JP4351827B2 - Method for purifying hydroxyalkyl (meth) acrylate - Google Patents

Method for purifying hydroxyalkyl (meth) acrylate Download PDF

Info

Publication number
JP4351827B2
JP4351827B2 JP2002092023A JP2002092023A JP4351827B2 JP 4351827 B2 JP4351827 B2 JP 4351827B2 JP 2002092023 A JP2002092023 A JP 2002092023A JP 2002092023 A JP2002092023 A JP 2002092023A JP 4351827 B2 JP4351827 B2 JP 4351827B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
hydroxyalkyl
distillate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002092023A
Other languages
Japanese (ja)
Other versions
JP2003286228A5 (en
JP2003286228A (en
Inventor
誠司 宮崎
義彦 佐藤
祐司 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2002092023A priority Critical patent/JP4351827B2/en
Publication of JP2003286228A publication Critical patent/JP2003286228A/en
Publication of JP2003286228A5 publication Critical patent/JP2003286228A5/ja
Application granted granted Critical
Publication of JP4351827B2 publication Critical patent/JP4351827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒドロキシアルキル(メタ)アクリレートの精製方法に関し、詳しくは、精製対象のヒドロキシアルキル(メタ)アクリレートよりも沸点が高い高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートを精製する方法に関する。また、本発明は、この精製方法を利用したヒドロキシアルキル(メタ)アクリレートの製造方法に関する。
【0002】
【従来の技術】
従来、ヒドロキシアルキル(メタ)アクリレートは、触媒の存在下、(メタ)アクリル酸と対応するアルキレンオキサイドとを反応させて合成し、次いで蒸留し、その留分として得られる。この際、触媒は蒸留により分離され、副生物も蒸留により低減される。
【0003】
この反応では、副反応として、ヒドロキシアルキル(メタ)アクリレートに(メタ)アクリル酸が反応したジエステル類や、ヒドロキシアルキル(メタ)アクリレートにアルキレンオキサイドが反応したジアルキレングリコールモノエステル類が生成する。
【0004】
目的生成物であるヒドロキシアルキル(メタ)アクリレートは、比較的沸点が高く、また、重合しやすい化合物である。そのため、重合を防止する点から、高真空下での単純なフラッシュ蒸留が行われる場合が多い。その結果、ヒドロキシアルキル(メタ)アクリレートと副生物との分離は、必ずしも十分ではなかった。
【0005】
精製により副生物を分離することが困難なこともあり、ヒドロキシアルキル(メタ)アクリレートの合成反応において、副生物の生成を抑制する方法が種々提案されている。例えば、ジエステル類の生成を抑制する方法として、特開昭57−156437号公報には、触媒の有機カルボン酸の第二鉄塩をメタクリル酸に予め溶解させて得られる触媒溶液を脱水処理した後に反応に供する方法が開示されている。しかしながら、現在のところ、副生物、特にジアルキレングリコールモノエステル類の生成を十分に抑制してヒドロキシアルキル(メタ)アクリレートを合成することは困難である。
【0006】
本発明の精製対象であるヒドロキシアルキル(メタ)アクリレートは、前述のように、通常の蒸留装置で合成反応において副生するジアルキレングリコールモノエステル類などの高沸点不純物を低減することは容易ではなかった。
【0007】
【発明が解決しようとする課題】
したがって本発明は、ジアルキレングリコールモノエステル類などの高沸点不純物の含有量が少ない製品が得られるヒドロキシアルキル(メタ)アクリレートの精製方法、および、ヒドロキシアルキル(メタ)アクリレートの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的は、以下の本発明により解決できる。
少なくとも精製対象のヒドロキシアルキル(メタ)アクリレートよりも沸点が高い高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートを精製する方法であって、
高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートである供給液を薄膜蒸発器に送り、主にヒドロキシアルキル(メタ)アクリレートを含有する留出液と、高沸点不純物を含有する缶出液とに分離して前記薄膜蒸発器から取出し、
前記缶出液を40℃以下に冷却した後、前記供給液に混合して再び薄膜蒸発器に送るヒドロキシアルキル(メタ)アクリレートの精製方法。
【0009】
【発明の実施の形態】
本発明では、薄膜蒸発器を用いて精製を行うとともに、薄膜蒸発器から取出した、高沸点不純物とヒドロキシアルキル(メタ)アクリレートを含有する缶出液を薄膜蒸発器に送る供給液に混合して再び薄膜蒸発器に送る。このように缶出液をリサイクルすることにより、ジアルキレングリコールモノエステル類などの高沸点不純物の含有量が少ない製品が得られる。
【0010】
このようにすることで留出する不純物を低く抑えることができる理由は不明であるが、次のように推測している。
【0011】
すなわち、薄膜蒸発器から取り出した缶出液をそのまま廃棄する場合、廃棄によるロスを少なくし、所定量のヒドロキシアルキル(メタ)アクリレートを取得するためには供給液に対する留出液の割合が大きくなるような操作条件を採らざるを得ない。この場合、短時間で所定量の留出液を取得することが可能であるが、過酷な操作条件で蒸留することになる。これに対し本発明の方法では、缶出液が供給液に戻されるため、過酷な操作条件を採らずとも所定量のヒドロキシアルキル(メタ)アクリレートを取得できる。このように本発明では温和な操作条件を採用できることが、不純物を低く抑えることができる理由であると推測している。
【0012】
以下、本発明について、図1を用いて説明する。なお、図1は本発明の一実施形態を示すものであって、本発明を何ら制限するものではない。
【0013】
本発明で用いる薄膜蒸発器は公知の装置を用いることができ、例えば、「化学工学便覧改訂第五版」に記載の流下膜式蒸留装置や遠心式蒸留装置などを用いることができる。加熱面への液の供給方法、加熱面の形状なども特に限定されず、公知のものを用いることができる。
【0014】
薄膜蒸発器に送り、精製する高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートは、例えば、適当な触媒や重合防止剤等の存在下、(メタ)アクリル酸とアルキレンオキサイドとを反応させて得られる2−ヒドロキシアルキル(メタ)アクリレートの反応液である。(メタ)アクリル酸とアルキレンオキサイドとの反応は公知の方法に従って行うことができ、反応条件は適宜決めればよい。この反応により、ジアルキレングリコールモノエステル類などの高沸点不純物が副生する。
【0015】
また、必要に応じて、薄膜蒸発器に送る前に触媒や未反応のアルキレンオキサイドの除去等を行ってもよい。
【0016】
本発明では、まず、精製対象の高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートである供給液を、供給液タンク2から供給液ライン4を介して薄膜蒸発器1に送る。この供給液には、後述するように、薄膜蒸発器1から取出した缶出液が混合されている。そして、薄膜蒸発器1において、主にヒドロキシアルキル(メタ)アクリレートを含有する留出液と、ジアルキレングリコールモノエステル類などの高沸点不純物を含有する缶出液とに分離する。缶出液は、他に、触媒や重合防止剤、ヒドロキシアルキル(メタ)アクリレートを含有している。
【0017】
薄膜蒸発器1において分離した、主にヒドロキシアルキル(メタ)アクリレートを含有する留出液は、留出液ライン5を介して留出液タンク3に送る。
【0018】
一方、高沸点不純物を含有する缶出液は、缶出液ライン6を介して供給液タンク2に送る。そして、供給液タンク2において、缶出液と供給液とを混合し、この混合液を薄膜蒸発器1に送る。供給液タンク2には、タンク内の混合液を攪拌するための攪拌装置が設けられていてもよい。
【0019】
図1では、缶出液と供給液との混合は供給液タンク2において行っているが、供給液ライン4に缶出液を戻し、ライン内で缶出液と供給液とを混合して薄膜蒸発器1に送ることもできる。
【0020】
薄膜蒸発器の操作条件は、薄膜蒸発器の装置形状や加熱媒体、供給液の物性や組成などに応じて適宜決めることができる。例えば、伝熱面積3m2の流下膜式薄膜蒸発器を用い、2−ヒドロキシエチルメタクリレート(沸点68℃/0.13kPa)を精製する場合、缶出液を混合した供給液の供給速度は0.6〜1.2kg/h、薄膜蒸発器内の圧力は約0.13kPa、蒸発面の温度は80〜125℃、留出液の留出速度は0.5〜1.0kg/hとすることができる。
【0021】
供給液に対する留出液の割合は、その液の性状や物性、組成により、適宜選択される。ただし、供給液に対する留出液の割合を小さくしすぎると、操作時間が長くなる点で好ましくない。また逆に、供給液に対する留出液の割合を大きくしすぎると、薄膜蒸発器の蒸発面が乾き、固形物や重合物が生じ、操作が困難となる。留出液の割合は、供給液に対して50質量%以上が好ましく、60質量%以上がさらに好ましい。また、留出液の割合は、供給液に対して90質量%以下が好ましく、80質量%以下がさらに好ましい。
【0022】
本発明において、薄膜蒸発器1から取出した缶出液は、冷却した後、供給液タンク2に送り、供給液に混合することが好ましい。通常、缶出液は高温(90〜130℃程度)であり、その温度のまま供給液と混合するとヒドロキシアルキル(メタ)アクリレートが重合する可能性がある。反応液を精製する場合、通常、缶出液中には重合防止剤が含まれているが、この場合も、より確実に重合を防止できる点から、缶出液は冷却した後、供給液に混合することが好ましい。
【0023】
缶出液は、混合する供給液の温度程度に冷却すればよく、具体的には40℃以下に冷却することが好ましい。冷却する温度の下限は特に規定されないが、コストや利便性などの点から、20℃以上が好ましい。
【0024】
缶出液を冷却するための装置は公知の装置を用いることができ、例えば、多管式熱交換器、プレート式熱交換器、二重管式熱交換器などを用いることができる。
【0025】
また、本発明においては、図2のように、留出液タンク3−1、3−2を2個以上設け、留出液が送られるタンクを切り替えていく構成にすることもできる。この場合、最初の留分は次の留分に比べて高沸点不純物の濃度が低い。
【0026】
本発明は、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレートの合成反応後の精製に適用でき、特に、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレートの合成反応後の精製に有効である。
【0027】
【実施例】
以下、本発明を実施例および比較例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0028】
実施例および比較例では、供給液として、2−ヒドロキシエチルメタクリレートと高沸点不純物であるジエチレングリコールモノメタクリレートとの混合液(モデル液)を用いた。また、留出液および缶出液の組成は、ガスクロマトグラフィーにより分析した。
【0029】
実施例および比較例で用いた薄膜蒸発器は、伝熱面積が300cm2のガラス製流下膜式薄膜蒸発器で、蒸発面の外部をマントルヒーターで加熱できる構造のものであった。
【0030】
<実施例1>
まず、モデル液として、2−ヒドロキシエチルメタクリレート(以下、HEMAと略す)1236質量部とジエチレングリコールモノメタクリレート(以下、DEGMMAと略す)87質量部とを混合し、DEGMMAを6.6質量%含有するHEMA溶液を調製した。
【0031】
このモデル液を図1のようにして精製した。
【0032】
調製したモデル液1000質量部を供給液タンク2に入れた。そして、この供給液タンク2から薄膜蒸発器1に、定量ポンプを用いて、モデル液と缶出液との混合液(精製開始時はモデル液のみ)を毎時100質量部で供給した。薄膜蒸発器の蒸発面は外部をマントルヒーターで100℃前後に加熱し、薄膜蒸発器内の圧力は0.13kPaに設定した。この時、留出液の留出速度は毎時57〜63質量部であった。薄膜蒸発器1において分離した、主にHEMAを含有する留出液は留出液タンク3に送った。一方、DEGMMAを含有する缶出液は、冷媒として15℃の水を流したガラス製リービッヒ冷却管を用いて25〜30℃に冷却した後、すべて供給液タンク2に送った。そして、供給液タンク2において、缶出液と供給液タンク内の液とを混合し、この混合液を薄膜蒸発器1に送った。
【0033】
このようにして供給液タンク2内の液量が約300質量部になるまでモデル液の精製を行った。
【0034】
その結果、701質量部の留出液と、297質量部の缶出液に相当する供給液タンク2内の液とを得た。この留出液のDEGMMA濃度は2.62質量%であった。
【0035】
<比較例1>
缶出液を供給液タンク2には戻さず、別に設けた缶出液タンクに送るようにし、常に調製したモデル液を薄膜蒸発器1に送るようにした点以外は実施例1と同様にして供給液タンク2内の液がなくなるまでモデル液の精製を行った。この時、留出液の留出速度は毎時65〜70質量部であった。
【0036】
その結果、698質量部の留出液と、300質量部の缶出液とを得た。この留出液のDEGMMA濃度は3.70質量%であった。
【0037】
<実施例2>
図2のように留出液タンクを2個設け、供給液タンク2内の液量が約300質量部になるまで留出液(第一留分)を留出液タンク3−1に送り、その後に留出液が送られるタンクを切り替え、供給液タンク2内の液量が約100質量部になるまで留出液(第二留分)を留出液タンク3−2に送った点以外は実施例1と同様にしてモデル液の精製を行った。この時、留出液の留出速度は、第一留分を採取している時は毎時59〜64質量部、第二留分を採取している時は毎時53〜59質量部であった。
【0038】
その結果、703質量部の第一留分と、198質量部の第二留分と、92質量部の缶出液に相当する供給液タンク2内の液とを得た。この留出液のDEGMMA濃度は、第一留分が2.55質量%、第二留分が6.77質量%であった。第一留分と第二留分を混合した留出液のDEGMMA濃度は2.68質量%であった。
【0039】
<比較例2>
缶出液を供給液タンク2には戻さず、別に設けた缶出液タンクに送るようにし、常に調製したモデル液を薄膜蒸発器1に送るようにした点と、実施例2の第一留分と第二留分の合計量の相当する留出液を取得できるように加熱を調節した点以外は実施例1と同様にして供給液タンク2内の液がなくなるまでモデル液の精製を行った。この時、留出液の留出速度は毎時90〜97質量部であった。
【0040】
その結果、900質量部の留出液と、91質量部の缶出液とを得た。この留出液のDEGMMA濃度は5.28質量%であった。また、留出液の速度が早い段階では、薄膜蒸発器の蒸発面の下部に結晶が析出し、薄膜蒸発器の運転が一時的に困難となった。
【0041】
【発明の効果】
本発明の精製方法および製造方法によれば、ジアルキレングリコールモノエステル類などの高沸点不純物の含有量が少ないヒドロキシアルキル(メタ)アクリレートが得られる。
【図面の簡単な説明】
【図1】本発明のヒドロキシアルキル(メタ)アクリレートの精製方法の一例を説明するための図である。
【図2】本発明のヒドロキシアルキル(メタ)アクリレートの精製方法の一例を説明するための図である。
【符号の説明】
1 薄膜蒸発器
2 供給液タンク
3 留出液タンク
3−1 留出液タンク
3−2 留出液タンク
4 供給液ライン
5 留出液ライン
6 缶出液ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying a hydroxyalkyl (meth) acrylate, and more particularly to a method for purifying a hydroxyalkyl (meth) acrylate containing a high-boiling impurity having a boiling point higher than that of the hydroxyalkyl (meth) acrylate to be purified. Moreover, this invention relates to the manufacturing method of the hydroxyalkyl (meth) acrylate using this purification method.
[0002]
[Prior art]
Conventionally, a hydroxyalkyl (meth) acrylate is synthesized by reacting (meth) acrylic acid with a corresponding alkylene oxide in the presence of a catalyst, and then distilled to obtain a fraction thereof. At this time, the catalyst is separated by distillation, and by-products are also reduced by distillation.
[0003]
In this reaction, as a side reaction, diesters in which (meth) acrylic acid is reacted with hydroxyalkyl (meth) acrylate and dialkylene glycol monoesters in which alkylene oxide is reacted with hydroxyalkyl (meth) acrylate are produced.
[0004]
The target product, hydroxyalkyl (meth) acrylate, is a compound having a relatively high boiling point and easily polymerized. For this reason, simple flash distillation under high vacuum is often performed from the viewpoint of preventing polymerization. As a result, the separation of hydroxyalkyl (meth) acrylate and by-products was not always sufficient.
[0005]
Since it is difficult to separate by-products by purification, various methods for suppressing the formation of by-products in the synthesis reaction of hydroxyalkyl (meth) acrylate have been proposed. For example, as a method for suppressing the formation of diesters, Japanese Patent Application Laid-Open No. 57-156437 discloses that a catalyst solution obtained by dissolving a ferric salt of a catalyst organic carboxylic acid in methacrylic acid in advance is dehydrated. A method for subjecting to reaction is disclosed. However, at present, it is difficult to synthesize hydroxyalkyl (meth) acrylates by sufficiently suppressing the formation of by-products, particularly dialkylene glycol monoesters.
[0006]
As described above, it is not easy to reduce high-boiling impurities such as dialkylene glycol monoesters produced as a by-product in a synthesis reaction using an ordinary distillation apparatus as described above for the hydroxyalkyl (meth) acrylate to be purified according to the present invention. It was.
[0007]
[Problems to be solved by the invention]
Accordingly, the present invention provides a method for purifying hydroxyalkyl (meth) acrylate, and a method for producing hydroxyalkyl (meth) acrylate, from which a product having a low content of high-boiling impurities such as dialkylene glycol monoesters can be obtained. With the goal.
[0008]
[Means for Solving the Problems]
The above object can be solved by the present invention described below.
A method for purifying a hydroxyalkyl (meth) acrylate containing a high-boiling impurity having a boiling point higher than that of at least a hydroxyalkyl (meth) acrylate to be purified,
The feed liquid, which is a hydroxyalkyl (meth) acrylate containing high boiling impurities, is sent to a thin film evaporator and separated into a distillate containing mainly hydroxyalkyl (meth) acrylate and a bottoms containing high boiling impurities. Take out from the thin film evaporator,
A method for purifying hydroxyalkyl (meth) acrylate, wherein the bottoms are cooled to 40 ° C. or less, then mixed with the feed liquid, and sent again to the thin film evaporator.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, purification is performed using a thin film evaporator, and a bottom liquid containing high boiling point impurities and hydroxyalkyl (meth) acrylate taken out from the thin film evaporator is mixed with a supply liquid to be sent to the thin film evaporator. Send to thin film evaporator again. By recycling the bottoms in this manner, a product with a low content of high-boiling impurities such as dialkylene glycol monoesters can be obtained.
[0010]
The reason why the impurities distilled out can be kept low by doing in this way is unknown, but is estimated as follows.
[0011]
That is, when the bottoms taken out from the thin-film evaporator are discarded as they are, the loss due to the disposal is reduced, and the ratio of the distillate to the supply liquid is increased in order to obtain a predetermined amount of hydroxyalkyl (meth) acrylate. Such operating conditions must be taken. In this case, a predetermined amount of distillate can be obtained in a short time, but it will be distilled under severe operating conditions. On the other hand, in the method of the present invention, the bottoms are returned to the supply liquid, so that a predetermined amount of hydroxyalkyl (meth) acrylate can be obtained without taking severe operating conditions. Thus, in the present invention, it is speculated that the fact that mild operating conditions can be adopted is the reason why impurities can be kept low.
[0012]
Hereinafter, the present invention will be described with reference to FIG. FIG. 1 shows an embodiment of the present invention and does not limit the present invention.
[0013]
As the thin film evaporator used in the present invention, a known apparatus can be used. For example, a falling film distillation apparatus or a centrifugal distillation apparatus described in "Chemical Engineering Handbook Revised 5th Edition" can be used. The method for supplying the liquid to the heating surface, the shape of the heating surface, and the like are not particularly limited, and known ones can be used.
[0014]
Hydroxyalkyl (meth) acrylate containing high boiling point impurities to be sent to a thin film evaporator and purified is obtained, for example, by reacting (meth) acrylic acid with alkylene oxide in the presence of a suitable catalyst or polymerization inhibitor. It is a reaction liquid of 2-hydroxyalkyl (meth) acrylate. The reaction between (meth) acrylic acid and alkylene oxide can be carried out according to a known method, and the reaction conditions may be appropriately determined. By this reaction, high-boiling impurities such as dialkylene glycol monoesters are by-produced.
[0015]
Moreover, you may remove a catalyst or unreacted alkylene oxide etc. before sending to a thin film evaporator as needed.
[0016]
In the present invention, first, a supply liquid that is a hydroxyalkyl (meth) acrylate containing high-boiling impurities to be purified is sent from the supply liquid tank 2 to the thin film evaporator 1 via the supply liquid line 4. The supply liquid is mixed with the bottoms taken out from the thin film evaporator 1 as will be described later. And in the thin film evaporator 1, it isolate | separates into the distillate mainly containing hydroxyalkyl (meth) acrylate, and the bottoms containing high boiling-point impurities, such as dialkylene glycol monoesters. In addition, the bottoms contain a catalyst, a polymerization inhibitor, and a hydroxyalkyl (meth) acrylate.
[0017]
The distillate containing mainly hydroxyalkyl (meth) acrylate separated in the thin film evaporator 1 is sent to the distillate tank 3 via the distillate line 5.
[0018]
On the other hand, the bottoms containing high boiling impurities are sent to the feed tank 2 through the bottoms line 6. Then, in the supply liquid tank 2, the bottom liquid and the supply liquid are mixed, and this mixed liquid is sent to the thin film evaporator 1. The supply liquid tank 2 may be provided with a stirring device for stirring the mixed liquid in the tank.
[0019]
In FIG. 1, the bottoms and the supply liquid are mixed in the supply liquid tank 2, but the bottoms are returned to the supply liquid line 4, and the bottoms and the supply liquid are mixed in the line to form a thin film. It can also be sent to the evaporator 1.
[0020]
The operating conditions of the thin film evaporator can be appropriately determined according to the apparatus shape of the thin film evaporator, the heating medium, the physical properties and composition of the supply liquid, and the like. For example, when purifying 2-hydroxyethyl methacrylate (boiling point 68 ° C./0.13 kPa) using a falling film type thin film evaporator having a heat transfer area of 3 m 2 , the supply rate of the feed solution mixed with the bottoms is 0. 6 to 1.2 kg / h, the pressure in the thin film evaporator is about 0.13 kPa, the temperature of the evaporation surface is 80 to 125 ° C., and the distillation rate of the distillate is 0.5 to 1.0 kg / h. Can do.
[0021]
The ratio of the distillate to the supply liquid is appropriately selected depending on the properties, physical properties and composition of the liquid. However, if the ratio of the distillate to the feed liquid is too small, it is not preferable in that the operation time becomes long. On the other hand, if the ratio of the distillate to the feed liquid is too large, the evaporation surface of the thin film evaporator dries, and solids and polymers are produced, making operation difficult. The proportion of the distillate is preferably 50% by mass or more, more preferably 60% by mass or more with respect to the feed solution. The proportion of the distillate is preferably 90% by mass or less and more preferably 80% by mass or less with respect to the feed solution.
[0022]
In the present invention, the bottoms taken out from the thin film evaporator 1 is preferably cooled, then sent to the supply liquid tank 2 and mixed with the supply liquid. Usually, the bottoms are high temperature (about 90-130 degreeC), and if it mixes with a supply liquid with the temperature, hydroxyalkyl (meth) acrylate may superpose | polymerize. When purifying the reaction solution, the bottoms usually contain a polymerization inhibitor, but in this case as well, the bottoms are cooled and then supplied to the feed solution in order to prevent polymerization more reliably. It is preferable to mix.
[0023]
The bottoms may be cooled to about the temperature of the supply liquid to be mixed, and specifically, it is preferably cooled to 40 ° C. or lower. Although the minimum of the temperature to cool is not prescribed | regulated in particular, 20 degreeC or more is preferable from points, such as cost and convenience.
[0024]
As a device for cooling the bottoms, a known device can be used, and for example, a multi-tube heat exchanger, a plate heat exchanger, a double tube heat exchanger, or the like can be used.
[0025]
In the present invention, as shown in FIG. 2, two or more distillate tanks 3-1, 3-2 may be provided, and the tank to which the distillate is sent can be switched. In this case, the first fraction has a lower concentration of high boiling impurities than the next fraction.
[0026]
The present invention can be applied, for example, to purification after synthesis reaction of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, and in particular, 2-hydroxyethyl acrylate, 2-hydroxypropyl It is effective for purification after the synthesis reaction of ethyl methacrylate.
[0027]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.
[0028]
In the examples and comparative examples, a mixed solution (model solution) of 2-hydroxyethyl methacrylate and diethylene glycol monomethacrylate, which is a high boiling point impurity, was used as the supply solution. Moreover, the composition of the distillate and the bottoms was analyzed by gas chromatography.
[0029]
The thin film evaporator used in the examples and comparative examples was a glass falling film thin film evaporator having a heat transfer area of 300 cm 2 , and had a structure in which the outside of the evaporation surface could be heated with a mantle heater.
[0030]
<Example 1>
First, as a model solution, 1236 parts by mass of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) and 87 parts by mass of diethylene glycol monomethacrylate (hereinafter abbreviated as DEGMMA) are mixed, and HEMA containing 6.6% by mass of DEGMMA. A solution was prepared.
[0031]
This model solution was purified as shown in FIG.
[0032]
1000 parts by mass of the prepared model liquid was placed in the supply liquid tank 2. And the liquid mixture (only model liquid at the time of refinement | purification start) of the model liquid and the bottom liquid was supplied to the thin film evaporator 1 from this supply liquid tank 2 at 100 mass parts / hour. The evaporation surface of the thin film evaporator was heated to about 100 ° C. with a mantle heater, and the pressure in the thin film evaporator was set to 0.13 kPa. At this time, the distillation rate of the distillate was 57 to 63 parts by mass per hour. The distillate containing mainly HEMA separated in the thin film evaporator 1 was sent to the distillate tank 3. On the other hand, the bottoms containing DEGMMA were cooled to 25 to 30 ° C. using a glass Liebig cooling pipe in which water at 15 ° C. was flown as a refrigerant, and then all were sent to the supply liquid tank 2. Then, in the supply liquid tank 2, the bottom liquid and the liquid in the supply liquid tank were mixed, and this mixed liquid was sent to the thin film evaporator 1.
[0033]
In this way, the model liquid was purified until the amount of liquid in the supply liquid tank 2 reached about 300 parts by mass.
[0034]
As a result, 701 parts by mass of a distillate and a liquid in the supply liquid tank 2 corresponding to 297 parts by mass of the bottoms were obtained. The concentration of DEGMMA in this distillate was 2.62% by mass.
[0035]
<Comparative Example 1>
The bottoms are not returned to the feed liquid tank 2 but sent to a separate bottom liquid tank, and the prepared model liquid is always sent to the thin film evaporator 1 in the same manner as in Example 1. The model liquid was purified until the liquid in the supply liquid tank 2 was exhausted. At this time, the distillation rate of the distillate was 65 to 70 parts by mass per hour.
[0036]
As a result, 698 parts by mass of a distillate and 300 parts by mass of a bottoms were obtained. The concentration of DEGMMA in this distillate was 3.70% by mass.
[0037]
<Example 2>
As shown in FIG. 2, two distillate tanks are provided, and the distillate (first fraction) is sent to the distillate tank 3-1 until the amount of liquid in the supply liquid tank 2 reaches about 300 parts by mass. Thereafter, the tank to which the distillate is sent is switched, and the distillate (second fraction) is sent to the distillate tank 3-2 until the amount of the liquid in the supply liquid tank 2 reaches about 100 parts by mass. Was purified in the same manner as in Example 1. At this time, the distillation rate of the distillate was 59 to 64 parts by mass per hour when the first fraction was collected, and 53 to 59 parts by mass per hour when the second fraction was collected. .
[0038]
As a result, 703 parts by mass of the first fraction, 198 parts by mass of the second fraction, and 92 parts by mass of the liquid in the supply liquid tank 2 corresponding to the bottoms were obtained. The concentration of DEGMMA in this distillate was 2.55% by mass for the first fraction and 6.77% by mass for the second fraction. The DEGMMA concentration of the distillate obtained by mixing the first fraction and the second fraction was 2.68% by mass.
[0039]
<Comparative example 2>
The bottom liquid is not returned to the supply liquid tank 2 but sent to a separate bottom liquid tank, and the prepared model liquid is always sent to the thin film evaporator 1. The model liquid was purified until the liquid in the supply liquid tank 2 was exhausted in the same manner as in Example 1, except that the heating was adjusted so that a distillate corresponding to the total amount of the second fraction and the second fraction could be obtained. It was. At this time, the distillation rate of the distillate was 90 to 97 parts by mass per hour.
[0040]
As a result, 900 parts by mass of a distillate and 91 parts by mass of a bottoms were obtained. The DEGMMA concentration of this distillate was 5.28% by mass. In addition, at the stage where the distillate liquid was fast, crystals were deposited below the evaporation surface of the thin film evaporator, making it difficult to operate the thin film evaporator temporarily.
[0041]
【The invention's effect】
According to the purification method and the production method of the present invention, a hydroxyalkyl (meth) acrylate having a low content of high-boiling impurities such as dialkylene glycol monoesters can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an example of a method for purifying a hydroxyalkyl (meth) acrylate according to the present invention.
FIG. 2 is a diagram for explaining an example of the purification method of hydroxyalkyl (meth) acrylate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thin film evaporator 2 Supply liquid tank 3 Distillate liquid tank 3-1 Distillate liquid tank 3-2 Distillate liquid tank 4 Supply liquid line 5 Distillate liquid line 6 Can discharge liquid line

Claims (1)

少なくとも精製対象のヒドロキシアルキル(メタ)アクリレートよりも沸点が高い高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートを精製する方法であって、
高沸点不純物を含むヒドロキシアルキル(メタ)アクリレートである供給液を薄膜蒸発器に送り、主にヒドロキシアルキル(メタ)アクリレートを含有する留出液と、高沸点不純物を含有する缶出液とに分離して前記薄膜蒸発器から取出し、
前記缶出液を40℃以下に冷却した後、前記供給液に混合して再び薄膜蒸発器に送るヒドロキシアルキル(メタ)アクリレートの精製方法。
A method for purifying a hydroxyalkyl (meth) acrylate containing a high-boiling impurity having a boiling point higher than that of at least a hydroxyalkyl (meth) acrylate to be purified,
The feed liquid, which is a hydroxyalkyl (meth) acrylate containing high boiling impurities, is sent to a thin film evaporator and separated into a distillate containing mainly hydroxyalkyl (meth) acrylate and a bottoms containing high boiling impurities. Take out from the thin film evaporator,
A method for purifying hydroxyalkyl (meth) acrylate, wherein the bottoms are cooled to 40 ° C. or less, then mixed with the feed liquid, and sent again to the thin film evaporator.
JP2002092023A 2002-03-28 2002-03-28 Method for purifying hydroxyalkyl (meth) acrylate Expired - Lifetime JP4351827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092023A JP4351827B2 (en) 2002-03-28 2002-03-28 Method for purifying hydroxyalkyl (meth) acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092023A JP4351827B2 (en) 2002-03-28 2002-03-28 Method for purifying hydroxyalkyl (meth) acrylate

Publications (3)

Publication Number Publication Date
JP2003286228A JP2003286228A (en) 2003-10-10
JP2003286228A5 JP2003286228A5 (en) 2005-09-08
JP4351827B2 true JP4351827B2 (en) 2009-10-28

Family

ID=29236970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092023A Expired - Lifetime JP4351827B2 (en) 2002-03-28 2002-03-28 Method for purifying hydroxyalkyl (meth) acrylate

Country Status (1)

Country Link
JP (1) JP4351827B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007056926A1 (en) * 2007-11-23 2009-05-28 Evonik Röhm Gmbh Process and installation for the purification of unsaturated compounds
DE102009001577A1 (en) * 2009-03-16 2010-09-23 Evonik Röhm Gmbh Purification-stabilized composition and process for purifying and producing hydroxyalkyl (meth) acrylates
JP5500965B2 (en) * 2009-12-14 2014-05-21 三菱レイヨン株式会社 Manufacturing method of purified monomer products
CN110935188B (en) * 2019-12-18 2021-10-22 万华化学集团股份有限公司 Continuous rectification separation method and device for hydroxyethyl (meth) acrylate crude product

Also Published As

Publication number Publication date
JP2003286228A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JPH101455A (en) Continuous production of alkyl ester of (meth)acrylic acid and apparatus therefor
CN110746276B (en) Method for producing o-tert-butylphenol and p-tert-butylphenol by rectification and crystallization
CN110678440B (en) Process for producing (meth) acrylic acid
JP2003513945A (en) Formulation of formic acid
CN1170805C (en) Purification method for (meth) acrylic acid
US8097757B2 (en) Method for preparing (meth)acrylic anhydride
JP4351827B2 (en) Method for purifying hydroxyalkyl (meth) acrylate
JP2004315536A (en) Method for producing isobutyric acid anhydride
JPH05178768A (en) Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride
US20090209783A1 (en) Process for the production of hydroxyalkyl (meth)acrylates
JPH08333310A (en) Production of monomethylaminoethanol
TWI361183B (en) A process for the production of hydroxyalkyl (meth)acrylates
US5710307A (en) Process for the production of trialkyl phosphites
JPH08268938A (en) Separation of methyl acrylate or methyl methacrylate and methanol
JP2008297242A (en) Method for producing high-purity alkyladamantyl (meth)acrylate
JP5500965B2 (en) Manufacturing method of purified monomer products
JP2588581B2 (en) Method for producing methacrylate
JPH08176044A (en) Production of 2-t-butylhydroquinone
JPH10251276A (en) Production of demethoxymethylsilane
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP2001097893A (en) Method for producing high-purity organic compound
JP2004269417A (en) Method for producing (meth)acrylic ester
JP4046021B2 (en) Method for producing and purifying 2-methyladamantan-2-yl (meth) acrylate
JPH10109952A (en) Separation of cyclohexyl vinyl ether
JPH09100258A (en) Production of ethylamine compounds

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4351827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term