JP4349792B2 - Negative electrode gel production method - Google Patents

Negative electrode gel production method Download PDF

Info

Publication number
JP4349792B2
JP4349792B2 JP2002336261A JP2002336261A JP4349792B2 JP 4349792 B2 JP4349792 B2 JP 4349792B2 JP 2002336261 A JP2002336261 A JP 2002336261A JP 2002336261 A JP2002336261 A JP 2002336261A JP 4349792 B2 JP4349792 B2 JP 4349792B2
Authority
JP
Japan
Prior art keywords
negative electrode
gel
electrode gel
disk
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336261A
Other languages
Japanese (ja)
Other versions
JP2004171918A (en
Inventor
秀哲 名倉
敏克 沢井
裕士 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002336261A priority Critical patent/JP4349792B2/en
Publication of JP2004171918A publication Critical patent/JP2004171918A/en
Application granted granted Critical
Publication of JP4349792B2 publication Critical patent/JP4349792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、亜鉛粉、ゲル化剤、電解液またはその成分を中心とする負極ゲル成分の混合処理により製造された負極ゲルを脱泡処理してアルカリ乾電池用のゲル状亜鉛負極を得る負極ゲル製造方法に関する。
【0002】
【従来の技術】
従来のアルカリ乾電池用負極ゲルは、亜鉛粉やゲル化剤等の負極原料と電解液を適宜の順序で大きな混合容器(ミキサ)に投入し、その容器の中で混合してゲル化するバッチ方式で製造されていた。この場合、混合により製造された負極ゲルは無数の細かい気泡を含んでいる。このゲルをアルカリ乾電池のゲル状亜鉛負極として安定に使用できるようにするためには、その気泡を取り除く脱泡処理を行わなければならない。
【0003】
上述したバッチ方式の場合、密閉式の容器の中で混合してゲル化した後、その容器内部を減圧して脱泡を行っていた。または、容器内に投入された被混合材料を減圧下で混合し、その混合によるゲル化の後、さらに減圧して脱泡を行っていた。いずれの場合も、所定量のゲルを密閉容器の中に貯めた状態で、その容器内部を減圧することにより脱泡を行っていた。
【0004】
【発明が解決しようとする課題】
上述した従来の技術には次のような問題のあることが本発明者によってあきらかにされた。
すなわち、上述したバッチ方式では、混合容器の容積を大きくすることで一度に多量の材料をゲル化して脱泡することができるが、その分、製造した負極ゲルが使用されるまでの保管時間が長くなる。つまり、大きな容器の中でゲル化および脱泡された多量の負極ゲルは、乾電池製造工程で使用されるまでの保管期間が必然的に長くなる。このため、貯蔵設備が別途必要になるとともに、貯蔵管理の煩わしさが介在する。負極ゲルは保管中にゲルの硬さや密度が変化するため、保管中の特性変化による工程トラブルや電池性能のバラツキあるいは低下が生じやすい。
【0005】
また、一度に多量のゲルを脱泡処理すると、泡の吹き出しによる減圧ポンプのトラブルが生じやすい。このトラブルを防止するためには時間をかけて脱泡する必要があるが、そうすると、ゲル製造量と脱泡処理量にアンバランスが生じて、ゲル製造効率が低下してしまう。つまり、脱泡工程が負極ゲル製造の効率を低下させるボトルネックとなってしまう。さらに、上述したバッチ処理では、一度の処理量いわゆる処理ロットに適性量があって、少量のロットでは製造効率が低下するため、細かい仕様変更には対応しにくいという問題もあった。
【0006】
本発明は以上のような問題を鑑みてなされたものであって、その目的は、混合により製造された負極ゲルを容器内部に貯めることなく、その状態を安定に保ちながら連続的に効率良く脱泡することを可能する技術を提供することにある。
【0007】
【課題を解決するための手段】
本発明の手段は、亜鉛粉、ゲル化剤、電解液またはその成分を中心とする負極ゲル成分の混合処理により製造された負極ゲルを脱泡処理してアルカリ乾電池用のゲル状亜鉛負極を得る負極ゲル製造方法において、ゲル製造工程により得られた負極ゲルを減圧容器内部に連続的に落下させるとともに、その容器内部でほぼ水平に回転する円盤に衝突させて容器側部の内壁面に飛散させ、その内壁面に沿って流下するゲルを漏斗状部に集めて、その漏斗状部の下部からポンプにより連続的に排出させることを特徴とする。
【0008】
上記手段によれば、混合により製造された負極ゲルを容器内部に貯めることなく、その状態を安定に保ちながら連続的に効率良く脱泡することができる。これにより、貯蔵設備や貯蔵管理を不要あるいは簡単にすること、細かい仕様変更にも柔軟に対応できるようにすること、そして、電池性能の安定化または向上に寄与する良質な負極ゲルを提供することが、それぞれ可能になる。
【0009】
上記手段においては、減圧容器内部で回転する円盤が、逆傘状、傘状、または周縁部が立上がった盆状であるとともに、その円盤が、(1)少なくとも回転面に多数の穴を有する、(2)少なくとも回転面に多数のスリットを有する、(3)回転面または回転面と周縁部がネット状となっている、のいずれかであることが望ましい。
【0010】
また、減圧容器内壁面および減圧容器内部で回転する円盤の少なくとも表面部が、超高分子量ポリエチレン、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイドで形成されていることが一層好ましい。
【0011】
【発明の実施の形態】
図1は、本発明方法の実施に適した連続脱泡装置20の実施形態を示す。同図に示す装置20は円筒状の側胴部を有する減圧容器30を用いて構成されている。この減圧容器30は、側部が円筒状に形成されるとともに、下部が漏斗状に形成されている。容器30内部は適宜の減圧ポンプ(図示省略)により常時減圧されるようになっている。
【0012】
減圧容器30の上面部中央付近にはストレート状の投入管32が直立状態で取り付けられている。この投入管32は、上端が漏斗状に開いていて、ここから被処理原料である負極ゲルが連続的に投入されるようになっている。投入管の下端は減圧容器30内部に入り込み、下方を向いて開口している。
【0013】
減圧容器30内部には、ほぼ水平に回転する円盤40が軸支されている。この回転円盤40は、容器30上部に配設したモータ42の回転軸に軸結されて所定速度で回転駆動されるようになっている。回転円盤40の回転面は上記投入管32の下方に位置している。これにより、投入管32上端の漏斗状部から投入された負極ゲルは、その投入管32内を通って回転円盤40の回転面上に落下するようになっている。
【0014】
減圧容器30の下部は漏斗状に形成されているが、この漏斗状部36の下部はスクリューポンプ(スクリューフィーダとも言う)38の吸入側に通じている。スクリューポンプ38は、漏斗状部36の下部に流下してきたゲルを吸引して外部へ排出する。
【0015】
図2は、図1に示した連続脱泡装置20を用いることで可能となる負極ゲルの連続製造工程を示す。図1および図2において、負極ゲル製造装置10は、連続的に投入される亜鉛粉、ゲル化剤、アルカリ電解液などの原料を連続的に混合処理してゲル化する。この連続負極ゲル装置10により製造された負極ゲルを、上記連続脱泡装置20の減圧容器30内部に投入管32を通して連続的に投入することにより、負極ゲルの混合と脱泡を共に連続して行わせることができる。
【0016】
図1において、減圧容器30内に投入されたゲルは回転円盤40の回転面上に落下する。落下したゲルは回転円盤40により水平方向へ飛散させられて容器30側部の内壁面34に衝突させられる。内壁面34に衝突したゲルはその内壁面34に沿って流下し、容器30下方の漏斗状部36に集まる。漏斗状部36に集まったゲルは、その漏斗状部36の下部からポンプ38により連続的に吸引されて外部へ排出される。このようにして排出されたゲルは、回転円盤40による水平方向への飛散、容器内壁面34への衝突、および容器内壁面34での流下を経る間に気泡が除かれて脱泡処理される。その中で、脱泡がとくに効果的に行われるのは、ゲルが回転円盤40により小さな粒子(飛沫)状になって容器内壁面34に衝突させられるときである。このとき、ゲルは投入後、減圧によって水分が失われる前に、直ちに脱泡される。これにより、電池性能の安定化または向上に寄与する良質な負極ゲルを連続的かつ安定に得ることができる。上記脱泡効果をさらに高めるためには、回転円盤40を図3のように構成することが有効である。
【0017】
図3は、上記脱泡処理をさらに効果的に行わせるのに有効な回転円盤40の実施形態を示す。同図において、(a)〜(c)はそれぞれ回転円盤40の上側面図(回転面)を示し、(d)〜(h)はそれぞれ回転円盤40の側断面図を示す。また、(a)と(d)、(b)と(e)、(c)と(f)はそれぞれ、同じ円盤40の上側面図と側断面図を示す。(g)と(h)はそれぞれ、円盤40の側断面図だけを単独で示す。
【0018】
本発明者が知得したところによると、脱泡処理を効果的に行わせるための円盤40は、その回転面を次のように形成することが有効であることが判明した。すなわち、(a)に示すように、回転面に多数の穴45を設ける。(b)に示すように、回転面に多数のスリット46を設ける。この場合、スリット46を放射状に形成するとともに、そのスリット46の切り起し片47を上方へ向けた形状がとくに有効である。また、(c)に示すように、ゲルが落下する回転面をネット状とするのも有効である。
【0019】
円盤40全体の形状については、(d)または(f)に示すような逆傘状、(e)に示すような傘状、(g)または(h)に示すような周縁部が立上がった盆状が有効である。(g)は穴やスリットなどがないノーマルの盆状円盤40を示す。(h)は周縁部をネット状に形成した盆状円盤40を示す。
【0020】
上述した構成に加えて、減圧容器30内壁面およびその減圧容器30内部で回転する円盤40の少なくとも表面部を、超高分子ポリエチレン、ポリプロピレン、高密度ポリエチレン、ポリフェニレンサルファイドなどの樹脂で被覆するか、または全体をそれらの材質で形成すれば、ゲル中の亜鉛粒子が衝撃で破壊または損傷したり、金属不純物が混入したりすることを確実に防止することができる。
【0021】
以下、上述した連続脱泡装置20を用いた本発明の実施例を示す。
(実施例1)
電池用亜鉛粉65重量%、KOH34%水溶液38重量%、ポリアクリル酸ゲル化剤1重量%をプラネタリーミキサで緩やかに混合して負極ゲルを得た後、この負極ゲルを、図1に示した連続脱泡装置20に毎分4kgで連続的に供給して脱泡処理を行った。このとき、連続脱泡装置20は減圧容器30内に直径約300mmの回転円盤40を有するものを使用した。回転円盤40は扁平なノーマル形状のものを使用した。減圧容器30内の気圧を30〜40Torrに減圧しながら、円盤40を600〜1800rpmの回転数で回転させて連続脱泡を行った。そして、減圧容器40下部の漏斗状部36に流下してきた負極ゲルをスクリューポンプ38で連続的に取り出し、容器に受けたものを調査した。調査は、密度、ガス発生量、および試作電池の性能(電池容量)について行った。
【0022】
まず、上記脱泡装置20で脱泡処理した負極ゲルを、従来と同じ構成の単3形亜鉛アルカリ乾電池のセパレータ内に充填して従来と同様のアルカリ乾電池を作製し、その電池容量を調査した。同時に、その負極ゲルの密度を調査した。ゲル密度は、容器に集めた負極ゲルの上部に内径1cmのチューブを差し込み、そのチューブでゲルを吸入した後、その吸入口先端をすりきり、そこから押し出した所定容積のゲルの重量を天秤で測ることにより求めた。また、ゲル負極6gを60℃で120時間保存した場合のガス発生量も調査した。
【0023】
(比較例)
比較例として、プラネタリーミキサ内で所定量の負極ゲルを混合した後、そのミキサ内を減圧することにより、そのミキサ内の負極ゲルの脱泡を行った。この脱泡はミキサ内に混合ゲルを留めて行うバッチ処理である。この場合、ミキサ(混合容器)内の減圧はゆっくり行ったが、負極ゲルがミキサ内で膨張するため、減圧は150〜400Torrまでとした。時間は30分間かけて行った。
【0024】
(実施例2)
図1に示した脱泡装置20において、図3の(a)〜(h)に示した各種の回転円盤40を使用し、各円盤ごとに1200rpmの回転数で回転させて連続脱泡を行った。他の条件は実施例1の場合と同様である。
【0025】
(実施例3)
図1に示した脱泡装置20において、盆状の回転円盤40を使用するとともに、その円盤40の内側表面および減圧容器30の内壁面をそれぞれ超高分子ポリエチレンシートで覆って使用し、連続脱泡を行った。他の条件は実施例1の場合と同様である。
【0026】
表1は実施例1の結果を示す。
表1は、実施例1において、円盤回転数を600rpm、900rpm、1200rpm、1500rpm、1800rpmの5種類で行った結果を示す。
【0027】
【表1】

Figure 0004349792
【0028】
表1において、電池容量とゲル密度は、いずれの円盤回転数でも有意の向上が確認された。とくに、円盤回転数900rpm以上では、ゲル密度と電池容量のどちらも明らかな向上が確認された。ガス発生量も問題のないレベルであった。脱泡処理は、減圧容器内を低圧に維持しながら連続的に行うことができ、作業上の問題はなかった。
比較例については、脱泡に十分な時間をかけたものの、泡はまだ残っており、ゲル密度も低かった。これは脱泡が不十分なためと考えられる。
【0029】
表2は実施例2の結果を示す。
【表2】
Figure 0004349792
【0030】
表2において、(d)は図3の(a)と(d)に示した逆傘状の回転円盤40を使用した場合の結果、(e)は同図の(b)と(e)に示した傘状でスリット46および切り起こし片47を有する回転円盤40を使用した場合の結果、(f)は同図の(c)と(f)に示した逆傘状のネット状回転円盤40を使用した場合の結果、(g)は同図の(g)に示した側断面構造(ノーマルの盆状)を有する回転円盤40を使用した場合の結果、(h)は同図の(h)に示した側断面構造(周縁部がネット状)を有する回転円盤40を使用した場合の結果をそれぞれ示す。
【0031】
表2によれば、図3に示した各種形状の回転円盤40はいずれも、電池容量とゲル密度が実施例1よりも良好であることが確認された。ガス発生量についても、とくに問題はなかった。
実施例3では、ガス発生量を0.11(ml)に下げることができた。他の結果は、表2の(g)と同じであった。
【0032】
図4は、実施例3によって脱泡処理した負極ゲルについて、そのガス発生量の時間推移を示す。同図において、実線曲線は実施例3により脱泡した負極ゲルのガス発生量推移、 波線曲線は表面がステンレスの回転円盤を使用して脱泡した負極ゲルのガス発生量推移をそれぞれ示す。両曲線の比較からも明らかなように、実施例3は、ガス発生の抑制にとくに有効であることが確認された。これは、回転円盤の表面を樹脂で覆ったことにより、亜鉛粉の変形や破壊あるいは損傷が起きにくく、また金属不純物混入の可能性が低くなることで、ガス発生反応が抑制されるためと考えられる。
【0033】
なお、本発明の装置に投入されるゲルの製造方法としては、図2に示される連続ゲル製造装置による場合が本願装置の特徴を最も生かせるものとして好適である。
【0034】
【発明の効果】
本発明によれば、混合により製造された負極ゲルを容器内部に貯めることなく、その状態を安定に保ちながら連続的に効率良く脱泡することができる。これにより、貯蔵設備や貯蔵管理を不要あるいは簡単にすること、細かい仕様変更にも柔軟に対応できるようにすること、そして、電池性能の安定化または向上に寄与する良質な負極ゲルを提供することが、それぞれ可能になる。
【図面の簡単な説明】
【図1】本発明の実施に適した連続脱泡装置の第1実施形態を示す断面図である。
【図2】本発明を利用して可能な負極ゲルの連続製造工程の実施例を示す工程図である。
【図3】本発明の実施に好適な回転円盤の構成例を示す上側面図および側断面図である。
【図4】本発明の実施例により脱泡処理した負極ゲルのガス発生状態を示すグラフである。
【符号の説明】
10 連続ゲル製造装置
20 連続脱泡装置
30 減圧容器
32 投入管
34 内壁面
36 漏斗状部
38 吸引排出ポンプ
40 回転円盤
42 モータ
45 穴
46 スリット
47 切り起し片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode gel for obtaining a gelled zinc negative electrode for an alkaline battery by defoaming a negative electrode gel produced by mixing zinc powder, a gelling agent, an electrolytic solution or a negative electrode gel component mainly composed of the component. It relates to a manufacturing method.
[0002]
[Prior art]
A conventional negative electrode gel for alkaline batteries is a batch system in which a negative electrode material such as zinc powder or a gelling agent and an electrolytic solution are charged into a large mixing container (mixer) in an appropriate order, and mixed and gelled in the container. It was manufactured with. In this case, the negative electrode gel produced by mixing contains innumerable fine bubbles. In order to be able to use this gel stably as a gelled zinc negative electrode of an alkaline dry battery, it is necessary to perform a defoaming treatment to remove the bubbles.
[0003]
In the case of the batch method described above, after mixing and gelling in a sealed container, the inside of the container was decompressed to perform defoaming. Alternatively, the material to be mixed put in the container is mixed under reduced pressure, and after gelation by the mixing, defoaming is performed by further reducing the pressure. In either case, defoaming was performed by reducing the pressure inside the container while a predetermined amount of gel was stored in the sealed container.
[0004]
[Problems to be solved by the invention]
The inventor of the present invention has revealed that the above-described conventional technique has the following problems.
That is, in the batch system described above, a large amount of material can be gelled and defoamed at once by increasing the volume of the mixing container. However, the storage time until the manufactured negative electrode gel is used correspondingly. become longer. In other words, a large amount of the gelled and defoamed gel in a large container inevitably increases the storage period until it is used in the dry battery manufacturing process. For this reason, a separate storage facility is required, and the cumbersome storage management is involved. Since the gel hardness and density of the negative electrode gel change during storage, process troubles and battery performance variations or deterioration due to characteristic changes during storage are likely to occur.
[0005]
Moreover, if a large amount of gel is defoamed at a time, troubles of the decompression pump due to blowing of bubbles tend to occur. In order to prevent this trouble, it is necessary to defoam over time, but if so, an imbalance occurs between the gel production amount and the defoaming treatment amount, and the gel production efficiency decreases. That is, the defoaming process becomes a bottleneck that reduces the efficiency of negative electrode gel production. Further, in the batch processing described above, there is a problem that it is difficult to cope with a detailed specification change because there is an appropriate amount for a single processing amount, so-called processing lot, and the manufacturing efficiency is reduced with a small amount of lot.
[0006]
The present invention has been made in view of the above problems, and its purpose is to remove the negative electrode gel produced by mixing continuously and efficiently while keeping its state stable without storing it inside the container. The object is to provide a technology that enables foaming.
[0007]
[Means for Solving the Problems]
The means of the present invention is to obtain a gelled zinc negative electrode for an alkaline battery by defoaming a negative electrode gel produced by mixing a zinc powder, a gelling agent, an electrolytic solution or a negative electrode gel component mainly composed of the component. In the negative electrode gel manufacturing method, the negative electrode gel obtained by the gel manufacturing process is continuously dropped into the vacuum container, and is collided with a disk that rotates substantially horizontally inside the container to be scattered on the inner wall surface of the container side. The gel flowing down along the inner wall surface is collected in a funnel-shaped portion and continuously discharged by a pump from the lower portion of the funnel-shaped portion.
[0008]
According to the above means, the negative electrode gel produced by mixing can be continuously and efficiently defoamed while keeping its state stable without storing it inside the container. This makes storage facilities and storage management unnecessary or simple, enables flexible response to detailed specification changes, and provides a high-quality negative electrode gel that contributes to stabilizing or improving battery performance. Are possible.
[0009]
In the above means, the disk rotating inside the decompression vessel is an inverted umbrella shape, an umbrella shape, or a bonnet shape with a raised peripheral edge, and the disk has (1) at least a large number of holes on the rotation surface. (2) It is desirable that at least the rotating surface has a large number of slits, (3) the rotating surface or the rotating surface and the peripheral portion are in a net shape.
[0010]
More preferably, at least the surface portion of the inner wall surface of the vacuum vessel and the disk rotating inside the vacuum vessel is formed of ultrahigh molecular weight polyethylene, polypropylene, polyethylene, or polyphenylene sulfide.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a continuous defoaming device 20 suitable for carrying out the method of the invention. The apparatus 20 shown in the figure is configured using a decompression vessel 30 having a cylindrical side body. The decompression vessel 30 has a side portion formed in a cylindrical shape and a lower portion formed in a funnel shape. The inside of the container 30 is constantly depressurized by an appropriate decompression pump (not shown).
[0012]
In the vicinity of the center of the upper surface of the decompression vessel 30, a straight inlet tube 32 is attached in an upright state. The upper end of the charging pipe 32 is funnel-shaped, and the negative electrode gel, which is the material to be processed, is continuously fed from here. The lower end of the charging pipe enters the decompression vessel 30 and opens downward.
[0013]
A disk 40 that rotates substantially horizontally is pivotally supported in the decompression vessel 30. The rotating disk 40 is coupled to a rotating shaft of a motor 42 disposed on the upper portion of the container 30 and is driven to rotate at a predetermined speed. The rotating surface of the rotating disk 40 is located below the charging pipe 32. As a result, the negative electrode gel introduced from the funnel-shaped portion at the upper end of the introduction tube 32 falls through the introduction tube 32 onto the rotation surface of the rotary disk 40.
[0014]
The lower portion of the decompression vessel 30 is formed in a funnel shape, and the lower portion of the funnel-shaped portion 36 communicates with the suction side of a screw pump (also referred to as a screw feeder) 38. The screw pump 38 sucks the gel flowing down to the lower part of the funnel-shaped part 36 and discharges it to the outside.
[0015]
FIG. 2 shows a process for continuously producing a negative electrode gel that is possible by using the continuous defoaming apparatus 20 shown in FIG. In FIG. 1 and FIG. 2, the negative electrode gel production apparatus 10 continuously gels raw materials such as zinc powder, gelling agent, and alkaline electrolyte that are continuously added. The negative electrode gel produced by the continuous negative electrode gel device 10 is continuously charged into the decompression vessel 30 of the continuous degassing device 20 through the charging tube 32, whereby the negative electrode gel is continuously mixed and degassed. Can be done.
[0016]
In FIG. 1, the gel charged into the decompression vessel 30 falls on the rotating surface of the rotating disk 40. The dropped gel is scattered in the horizontal direction by the rotating disk 40 and collides with the inner wall surface 34 on the side of the container 30. The gel colliding with the inner wall surface 34 flows down along the inner wall surface 34 and collects in the funnel-shaped portion 36 below the container 30. The gel collected in the funnel-shaped portion 36 is continuously sucked from the lower portion of the funnel-shaped portion 36 by the pump 38 and discharged to the outside. The gel discharged in this manner is defoamed by removing bubbles while passing through the rotating disk 40 in the horizontal direction, colliding with the inner wall surface 34 of the container, and flowing down the inner wall surface 34 of the container. . Among them, the defoaming is performed particularly effectively when the gel is made into small particles (spray) by the rotating disk 40 and collides with the inner wall surface 34 of the container. At this time, the gel is immediately defoamed after being charged and before water is lost due to reduced pressure. Thereby, the good quality negative electrode gel which contributes to stabilization or improvement of battery performance can be obtained continuously and stably. In order to further enhance the defoaming effect, it is effective to configure the rotating disk 40 as shown in FIG.
[0017]
FIG. 3 shows an embodiment of a rotating disk 40 that is effective for performing the defoaming process more effectively. In the same figure, (a)-(c) shows the upper side view (rotation surface) of the rotation disc 40, respectively, (d)-(h) shows the sectional side view of the rotation disc 40, respectively. Moreover, (a) and (d), (b) and (e), (c) and (f) show the upper side view and side sectional view of the same disk 40, respectively. (G) and (h) each show only the sectional side view of the disk 40 alone.
[0018]
According to the knowledge of the present inventor, it has been found that it is effective to form the rotating surface of the disk 40 for effectively performing the defoaming treatment as follows. That is, as shown to (a), many holes 45 are provided in the rotating surface. As shown in (b), a large number of slits 46 are provided on the rotating surface. In this case, it is particularly effective to form the slits 46 in a radial manner and to cut and raise the slits 47 upward. Further, as shown in (c), it is also effective to make the rotating surface on which the gel falls into a net shape.
[0019]
As for the overall shape of the disk 40, an inverted umbrella shape as shown in (d) or (f), an umbrella shape as shown in (e), and a peripheral edge as shown in (g) or (h) were raised. A tray shape is effective. (G) shows the normal tray disk 40 without a hole or a slit. (H) shows the bonnet-shaped disk 40 which formed the peripheral part in net shape.
[0020]
In addition to the configuration described above, the inner wall surface of the decompression vessel 30 and at least the surface portion of the disk 40 rotating inside the decompression vessel 30 are covered with a resin such as ultrahigh molecular polyethylene, polypropylene, high density polyethylene, polyphenylene sulfide, Alternatively, if the entire material is formed of these materials, it is possible to reliably prevent the zinc particles in the gel from being destroyed or damaged by impact or from being mixed with metal impurities.
[0021]
Hereinafter, the Example of this invention using the continuous degassing apparatus 20 mentioned above is shown.
(Example 1)
A negative electrode gel was obtained by gently mixing 65% by weight of zinc powder for batteries, 38% by weight of KOH 34% aqueous solution, and 1% by weight of a polyacrylic acid gelling agent with a planetary mixer, and this negative electrode gel is shown in FIG. The defoaming treatment was performed by continuously supplying 4 kg / min to the continuous defoaming apparatus 20. At this time, the continuous defoaming device 20 having a rotary disk 40 having a diameter of about 300 mm in the decompression vessel 30 was used. The rotating disk 40 used was a flat normal shape. While the pressure inside the vacuum vessel 30 was reduced to 30 to 40 Torr, the disk 40 was rotated at a rotational speed of 600 to 1800 rpm to perform continuous defoaming. And the negative electrode gel which flowed down to the funnel-shaped part 36 lower part of the pressure reduction container 40 was taken out continuously with the screw pump 38, and what was received in the container was investigated. The investigation was conducted on density, gas generation amount, and performance (battery capacity) of the prototype battery.
[0022]
First, the negative electrode gel defoamed by the defoaming device 20 was filled in a separator of an AA zinc alkaline battery having the same structure as the conventional one to produce an alkaline dry battery similar to the conventional one, and its battery capacity was investigated. . At the same time, the density of the negative electrode gel was investigated. The gel density is measured by inserting a tube with an inner diameter of 1 cm into the upper part of the negative electrode gel collected in the container, sucking the gel through the tube, then crushing the tip of the suction port, and weighing the gel with a predetermined volume pushed out from the tip. Was determined by The amount of gas generated when 6 g of the gel negative electrode was stored at 60 ° C. for 120 hours was also investigated.
[0023]
(Comparative example)
As a comparative example, a predetermined amount of negative electrode gel was mixed in a planetary mixer, and then the pressure in the mixer was reduced to degas the negative electrode gel in the mixer. This defoaming is a batch process performed by keeping the mixed gel in the mixer. In this case, the pressure in the mixer (mixing vessel) was slowly reduced, but the negative pressure gel was expanded in the mixer, so the pressure was reduced to 150 to 400 Torr. The time was 30 minutes.
[0024]
(Example 2)
In the defoaming apparatus 20 shown in FIG. 1, the various rotating disks 40 shown in FIGS. 3A to 3H are used, and each disk is rotated at a rotational speed of 1200 rpm for continuous defoaming. It was. Other conditions are the same as in the first embodiment.
[0025]
(Example 3)
In the defoaming apparatus 20 shown in FIG. 1, a bonnet-like rotating disk 40 is used, and the inner surface of the disk 40 and the inner wall surface of the decompression vessel 30 are respectively covered with an ultrahigh molecular weight polyethylene sheet. Foam was done. Other conditions are the same as in the first embodiment.
[0026]
Table 1 shows the results of Example 1.
Table 1 shows the results obtained in Example 1 when the number of disk revolutions was 600 rpm, 900 rpm, 1200 rpm, 1500 rpm, and 1800 rpm.
[0027]
[Table 1]
Figure 0004349792
[0028]
In Table 1, the battery capacity and the gel density were confirmed to be significantly improved at any disk rotation speed. In particular, when the disk rotational speed was 900 rpm or more, both the gel density and the battery capacity were clearly improved. The amount of gas generation was also at a level with no problem. The defoaming treatment could be performed continuously while maintaining the inside of the decompression vessel at a low pressure, and there was no problem in operation.
About the comparative example, although sufficient time was taken for defoaming, the foam still remained and the gel density was also low. This is thought to be due to insufficient defoaming.
[0029]
Table 2 shows the results of Example 2.
[Table 2]
Figure 0004349792
[0030]
In Table 2, (d) shows the results when the inverted umbrella-shaped rotating disk 40 shown in FIGS. 3 (a) and 3 (d) is used, and (e) shows the results in (b) and (e) of FIG. As a result of using the rotating disk 40 having the slit 46 and the cut-and-raised piece 47 in the umbrella shape shown in the figure, (f) shows the inverted umbrella-shaped net-shaped rotating disk 40 shown in (c) and (f) of FIG. (G) shows the result when the rotating disk 40 having the side cross-sectional structure (normal basin shape) shown in (g) of the figure is used, and (h) shows (h) of the figure (h). The results obtained when the rotating disk 40 having the side cross-sectional structure shown in FIG.
[0031]
According to Table 2, it was confirmed that the rotating disks 40 of various shapes shown in FIG. 3 had better battery capacity and gel density than Example 1. There was no particular problem with the amount of gas generated.
In Example 3, the gas generation amount could be reduced to 0.11 (ml). The other results were the same as (g) in Table 2.
[0032]
FIG. 4 shows a time transition of the gas generation amount of the negative electrode gel defoamed according to Example 3. In the same figure, the solid line curve shows the gas generation amount transition of the negative electrode gel defoamed in Example 3, and the wavy line curve shows the gas generation amount transition of the negative electrode gel defoamed using a stainless steel rotating disk. As is clear from the comparison of both curves, Example 3 was confirmed to be particularly effective in suppressing gas generation. This is thought to be because the surface of the rotating disk is covered with resin, so that deformation, destruction or damage of the zinc powder does not easily occur, and the possibility of mixing metal impurities is reduced, thereby suppressing the gas generation reaction. It is done.
[0033]
In addition, as a manufacturing method of the gel thrown into the apparatus of this invention, the case where the continuous gel manufacturing apparatus shown in FIG.
[0034]
【The invention's effect】
According to the present invention, it is possible to continuously and efficiently degas the negative gel produced by mixing without storing the negative electrode gel inside the container while keeping the state stable. This makes storage facilities and storage management unnecessary or simple, enables flexible response to detailed specification changes, and provides a high-quality negative electrode gel that contributes to stabilizing or improving battery performance. Are possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a continuous deaerator suitable for carrying out the present invention.
FIG. 2 is a process diagram showing an example of a continuous production process of a negative electrode gel that is possible using the present invention.
FIGS. 3A and 3B are an upper side view and a side sectional view showing a configuration example of a rotating disk suitable for carrying out the present invention. FIGS.
FIG. 4 is a graph showing a gas generation state of a negative electrode gel defoamed according to an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Continuous gel manufacturing apparatus 20 Continuous defoaming apparatus 30 Depressurization container 32 Input pipe 34 Inner wall surface 36 Funnel-shaped part 38 Suction / discharge pump 40 Rotating disk 42 Motor 45 Hole 46 Slit 47 Cut and raised piece

Claims (4)

亜鉛粉、ゲル化剤、電解液またはその成分を中心とする負極ゲル成分の混合処理により製造された負極ゲルを脱泡処理してアルカリ乾電池用のゲル状亜鉛負極を得る負極ゲル製造方法において、ゲル製造工程により得られた負極ゲルを減圧容器内部に連続的に落下させるとともに、その容器内部でほぼ水平に回転する円盤に衝突させて容器側部の内壁面に飛散させ、その内壁面に沿って流下するゲルを漏斗状部に集めて、その漏斗状部の下部からポンプにより連続的に排出させることを特徴とする負極ゲル製造方法。In the negative electrode gel manufacturing method for obtaining a gelled zinc negative electrode for an alkaline battery by defoaming a negative electrode gel produced by mixing treatment of zinc powder, a gelling agent, an electrolytic solution or a negative electrode gel component centered on the component, The negative electrode gel obtained by the gel manufacturing process is continuously dropped into the decompression container, and is collided with a disk that rotates substantially horizontally inside the container to be scattered on the inner wall surface of the container, along the inner wall surface. A method for producing a negative electrode gel, comprising collecting a gel flowing down in a funnel-shaped portion and continuously discharging the gel from a lower portion of the funnel-shaped portion by a pump. 減圧容器内部で回転する円盤が、逆傘状、傘状、または周縁部が立上がった盆状であるとともに、その円盤が、(1)少なくとも回転面に多数の穴を有する、(2)少なくとも回転面に多数のスリットを有する、(3)回転面または回転面と周縁部がネット状となっている、のいずれかであることを特徴とする請求項1の負極ゲル製造方法。The disk rotating inside the decompression vessel is an inverted umbrella shape, an umbrella shape, or a bonnet shape with a raised peripheral edge, and the disk has (1) at least a large number of holes on the rotation surface, (2) at least 2. The negative electrode gel manufacturing method according to claim 1, wherein the rotating surface has a large number of slits, and (3) the rotating surface or the rotating surface and the peripheral portion are in a net shape. 減圧容器内壁面および減圧容器内部で回転する円盤の少なくとも表面部が、超高分子量ポリエチレン、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイドで形成されていることを特徴とする請求項1または2の負極ゲル製造方法。3. The negative electrode gel manufacturing method according to claim 1, wherein at least a surface portion of the inner wall surface of the vacuum container and the disk rotating inside the vacuum container is formed of ultrahigh molecular weight polyethylene, polypropylene, polyethylene, or polyphenylene sulfide. 亜鉛粉、ゲル化剤、電解液またはその成分を中心とする負極ゲル成分の混合処理により製造された負極ゲルを脱泡処理してアルカリ乾電池用のゲル状亜鉛負極を得る負極ゲル脱泡装置において、減圧容器と、この減圧容器内に投入されて落下させられる負極ゲルを飛散させて減圧容器の内壁面へ衝突させる回転円盤と、減圧容器の内壁面を流下した負極ゲルを集める漏斗状部と、この漏斗状部の下部から負極ゲルを排出するポンプとを備えたことを特徴とする負極ゲル脱泡装置。In a negative electrode gel defoaming device for obtaining a gelled zinc negative electrode for an alkaline battery by defoaming a negative electrode gel produced by mixing a zinc powder, a gelling agent, an electrolytic solution or a negative electrode gel component mainly composed of the component. A vacuum vessel, a rotating disk that scatters and collides with the inner wall surface of the vacuum vessel, and a funnel-like portion that collects the negative electrode gel flowing down the inner wall surface of the vacuum vessel; And a pump for discharging the negative electrode gel from the lower part of the funnel-shaped part.
JP2002336261A 2002-11-20 2002-11-20 Negative electrode gel production method Expired - Fee Related JP4349792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336261A JP4349792B2 (en) 2002-11-20 2002-11-20 Negative electrode gel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336261A JP4349792B2 (en) 2002-11-20 2002-11-20 Negative electrode gel production method

Publications (2)

Publication Number Publication Date
JP2004171918A JP2004171918A (en) 2004-06-17
JP4349792B2 true JP4349792B2 (en) 2009-10-21

Family

ID=32700147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336261A Expired - Fee Related JP4349792B2 (en) 2002-11-20 2002-11-20 Negative electrode gel production method

Country Status (1)

Country Link
JP (1) JP4349792B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302321B2 (en) * 2014-03-28 2018-03-28 プライミクス株式会社 Liquid treatment equipment for battery electrode coating production
JP6567835B2 (en) 2015-02-19 2019-08-28 トヨタ自動車株式会社 Defoaming method for electrode paste
JP6950640B2 (en) * 2018-07-27 2021-10-13 トヨタ自動車株式会社 Method of manufacturing electrode mixture paste

Also Published As

Publication number Publication date
JP2004171918A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US7303691B2 (en) Polishing method for semiconductor wafer
JP4349792B2 (en) Negative electrode gel production method
CN108212468B (en) Medical breakage integrated device
JP2007073686A (en) Polishing method of semiconductor wafer
CN206372866U (en) A kind of wheat blanking device
JP4199487B2 (en) Continuous defoaming device for paste material
CN214389245U (en) Tank structure beneficial to gas-liquid separation
CN210846483U (en) Rice processing device of shelling
CN111545441A (en) Impurity removing device for rice processing
CN217830117U (en) Stone removing device for millet processing
CN208373579U (en) A kind of rice processing clear stone device that cleans
CN109365079A (en) The grain crusher of dust concentration can be reduced
CN215197526U (en) Preparation facilities of nanometer coating powder
CN112246632B (en) Feed raw material impurity removing device and impurity removing method thereof
CN210876272U (en) Industrial production is with clear device of dividing
CN113976245A (en) Nano calcium carbonate preparation equipment
CN209379425U (en) A kind of rice processing processing unit of cracking rice
CN106492915A (en) A kind of wheat blanking device
CN207871615U (en) A kind of cement grinding aid automation defoaming device
CN214718432U (en) Soybean breeding edulcoration device
CN213287284U (en) Metal powder's that centrifugal metal ground paste was used screening plant
CN216225244U (en) Automatic moxa sieving device
CN213436090U (en) Rice processing dust collector
CN109894245A (en) Rice husk grinding machining system
CN216704568U (en) Carbon nitride material refines device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees