transmittance of optical member and optical member with the transmittance improved by the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350