JP4349367B2 - 物体の位置姿勢を推定する推定システム、推定方法および推定プログラム - Google Patents

物体の位置姿勢を推定する推定システム、推定方法および推定プログラム Download PDF

Info

Publication number
JP4349367B2
JP4349367B2 JP2005515150A JP2005515150A JP4349367B2 JP 4349367 B2 JP4349367 B2 JP 4349367B2 JP 2005515150 A JP2005515150 A JP 2005515150A JP 2005515150 A JP2005515150 A JP 2005515150A JP 4349367 B2 JP4349367 B2 JP 4349367B2
Authority
JP
Japan
Prior art keywords
image
orientation
comparison
comparison image
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005515150A
Other languages
English (en)
Other versions
JPWO2005043466A1 (ja
Inventor
塁 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2005043466A1 publication Critical patent/JPWO2005043466A1/ja
Application granted granted Critical
Publication of JP4349367B2 publication Critical patent/JP4349367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Description

本発明は、物体の位置や姿勢を推定する推定システム、推定方法および推定プログラムに関し、特に、カメラで撮影したり記憶媒体から読みこまれた画像に含まれる物体の位置や姿勢またはその両者を、照明条件が変動しても精度よく高速に推定できる物体の状態を推定する推定システム、推定方法および推定プログラムに関する。
物体の位置や姿勢を推定できる装置として、物体の位置や姿勢を認識する位置姿勢認識装置がある。図14は、従来の位置姿勢認識装置の構成を示すブロック図である。この位置姿勢認識装置は、姿勢候補群決定手段910と、比較画像生成手段920と、姿勢選択手段930と、終了判定手段940とを含む。
図14に示す従来の位置姿勢認識装置の動作を説明する。まず、位置/姿勢の推定の対象となる物体(以下、対象物体という。)の画像を含む入力画像データ91が、位置姿勢認識装置に入力される。また、あらかじめ既知である誤差を含んだ大まかな物体の位置/姿勢のパラメータが、位置姿勢初期値92として位置姿勢認識装置に入力される。姿勢候補群決定手段910は、位置姿勢初期値92に含まれる位置/姿勢の6つのパラメータ(x,y,zの3次元パラメータ、およびx,y,z軸周りの角度パラメータ)を、あらかじめ定められた所定の変化量だけ変化させることによって複数の位置姿勢推定値群を決定する。
比較画像生成手段920は、あらかじめ位置姿勢認識装置の記憶部(図示せず)に記憶されている対象物体の3次元形状モデルデータと、照明変動空間を生成する基底テクスチャ群とにもとづいて、対象物体がそれぞれの位置姿勢推定値群に対応する位置/姿勢にあるときの照明条件の変化による画像の変動を示す照明変動空間データを生成する。そして、比較画像生成手段920は、照明変動空間データにもとづいて入力画像データ91と同じ照明条件の比較画像群を生成する。
姿勢選択手段930は、比較画像群と入力画像データ91とを比較し、最も類似度が大きくなる比較画像に対応する位置姿勢推定値を、最適位置姿勢推定値93として出力する。終了判定手段940は、比較画像の類似度の改善の余地がある場合には、最適位置姿勢推定値93を位置姿勢初期値92(または現在の位置姿勢推定値)に置き換えて姿勢候補群決定手段910に出力する。そして、位置姿勢認識装置は、比較画像の類似度が改善できなくなるまで、上記の処理を繰り返し実行することによって、最終的に最適な対象物体の位置/姿勢を求める(例えば、特開2003−58896号公報(文献1)参照)。
従来の位置姿勢認識装置を用いれば、最終的に最適な対象物体の位置や姿勢を求めることはできる。しかし、姿勢候補群決定手段910は、各処理時点における最適位置姿勢推定値93にもとづいて新たな位置姿勢推定値群を生成する際に、位置/姿勢の各パラメータをどの程度変更すれば正確な位置/姿勢に近づけられるか分からない。そのため、姿勢候補群決定手段910は単にあらかじめ決めた所定の変化量分だけパラメータを増減して多数の位置姿勢推定値を生成するので、位置姿勢認識装置は、その全ての位置姿勢推定値に対して計算量の大きい比較画像の生成処理を行わなければならない。従って、最終的な最適位置姿勢推定値を求めるまでの処理時間が長い。
本発明は、このような課題を解決するためになされたものであり、その目的は、画像に含まれる物体の位置や姿勢を従来より短時間で推定できるようにすることにある。
本発明による物体の状態を推定する推定システムは、位置および姿勢の少なくとも一方である状態が推定される物体が写っている入力画像を入力する画像入力手段と、物体の3次元形状データを記憶する3次元形状データ記憶手段と、3次元形状データ記憶手段に記憶されている3次元形状データを用いて、物体が所定の状態にある画像を比較画像として生成する比較画像生成手段と、比較画像生成手段で生成された比較画像と入力画像との位置関係を、画像における所定の大きさの小領域ごとに検出する画像位置関係検出手段と、画像位置関係検出手段で検出された位置関係を用いて、比較画像中における物体の状態の修正量を計算する修正量計算手段と、修正量計算手段で求められた修正量を用い、比較画像生成手段で比較画像生成の際に設定された物体の状態を修正して新たな物体の状態を算出する状態修正手段とを備えることを特徴とする。
また、本発明による物体の状態を推定する推定方法は、位置および姿勢の少なくとも一方である状態が推定される物体が写っている入力画像を入力するステップと、物体の3次元形状データを用いて、物体が所定の状態にある画像を比較画像として生成するステップと、比較画像と入力画像との位置関係を、画像における所定の大きさの小領域ごとに検出するステップと、検出された位置関係を用いて、比較画像中における物体の状態の修正量を計算するステップと、計算された修正量を用い、比較画像生成の際に設定された物体の状態を修正して新たな物体の状態を算出するステップとを備えることを特徴とする。
本発明による物体の位置を推定するための推定プログラムは、位置および姿勢の少なくとも一方である状態が推定される物体が写っている入力画像を入力するステップと、物体の3次元形状データを用いて、物体が所定の状態にある画像を比較画像として生成するステップと、比較画像と入力画像との位置関係を、画像における所定の大きさの小領域ごとに検出するステップと、検出された位置関係を用いて、比較画像中における物体の状態の修正量を計算するステップと、計算された修正量を用い、比較画像生成の際に設定された物体の状態を修正して新たな物体の状態を算出するステップとをコンピュータに実行させることを特徴とする。
本発明によれば、画像変位分布と3次元形状データとにもとづいて位置や姿勢の差分値を算出し、誤差を含んだ初期予想値から実際の位置/姿勢に最短距離で収束するように位置/姿勢の推定値を算出する。そのため、比較画像の生成回数を削減することができ、対象物体の位置/姿勢の推定値算出の際の計算量を削減することができる。従って、画像に含まれる物体の位置や姿勢を従来より短時間で推定することができる。
図1は、本発明による物体の状態を推定する推定システムを、物***置姿勢推定システムとして適用した環境の一例を示す説明図である。 図2は、物***置姿勢推定システムの構成の一例を示すブロック図である。 図3は、3次元モデル記憶手段の構成の一例を示すブロック図である。 図4は、終了判定手段の構成の一例を示すブロック図である。 図5は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の一例を示す流れ図である。 図6は、物***置姿勢推定システムの構成の他の例を示すブロック図である。 図7は、終了判定手段の構成の他の例を示すブロック図である。 図8は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の他の例を示す流れ図である。 図9は、物***置姿勢推定システムの構成の更に他の例を示すブロック図である。 図10は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の更に他の例を示す流れ図である。 図11は、物***置姿勢推定システムの構成の更に他の例を示すブロック図である。 図12は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の更に他の例を示す流れ図である。 図13は、比較画像と入力画像との間の画像変位分布を検出する処理の一例を示す説明図である。 図14は、従来の位置姿勢認識装置の構成を示すブロック図である。
以下、本発明の第1の実施例を図面を参照して説明する。図1は、本発明による物体の状態を推定する推定システムを、物***置姿勢推定システムとして適用した環境の一例を示す説明図である。図1に示すように、物***置姿勢推定システムは、プログラムに従って各処理を実行するコンピュータ100(中央処理装置、プロセッサ、データ処理装置)と、対象物体の3次元形状および表面反射率を計測する3次元形状計測装置200と、対象物体を含む被写体を撮像するカメラ300とを含む。
また、図2は、物***置姿勢推定システムの構成の一例を示すブロック図である。図2に示すように、物***置姿勢推定システムは、比較画像生成手段110と、画像変位分布検出手段120と、姿勢差分計算手段130と、終了判定手段140と、3次元形状計測手段150と、照明基底計算手段160と、3次元モデル記憶手段170と、画像入力手段180とを含む。なお、図1に示すコンピュータ100は、図2に示す構成のうち、比較画像生成手段110と、画像変位分布検出手段120と、姿勢差分計算手段130と、終了判定手段140と、照明基底計算手段160と、3次元モデル記憶手段170とを含む。
3次元形状計測手段150は、3次元形状計測装置200によって実現される。3次元形状計測手段150は、位置/姿勢(位置および姿勢の少なくとも一方である状態)を推定する対象物体の3次元形状と表面反射率とを計測し、対象物体の3次元形状データおよび表面反射率データを生成する。照明基底計算手段160は、コンピュータ100の制御部(図示せず)などによって実現される。照明基底計算手段160は、対象物体の3次元形状データおよび表面反射率データにもとづいて、対象物体の各部位の照明条件による輝度の変化を示す照明基底データを算出する。
3次元モデル記憶手段170は、コンピュータ100が備える記憶装置(図示せず)によって実現される。3次元モデル記憶手段170は、3次元形状計測手段150が生成した対象物体の3次元形状データと、照明基底計算手段160が算出した照明基底データとを記憶する。従って、3次元モデル記憶手段170は、図3に示すように、3次元形状データ記憶部170aと、照明基底データ記憶部(照明基底画像群記憶部)170bとを含む。
画像入力手段180は、カメラ300によって実現される。画像入力手段180は、位置/姿勢を推定する対象物体を含む被写体を撮像して入力画像データ11を生成する。そして、画像入力手段180は、生成した入力画像データ11をコンピュータ100に出力する。また、画像入力手段180は、入力画像中の対象物体の位置/姿勢の予想値である位置姿勢初期値12の入力を受け付ける。例えば、入力画像を見ながら入力された対象物体の大まかな位置/姿勢の値を、位置姿勢初期値12として入力を受け付ける。そして、画像入力手段180は、入力された位置姿勢初期値12をコンピュータ100に出力する。
なお、本実施例において、物***置姿勢推定システムは、位置姿勢初期値12の誤差を修正することによって、正確な対象物体の位置/姿勢を推定する。すなわち、位置姿勢初期値12は、対象物体の位置姿勢推定値の初期値として用いられる。物***置姿勢推定システムは、推定処理の各段階において現在の位置姿勢推定値(処理開始時は位置姿勢初期値12)と実際の対象物体の位置/姿勢との差分(誤差)を求め、位置姿勢推定値の修正を順次繰り返すことによって、最終的に最適な位置姿勢推定値を求める。
比較画像生成手段110は、コンピュータ100の制御部などによって実現される。比較画像生成手段110は、3次元モデル記憶手段170が記憶する対象物体の3次元形状データと照明基底データとにもとづいて、入力画像と同一または近似の照明条件での対象物体の画像を比較画像として生成する。この場合に、比較画像生成手段110は、位置姿勢推定値として与えられた位置/姿勢に対象物体があると仮定した場合の画像を比較画像として生成する。位置姿勢推定値としては、位置姿勢初期値12、または後述する終了判定手段140が算出する位置姿勢推定値が用いられる。
入力画像と同一または近似の照明条件での比較画像の生成処理は、例えば、以下の公知の方法によって実行される。例えば、対象物体の物体表面の各位置の輝度などを示すテクスチャは照明条件によって変化するが、これらの照明変動によって生成される様々なテクスチャ空間と対象物体の3次元形状データとをあらかじめ登録しておく。そして、登録したテクスチャ空間と3次元形状データとにもとづいて、テクスチャ空間を必要とされる位置姿勢に対象物体があるときに照明条件の変動によって生成される照明変動空間に変換することが可能である。比較画像生成手段110は、この変換方法を用いることによって、入力画像と同一または近似の照明条件の下での比較画像を生成することができる。
なお、上記の同一または近似の照明条件での画像の生成方法(同一または近似の照明条件を再現した画像の生成方法)は、例えば、特開2002−157595号公報(以下、文献2)に記載されている。
画像変位分布検出手段120は、コンピュータ100の制御部などによって実現される。画像変位分布検出手段120は、比較画像生成手段110が生成した比較画像を所定の大きさの部分(小領域)ごとの部分画像に分割する。画像変位分布検出手段120は、各部分画像と入力画像との輝度値を比較し、画像上でそれぞれいずれの方向に動かして重ね合わせると最も類似度が大きくなるかを検出する。すなわち、画像変位分布検出手段120は、入力画像に対する比較画像の各小領域ごとの画像変位分布(比較画像と入力画像との小領域ごとの位置関係)を検出する。
画像変位分布検出手段120は、例えば、一般にオプティカルフローと呼ばれる画像変位検出技術を用いて画像変位分布を検出する。すなわち、画像変位分布検出手段120は、画像内の物体の各部分がどのように移動したのかを示す移動ベクトルの分布を検出することによって、比較画像と入力画像との画像間の変位分布を検出する。なお、オプティカルフローによる画像変位検出技術が、例えば「J.L.Barron,D.J.Fleet,S.S.Beauchemin,Performance of Optical Flow Techniques,″International Journal of Computer Vision″,Netherlands,Kluwer Academic Publishers,1994,12:1,p.43−77」に記載されている。
姿勢差分計算手段130は、コンピュータ100の制御部などによって実現される。姿勢差分計算手段130は、画像変位分布検出手段120が検出した各小領域ごとの画像変位分布と、対象物体の3次元形状データの各部分の3次元座標データ(各小領域に対応する3次元座標データ)とにもとづいて、対象物体を仮想的に動かしたときに、各部分が変位分布に最も近くなる3次元運動(移動量や回転量)を計算する。そして、姿勢差分計算手段130は、3次元運動の計算結果を位置姿勢差分値(修正量)として算出する。
終了判定手段140は、図4に示すように、位置姿勢判定部141と、推定値記憶部142と、推定値管理部143とを含み、コンピュータ100の制御部および記憶部などによって実現される。
位置姿勢判定部141は、比較画像生成手段110が比較画像を生成する際に仮定した対象物体の位置/姿勢が適切であるか否かを判定する。適切であるか否かは、姿勢差分計算手段130が算出した位置姿勢差分値と、あらかじめ定めた所定の閾値との大小によって判定する。すなわち、位置姿勢差分値が閾値より小さい場合には、現在の位置/姿勢が適切であると判定し、小さくない(等しいまたは大きい)場合には、適切でないと判定する。位置姿勢判定部141は、判定結果を推定値管理部143に出力する。
推定値記憶部142は、現在の位置姿勢推定値を記憶する。具体的には、位置姿勢推定値の初期値として位置姿勢初期値12を、また後述するように推定値管理部143によって算出される新しい位置姿勢推定値を記憶する。
推定値管理部143は、位置姿勢判定部141から入力される判定結果に応じて、次のような処理を行う。位置姿勢判定部141によって現在の位置/姿勢が適切であると判定された場合には、現在の位置姿勢推定値が最も正確な推定値(実際の対象物体の位置/姿勢に最も近い値)であるから、推定値管理部143は、推定値記憶部142から現在の位置姿勢推定値を読み出し、この推定値を最適位置姿勢推定値13として出力し、処理を終了する。これに対し、位置姿勢判定部141によって現在の位置/姿勢が適切でないと判定された場合には、推定値管理部143は、推定値記憶部142から現在の位置姿勢推定値を読み出し、この推定値の各パラメータに位置姿勢差分値を加算することにより、現在の位置姿勢推定値を修正した新しい位置姿勢推定値を算出する。この処理は、比較画像を生成する際に仮定した対象物体の位置/姿勢の修正に相当する。推定値管理部143は更に、推定値記憶部142の記憶内容を新しい位置姿勢推定値に更新するとともに、この推定値を比較画像生成手段110に出力する。なお、比較画像生成手段110に新しい位置姿勢推定値が入力されると、物***置姿勢推定システムは、比較画像生成手段110の比較画像生成処理からの一連の処理を繰り返し実行する。
なお、画像位置関係検出手段は、画像変位分布検出手段120によって実現される。修正量計算手段は、姿勢差分計算手段130によって実現される。状態修正手段は、推定値管理部143によって実現される。状態判定手段は、位置姿勢判定部141によって実現される。
なお、本実施例において、コンピュータ100が備える記憶装置は、対象物体の位置姿勢推定処理を実行するための各プログラムを記憶している。例えば、コンピュータ100が備える記憶装置は、コンピュータに、データベースが記憶する物体の3次元形状データを用い物体が所定の状態(位置および姿勢の少なくとも一方)にある画像を比較画像として生成する処理と、生成した比較画像と入力画像との位置関係を小領域ごとに検出する処理と、検出した小領域ごとの位置関係を用いて比較画像中における物体の状態の修正量を計算する処理と、計算した修正量を用い比較画像生成の際に設定された物体の状態を修正して新たな物体の状態を算出する処理と、を実行させるための物体の状態を推定するための推定プログラムを記憶している。なお、この推定プログラムは、光ディスクや磁気ディスク、その他の記録媒体に記録された状態で提供されるものであってもよい。
次に、動作について説明する。図5は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の一例を示す流れ図である。物***置姿勢推定システムのユーザ(以下、単にユーザという。)は、3次元形状計測装置200(3次元形状計測手段150)を操作して、位置/姿勢の推定を行う対象物体の3次元形状および表面反射率の計測指示をあらかじめ入力する。3次元形状計測手段150は、ユーザの操作に従って、対象物体の3次元形状および表面反射率を計測し、3次元形状データおよび表面反射率データを生成する。
なお、3次元形状および表面反射率を計測する場合に、対象物体を一方向だけから計測すると見えない領域が生じるために物体全体の形状および表面反射率を計測できない場合がある。この場合には、対象物体を他の異なる方向からも計測して計測値を統合することによって、物体全体の3次元形状データおよび表面反射率データが生成される。
照明基底計算手段160は、3次元形状計測手段150が生成した3次元形状データおよび表面反射率データにもとづいて、様々な照明条件の下での対象物体の画像の輝度値の変動を示す照明基底画像群を算出する。そして、照明基底計算手段160は、算出した照明基底画像群を、照明基底データとして3次元モデル記憶手段170に記憶させる。また、照明基底計算手段160は、照明基底データとともに、3次元形状計測手段150からの3次元形状データを3次元モデル記憶手段170に記憶させる(ステップS10)。
ユーザは、カメラ300(画像入力手段180)を操作して、対象物体を撮影する。画像入力手段180は、ユーザの操作に従って、位置/姿勢を推定する対象物体が含まれる被写体を撮像し、入力画像データ11を生成する(ステップS11)。そして、画像入力手段180は、生成した入力画像データ11をコンピュータ100に出力する。
ユーザは、入力画像を見ながら入力画像中の対象物体の大まかな位置/姿勢を示す値を入力指示する。画像入力手段180は、ユーザによって入力指示された大まかな位置/姿勢の値を、位置姿勢初期値12としてコンピュータ100に出力する(ステップS12)。位置姿勢初期値12は、比較画像生成手段110に入力されるとともに、終了判定手段140の推定値記憶部142に記憶される。
なお、ユーザが入力画像を見ながら手動で位置姿勢初期値12を入力指示するのでなく、他の推定装置/システムが出力する推定値を、物***置姿勢推定システムに入力するようにしてもよい。例えば、物***置姿勢推定システムより精度が劣るが初期値を入力しなくても対象物体の位置/姿勢を推定できる推定装置/システム(例えば、物体の大まかな回転角度を検出するセンサを用いた装置)がある場合に、それらの推定装置/システムが出力する推定値を物***置姿勢推定システムに入力するようにしてもよい。そのようにすれば、手動で初期値を入力しなくても、精度の高い対象物体の位置/姿勢を推定することができる。
比較画像生成手段110は、3次元モデル記憶手段170があらかじめ記憶する対象物体の3次元形状データおよび照明基底データを抽出する。また、比較画像生成手段110は、画像入力手段180から入力画像データ11を取り込む。比較画像生成手段110は、3次元形状データ、照明基底データおよび入力画像データ11にもとづいて、位置姿勢初期値12として与えられた位置/姿勢に対象物体があるとした場合の入力画像と同一または近似の照明条件での対象物体の画像を、比較画像として生成する(ステップS13)。
画像変位分布検出手段120は、比較画像生成手段110が生成した比較画像を所定の大きさの部分ごとの部分画像に細かく分割する。画像変位分布検出手段120は、各部分画像をそれぞれ入力画像に重ね合わせて輝度値を比較し、画面上でいずれの方向に動かすと最も類似度が大きくなるかを検出し、画像変位分布として検出する(ステップS14)。なお、画像変位分布検出手段120は、入力画像を部分画像に分割し、各部分画像をそれぞれ比較画像に重ね合わせて輝度値を比較することによって、画像変位分布を検出してもよい。
姿勢差分計算手段130は、画像変位分布検出手段120が検出する画像変位分布と、対象物体の3次元形状データに含まれる各部分ごとの3次元座標データ(各小領域に対応するデータ)とにもとづいて、対象物体を仮想的に動かしたときに、各部分が変位分布に最も近くなる対象物体の3次元運動を計算する。そして、姿勢差分計算手段130は、3次元運動の計算結果を位置姿勢差分値として算出する(ステップS15)。
終了判定手段140において、位置姿勢判定部141は、比較画像生成手段110が比較画像を生成する際に設定した対象物体の位置/姿勢が適切であるか否かを判定する(ステップS16)。具体的には、姿勢差分計算手段130が算出した位置姿勢差分値が所定の閾値より小さい場合に、現在の位置/姿勢が適切であると判定する(ステップS16,YES)。この場合には、推定値管理部143が推定値記憶部142から現在の位置姿勢推定値を読み出し、この推定値を最適位置姿勢推定値13として出力し(ステップS17)、処理を終了する。
これに対し、位置姿勢差分値が所定の閾値より小さくない場合には、位置姿勢判定部141は、現在の位置/姿勢が適切でないと判定する(ステップS16,NO)。この場合には、推定値管理部143が、推定値記憶部142から現在の位置姿勢推定値を読み出し、この推定値の各パラメータに位置姿勢差分値を加算することにより、新しい位置姿勢推定値を算出する。更に、推定値管理部143は、推定値記憶部142の記憶内容を新しい位置姿勢推定値に更新するとともに、この推定値を比較画像生成手段110に出力する(ステップS18)。
そして、コンピュータ100は、ステップS16において位置姿勢差分値が所定の閾値より小さいと判定されるまで、ステップS13、S14、S15、S16、S18の処理を繰り返し実行する。
以上のように、本実施例によれば、物***置姿勢推定システムは、画像変位分布検出手段120と姿勢差分計算手段130とを備え、比較画像と入力画像とを所定の大きさの小領域である部分画像ごとに分割し、比較画像と入力画像との部分画像ごとの輝度値を比較して2次元的な位置ずれを検出する。そして、物***置姿勢推定システムは、位置ずれの分布とあらかじめ登録する対象物体の3次元形状モデルとにもとづいて、対象物体の位置/姿勢の3次元的な位置姿勢差分値を算出し、位置姿勢差分値を現在の位置姿勢推定値に加算することによって位置姿勢推定値を更新するように動作する。
上記の構成により、物***置姿勢推定システムは、誤差を含んだ初期値から実際の位置/姿勢に最短距離で収束するように位置姿勢推定値を更新する。そのため、本実施例によれば、多くの位置姿勢推定値を生成して、それらの全ての推定値について比較画像を生成し入力画像と比較する必要がないので、従来の位置姿勢認識装置などと比較して、比較画像の生成回数を削減することができ、対象物体の位置/姿勢の推定値算出の際の計算量を削減することができる。従って、画像に含まれる物体の位置や姿勢を高速に推定することができる。
例えば、あらかじめ入力された位置/姿勢の初期推定値が、実際の対象物体の位置/姿勢から(x,y,z)軸方向の平行移動でそれぞれ(1mm,2mm,3mm)、(x,y,z)軸周りの回転移動でそれぞれ(6度,4度,2度)ずれている場合を説明する。従来の位置姿勢認識装置などにおいては、初期値からいずれの方向にどの程度各パラメータを変更すれば最適な値であるか不明であるので、例えば、従来の位置姿勢認識装置は、平行移動方向に1mmづつ変化させ、回転方向に2度づつ変化させながら、推定値を探索する。
この場合に、位置姿勢認識装置は、最短でも平行移動方向で1+2+3=6回、および回転方向で3+2+1=6回の合計12回の探索処理を行う必要がある。すなわち、位置姿勢認識装置は、再現画像(比較画像)の生成処理および入力画像と再現画像との類似度の算出処理を理論上それぞれ最低でも12回行う必要がある。また、実際の処理では、その位置での推定値が実際の位置/姿勢と誤差が最小であるか否か判断するためには、画像再現誤差の最小点から更に1ステップ行き過ぎた位置/姿勢まで検索しなければならないので、位置姿勢認識装置は、最低でも12+6=18回の探索処理を行わなければならない。
本実施例によれば、物***置姿勢推定システムは、初期値として入力した位置姿勢パラメータを用いて、登録した3次元形状モデルと照明基底データとにもとづいて、入力画像と同一または近似の照明条件での比較画像を生成する。また、物***置姿勢推定システムは、比較画像と入力実画像との間で、画像上で対象物体が含まれる領域を所定の大きさに分割し、それぞれのブロックの2次元のずれ方向(各部位を画像上で上下左右にずらして比較した場合に、比較画像と入力画像との輝度値の差が最小となる移動量、すなわち画像変位分布)を検出する。そして、物***置姿勢推定システムは、検出した画像変位分布を最適に補正する方向に位置/姿勢の推定値を更新するので、位置/姿勢の6つのパラメータを同時に更新することができる。従って、従来の位置姿勢認識装置などと比較して、少ない回数の探索で高精度の位置姿勢推定値を得ることができ、推定値算出のための計算量を削減することができる。
次に、本発明の第2の実施例を図面を参照して説明する。図6は、物***置姿勢推定システムの構成の他の例を示すブロック図である。図6に示すように、物***置姿勢推定システムは、第1の実施例で示した構成における終了判定手段140を終了判定手段140aに代え、更に更新比較画像生成手段110aを付加したものである。なお、他の構成要素については、第1の実施例と同様である。
更新比較画像生成手段110aは、コンピュータ100の制御部などによって実現される。更新比較画像生成手段110aは、姿勢差分計算手段130が位置姿勢差分値を算出すると、終了判定手段140aから現在の位置姿勢推定値を読み出し、この推定値に位置姿勢差分値を加算して、新しい位置姿勢推定値を算出する。この処理は、第1の実施例において、推定値管理部143によって行われる処理と同じである。そして、更新比較画像生成手段110aは、対象物体の3次元形状データ、照明基底データおよび入力画像データ11にもとづいて、新しい位置姿勢推定値の位置/姿勢に対象物体があるとした場合の入力画像と同一または近似の照明条件での画像を、更新比較画像として生成する。新しい位置姿勢推定値および更新比較画像は、終了判定手段140aに出力される。
終了判定手段140aは、図7に示すように、位置姿勢判定部141aと、推定値記憶部142aと、第1の類似度算出部145と、第2の類似度算出部146と、比較画像記憶部147とを含み、コンピュータ100の制御部および記憶部などによって実現される。
第1の類似度算出部145は、更新比較画像生成手段110aが生成した更新比較画像と入力画像との第1の類似度(以下、更新後類似度という。)を算出する。第2の類似度算出部146は、後述するように比較画像記憶部147に記憶されている現在の比較画像と入力画像との第2の類似度(以下、更新前類似度という。)を算出する。
位置姿勢判定部141aは、更新後類似度と更新前類似度とを比較することにより、比較画像生成手段110および更新比較画像生成手段110aが比較画像および更新比較画像を生成する際に仮定した対象物体の位置/姿勢が適切であるか否かを判定する。すなわち、更新後類似度が更新前類似度より大きい場合には、現在の位置/姿勢が適切でないと判定し、更新後類似度が更新前類似度より大きくない(等しいまたは小さい)場合には、適切であると判定する。判定結果は推定値記憶部142aおよび比較画像記憶部147に出力される。
比較画像記憶部147は、現在の比較画像を記憶する。最初は比較画像生成手段110が生成した比較画像を記憶し、その後は更新比較画像生成手段110aが生成した更新比較画像を記憶する。位置姿勢判定部141aによって現在の位置/姿勢が適切でないと判定されたときに、比較画像記憶部144は記憶内容を新しい更新比較画像に更新するとともに、新しい更新比較画像を画像変位分布検出手段120に出力する。
推定値記憶部142aは、現在の位置姿勢推定値を記憶する。具体的には、位置姿勢推定値の初期値として位置姿勢初期値12を記憶し、その後は更新比較画像生成手段110aが算出した新しい位置姿勢推定値を記憶する。位置姿勢判定部141aによって現在の位置/姿勢が適切でないと判定されたときに、推定値記憶部142aは記憶内容を新しい位置姿勢推定値に更新する。これに対し、位置姿勢判定部141aによって現在の位置/姿勢が適切であると判定されたときには、推定値記憶部142aは現在の位置姿勢推定値を最適位置姿勢推定値13として出力し、処理を終了する。
図8は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の他の例を示す流れ図である。図8において、ステップS10からステップS15までの処理は、第1の実施例と同様である。図8に示すように、本実施例では、第1の実施例で示した処理に加えてステップS20−S22の処理が実行され、ステップS23の状態判定処理の処理内容が第1の実施例と異なる。
ステップS15において位置姿勢差分値が算出されると、更新比較画像生成手段110aは、位置姿勢差分値を現在の位置姿勢推定値に加算して新しい位置姿勢推定値を算出する。更新比較画像生成手段110aは、対象物体の3次元形状データ、照明基底データおよび入力画像データ11にもとづいて、新しい位置姿勢推定値の位置/姿勢に対象物体があるとした場合の入力画像と同一または近似の照明条件での画像を、更新比較画像として生成する(ステップS20)。なお、後述するように、新しい位置姿勢推定値および更新比較画像を、以後の処理で用いるデータとして採用するか否かは、更新前後の各画像の類似度を比較することによって終了判定手段140aによって決定される。
終了判定手段140aにおいて、第1の類似度算出部145は、更新比較画像生成手段110aが生成した更新比較画像と入力画像との類似度、すなわち更新後類似度を算出する(ステップS21)。また、第2の類似度算出部146は、現在の位置姿勢推定値にもとづく現在の比較画像と入力画像との類似度、すなわち更新前類似度を算出する(ステップS22)。
位置姿勢判定部141aは、更新後類似度と更新前類似度とを比較する。その結果、更新後類似度が更新前類似度より大きい場合には、位置姿勢判定部141aは、現在の位置/姿勢が適切でないと判定し(ステップS23,NO)、更新比較画像生成手段110aが算出した新しい位置姿勢推定値を現在の位置姿勢推定値に置き換えて、以後の処理に用いる位置姿勢推定値に決定する(ステップS18)。また、この場合、更新比較画像生成手段110aが算出した更新比較画像を現在の比較画像に置き換えて、以後の処理に用いる比較画像に決定する。そして、コンピュータ100は、更新後類似度が更新前類似度より大きくなくなるまで、ステップS14、S15、S20、S21、S22、S23、S18の処理を繰り返し実行する。
更新後類似度が更新前類似度より大きくない場合には、位置姿勢判定部141aは、現在の位置/姿勢が適切であると判定し(ステップS23,YES)、現在の位置姿勢推定値(更新前の位置姿勢推定値)を、最終的な最適位置姿勢推定値13として出力し(ステップS17)、処理を終了する。
以上のように、本実施例によれば、処理数は増加するが、第1の実施例と比較して、位置姿勢差分値が小さくなっても比較画像がより入力画像に近くなるように推定処理を行うことができる。従って、第1の実施例と比較して、位置姿勢推定値を更に絞り込むことができ、最終的な位置姿勢推定値の精度を高めることができる。
次に、本発明の第3の実施例を図面を参照して説明する。図9は、物***置姿勢推定システムの構成の更に他の例を示すブロック図である。図9に示すように、物***置姿勢推定システムは、第1の実施例で示した構成のうち、画像入力手段180に代えて画像入力手段180aを、また終了判定手段140に代えて姿勢更新手段140bを用いたものである。
本実施例では、位置/姿勢を推定する対象物体が含まれる画像が静止画像ではなく動画像であり、物***置姿勢推定システムは、対象物体が移動するのに従って随時位置姿勢推定値を連続して出力する。本実施例において、画像入力手段180aは、ビデオカメラなどの動画像の撮像手段によって実現される。また、姿勢更新手段140bは、コンピュータ100の制御部および記憶部などによって実現される。なお、本実施例では、対象物体が人物の顔である場合を例に説明する。また、他の構成要素については、第1の実施例と同様である。
図10は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の更に他の例を示す流れ図である。図10に示すように、本実施例では、第1の実施例における処理に加えて、動画像に含まれる静止画像(フレーム画像)のうち各処理時点でのフレーム画像(最新のフレーム画像)を取り込むステップS30の処理が実行され、またステップS16の状態判定処理に代えてステップS31の姿勢更新処理が実行される。
第1の実施例と同様に、照明基底データを生成すると、照明基底計算手段160は、3次元形状データおよび照明基底データを3次元モデル記憶手段170に記憶させる(ステップS10)。ユーザは、動画像を見ながら動画像に含まれる最初のフレーム画像中の人物の顔のおおまかな位置/姿勢を入力指示する。画像入力手段180aは、ユーザによって入力指示された大まかな位置/姿勢を、位置姿勢初期値12としてコンピュータ100に出力する(ステップS12)。
比較画像生成手段110は、画像入力手段180aから、現時点でのフレーム画像を入力画像データ11aとして取り込む(ステップS30)。そして、第1の実施例と同様に、比較画像生成手段110が比較画像を生成し(ステップS13)、画像変位分布検出手段120が画像変位分布を検出し(ステップS14)、姿勢差分計算手段130が姿勢差分値を算出する(ステップS15)。なお、ステップS13からステップS15までの処理内容は、第1の実施例と同様である。
姿勢更新手段140bは、姿勢差分計算手段130が算出した位置姿勢差分値を現在の位置姿勢推定値に加算して、位置姿勢推定値の値を更新する(ステップS31)。この場合に、姿勢更新手段140bは、更新した位置姿勢推定値を、更新ごとに現時点での最適位置姿勢推定値13として出力する。そして、コンピュータ100は、動画像が終了するまで、ステップS30、S13、S14、S15、S31の処理を繰り返し実行する。
以上のように、本実施例によれば、位置/姿勢が時間の経過とともに変化する移動中の対象物体の位置/姿勢を、リアルタイムに推定することができる。また、常に現在の位置姿勢推定値にもとづき生成した比較画像と、現在の動画像に含まれるフレーム画像とを比較して位置姿勢を更新するので、誤差の蓄積がなく高精度に長時間の位置/姿勢の推定処理を行うことができる。
次に、本発明の第4の実施例を図面を参照して説明する。図11は、物***置姿勢推定システムの構成の更に他の例を示すブロック図である。図11に示すように、物***置姿勢推定システムは、第1の実施例で示した構成に加えて、特徴抽出手段190を含む。なお、他の構成要素については、第1の実施例と同様である。
特徴抽出手段190は、コンピュータ100の制御部などによって実現される。また、特徴量抽出手段は、特徴抽出手段190によって実現される。
図12は、物***置姿勢推定システムが行う対象物体の位置姿勢推定処理の更に他の例を示す流れ図である。本実施例では、画像変位分布を検出する際に、比較画像と入力画像との画像の輝度値を直接比較して画像のずれを検出するのではなく、位置ずれの検出に適した画像特徴量をフィルタを用いて抽出し画像変位検出を行う。本実施例では、画像特徴量としてエッジ特徴量を用いる場合を説明する。なお、エッジ特徴量ではなく、画像特徴量として、ガボール特徴量など他の特徴量を用いてもよい。
図12において、ステップS10からステップS13までの処理は、第1の実施例と同様である。比較画像生成手段110が比較画像を生成すると、特徴抽出手段190は、比較画像および入力画像のそれぞれについて、画像特徴量として、エッジ検出フィルタを用いてエッジ画像を生成する(ステップS40)。
特徴抽出手段190は、画像の縦方向に対するエッジ検出フィルタと、画像の横方向に対するエッジ検出フィルタとを備える。ステップS40において、特徴抽出手段190は、縦方向および横方向のエッジ検出フィルタをそれぞれ別々に用いて、比較画像についての縦方向のエッジ画像(以下、縦エッジという。)および横方向のエッジ画像(以下、横エッジという。)と、入力画像についての縦エッジおよび横エッジとを生成する。すなわち、特徴抽出手段190は、ステップS40において、4つのエッジ画像を生成する。
画像変位分布検出手段120は、比較画像の縦エッジおよび横エッジを所定の大きさの部分ごとに細かく分割して、部分エッジ画像を生成する。画像変位分布検出手段120は、各部分エッジ画像を、それぞれ入力画像の縦エッジおよび横エッジと重ね合わせて比較し、画面上でいずれの方向に動かすと最も類似度が大きくなるかを調べ、類似度が大きくなる方向を画像変位分布として出力する(ステップS41)。
ステップS41において、縦方向のエッジ画像同士を比較すると横方向の画像のずれが明確であるので、画像変位分布検出手段120は、比較画像および入力画像の縦エッジ同士を比較することによって、横方向の画像変位を検出する。また、横方向のエッジ画像同士を比較すると縦方向の画像のずれが明確であるので、画像変位分布検出手段120は、比較画像および入力画像の横エッジ同士を比較することによって、縦方向の画像変位を検出する。このように、それぞれの方向の位置ずれを検出するために最適な画像特徴量を用いることによって、画像変位分布の検出精度を向上させることができる。
なお、ステップS15からステップS18の処理は、第1の実施例と同様である。
以上のように、本実施例によれば、部分ごとの画像の位置ずれである画像変位を検出するために、比較画像と入力画像との画像の輝度値を直接比較するのでなく、輝度値よりも位置ずれを敏感に検出できる画像特徴量を用いる。そのため、輝度値を用いる場合と比較して、高精度に画像変位を検出することができる。従って、算出する位置姿勢差分値の精度を向上させることができ、最終的に得られる位置姿勢推定値の精度を向上させることができる。
次に、第1の実施例の具体例を第4の実施例として説明する。本実施例では、物***置姿勢推定システムは、あらかじめ登録する対象物体の3次元形状を計測するための3次元形状計測装置200、位置/姿勢を推定する対象物体が含まれる被写体を撮像するカメラ300、およびデータ処理装置/データ記憶装置としてパーソナルコンピュータ(コンピュータ100)を備える。なお、本実施例では、位置/姿勢を推定する対象物体が人物の顔である場合を説明する。
(3次元形状データ登録処理)まず、システムの準備段階の処理であるステップS10の3次元形状データの登録処理について説明する。図5に示す3次元形状データの登録処理では、前述のように、位置/姿勢を推定する対象物体(本例では、特定の人物の顔)の3次元形状と、対象物体の表面の任意の照明条件による輝度値の変動を示す照明基底データとがコンピュータ100が備える記憶装置にあらかじめ記憶される。
ユーザは、3次元形状計測装置200を操作して、顔の3次元形状および表面反射率の計測を指示する。そして、データ処理用のコンピュータ100は、3次元形状計測装置200から、3次元形状データおよび表面反射率データ(または、表面反射率データに相当する画像データ)を取り込む。
コンピュータ100は、3次元形状データと表面反射率データ(または画像データ)とにもとづいて、顔表面の輝度の照明変動を示す照明基底群を算出する。そして、コンピュータ100は、算出した照明基底群を照明基底データとして記憶装置などに記憶させる。この場合に、コンピュータ100は、以下に示す技術を用いて照明基底群を生成する。なお、照明基底群の生成技術は本例で示すものに限らず、後述する比較画像生成のアルゴリズムに応じて様々な照明基底群の生成技術が利用可能である。
また、ステップS10の3次元形状データの登録処理およびステップS13の比較画像生成処理において、本実施例では、照明条件の変動を補正する方法について説明するが、照明条件の変化が小さいかまたは変化がない場合には、補正処理を行わなくてもよい。この場合、コンピュータ100は、照明基底群の算出処理を行わず、対象物体の表面の各点の輝度値をそのまま記憶装置などに記憶させてもよい。
3次元形状データの表面に対して、照明基底テクスチャを計算するためのテクスチャ座標系を以下のように定義する。本例では、3次元形状データは、対象物体の重心を原点とする3次元座標(x,y,z)として、物体表面のそれぞれの点の座標データを含む。すなわち、3次元形状データは、物体表面の各点の座標データの集合である。この場合に、物体重心を中心とする物体を囲む球面を定め、その球表面への点Pの投影点をQとしたときの点Qの経度および緯度(s,t)が、物体表面の各点Pのテクスチャ座標と定義される。なお、照明基底群を算出するために、物体形状に合わせて他の様々な座標系を用いてもよい。
コンピュータ100は、様々な照明条件iの下で物体表面の各点の輝度I(s,t)を算出する。照明条件を設定する方法として、例えば、1つの点光源を無限遠においたと仮定し、経度および緯度をそれぞれマイナス90度からプラス90度まで10度間隔に変化させて得られる19×19=361個の方向ベクトルLにもとづいて、光が照射されている照明条件を設定する。なお、照明が照射される方向や照射方向の数は、任意に設定されてよい。この場合の物体表面各点の輝度I(s,t)は、法線ベクトルをN(s,t)、表面反射率データをr(s,t)とすると、数式1によって算出される。
Figure 0004349367
ここで、S(s,t,L)は、キャストシャドウ(影)を表す項である。S(s,t,L)は、各点(s,t)から方向ベクトルLの無限遠にある光源との間に物体表面がある場合には値が0となり(影になるので輝度値が0となる)、物体表面がない場合には値が1となる。なお、この影を判定する方法は、コンピュータグラフィクスの分野で周知技術である光線追跡(レイ・トレーシング)などの方法を用いて実現することができる。
次に、コンピュータ100は、任意の照明条件の下での物体表面の輝度値を再現することができる基底テクスチャ群を算出する。コンピュータ100は、数式1を用いて算出した方向L(Lはベクトル)の点光源の下での物体表面各点(s,t)の輝度値の値を、全ての点について順番に並べたベクトルを生成する。この輝度値を順番に並べたベクトルをサンプルテクスチャI(Iはベクトル)とする。すると、サンプルテクスチャ群{I}(i=1,2,...,361)の共分散行列Vは、数式3で算出することができる。なお、数式3におけるSは、サンプルテクスチャ群{I}(i=1,2,...,361)を示し、数式2によって表される。
Figure 0004349367
コンピュータ100は、共分散行列Vの固有値(σ)と固有ベクトル(G)とを、固有値の大きい順に10個算出する。この場合、コンピュータ100は、固有ベクトル群{G}(j=1,2,…,10)を照明基底群として生成し、記憶装置などに記憶させる。なお、10個算出するとしたのは一例であり、10個より多くの固有値および固有ベクトルを算出してもよく、また10個より少ない固有値および固有ベクトルを算出するようにしてもよい。
なお、以上に示した照明基底群の算出方法が、例えば、文献2に記載されている。
次に、物***置姿勢推定システムが、物体の位置/姿勢を画像にもとづいて推定する処理について順に説明する。
(画像入力処理)ユーザは、カメラ300などの撮像装置を操作して、位置/姿勢を推定したい対象物体の画像を撮影する。そして、コンピュータ100は、カメラ300からの入力画像データを取り込む。なお、カメラ300を用いて撮影した画像を取り込むのでなく、コンピュータ100は、記憶媒体から画像データを読み込んでもよく、また、通信ネットワークを介して他のコンピュータなどから画像データを受信して読み込んでもよい。
本実施例では、対象物体は、カメラ300に対してほぼ正面を向いているが、上下左右に10度程度の姿勢変動があるものとする。また、対象物体は、カメラ300から約50cmの場所に位置しているものとする。そして、対象物体(本例では、人物の顔)は、カメラ300のほぼ中央に位置するが、位置の変動が10cm程度あるものとする。本実施例では、位置姿勢初期値として、対象物体が方面向きでカメラ300の画面の中央に位置し、距離が50cmである場合の値を常に用いるものとする。
(比較画像生成処理)コンピュータ100は、あらかじめ記憶装置などが記憶する3次元形状データと照明基底データとを読み込む。そして、コンピュータ100は、現在の位置姿勢推定値の位置/姿勢に対象物体がある場合の入力画像と同じ照明条件での対象物体の画像を比較画像として生成する。この場合に、コンピュータ100は、以下に示す技術を用いて比較画像を生成する。なお、比較画像の生成技術は本例で示すものに限らず、照明基底データの算出に用いた方法に応じて様々な比較画像の生成技術が利用可能である。
物体表面の点の3次元データの座標を[X Y Z 1]、その点に対応する比較画像上の座標を[U V]、その斉次座標を[u v w]、カメラ300の内部パラメータ(画素のサイズおよび画像中心)を示す3×3行列をK、物体の位置の平行移動を示すベクトルをT、および物体の姿勢変動を示す回転行列をRとする。すると、斉次座標を[u v w]は数式5を用いて算出され、座標[U V」は数式4を用いて算出される。なお、数式4における行列Mは、物体の回転と平行運動の運動量を示す行列であり、数式6を用いて算出される。
Figure 0004349367
Figure 0004349367
Figure 0004349367
コンピュータ100は、数式4、数式5および数式6を用いて3次元形状データの各点の画像上での座標[U V]を算出することによって、画像の中での背景部分を除いた対象物体の部分に対応する画素を決定する。そして、コンピュータ100は、それらの各画素が3次元形状データに含まれる各点のうちのどの点に対応するかを決定する。
ここで、画像中に対象物体に対応する画素がa個存在したとすると、それらa個の画素の輝度値を縦に並べたベクトルを比較画像ベクトルIとする。また、入力画像中の同じ画素位置のa個の画素の輝度値を縦に並べたベクトルを入力画像ベクトルIとする。また、比較画像ベクトルの第b要素に対応する3次元形状データの点の番号を示す関数をc(b)(ただし、b=1,2,...,a)とすると、投影行列Γは、第(b,c(b))要素が1であり、それ以外の要素が0である行列として定義できる。この場合に、現在の位置姿勢推定値に対する画像照明基底群{B}(i=1,2,...,10)は、照明基底群{G}にもとづいて、数式7を用いて算出される。
Figure 0004349367
比較画像I(Iはベクトル)は、画像照明基底群{B}の線形結合のうちで最も入力画像I(Iはベクトル)に近似した画像として、数式8および数式9を用いて算出される。
Figure 0004349367
なお、以上に示した比較画像の生成方法が、例えば、文献2に記載されている。
生成した比較画像の画素のうち、物体表面に対応しない画素(すなわち、背景部分に該当する画素)については輝度値を決定できないので、コンピュータ100は、処理対象から除外して以下の処理を行う。
なお、本実施例では、照明条件の変動を補正する方法について説明したが、照明条件の変化が小さいかまたは変動がない場合には、これらの処理を行わなくてもよい。また、この場合に、コンピュータ100は、画像照明基底群B(i=1,2,...,10)の計算を行わずに、あらかじめ記憶してある物体表面の輝度値を関数c(b)を用いて並べ替えたものを、比較画像ベクトルIとして算出してもよい。
(画像変位分布検出処理)次に、コンピュータ100は、以下に示す方法を用いて、比較画像と入力画像との間の部分領域ごとの画像変位分布を検出する。なお、画像変位分布を検出する方法は、本実施例で示す方法に限られず、オプティカルフローを用いた画像変位検出方法として提案されている他の様々な技術を適用可能である。
図13は、比較画像と入力画像との間の画像変位分布を検出する処理の一例を示す説明図である。コンピュータ100は、図13に示すように、比較画像を所定の大きさの部分ごとに細かく分割した部分画像を生成し、部分比較画像群を生成する。ここで、入力画像のサイズが100×100画素であり、部分比較画像として分割する部分画像のブロックサイズが10×10画素であるとする。また、部分比較画像を切り出すブロックの間隔を20画素とする。この場合に、コンピュータ100は、比較画像から図13に示すような四角形の領域を部分比較画像群として抽出する。
また、抽出したこれらの部分比較画像のうち、物体表面を含んでいる画像は14ブロックであるので、コンピュータ100は、図13に示すように、それら14個の部分比較画像を抽出する。なお、抽出する際のブロックのサイズ、ブロック間隔、画像の解像度などは本例で示した場合に限られない。例えば、システムの処理能力や要求される位置/姿勢の推定精度などに応じて変更可能としてもよい。また、コンピュータ100は、比較画像を分割するのでなく、入力画像を分割した部分画像群を用いて画像変位分布の検出を行ってもよい。
コンピュータ100は、抽出した各部分比較画像を、それぞれ入力画像の同じ位置に重ね合わせて同じサイズで抽出した部分入力画像と比較した場合に、画像上でいずれの方向へ動かすと最も類似度が大きくなるかを調べ、類似度が大きくなる方向を画像変位分布として出力する。この場合、コンピュータ100は、比較画像のうち物体表面を含まない背景画像は用いずに、物体表面を含み輝度値が算出されている画素のみを用いて類似度を計算する。
本実施例では、類似度の尺度として輝度値の平均絶対誤差(輝度値の差分の絶対値の総和を画素数で除算した値)の逆数を用いる場合を説明する。なお、類似度の尺度としてエッジ検出や他の特徴量変換により求めた数値を用いる方法など、他の画像比較方法を用いてもよい。
また、本実施例では、コンピュータ100は、画像変位の検出方法として、高速に変位を検出するために、u方向とv方向のそれぞれプラス方向およびマイナス方向に隣接1画素分づつずらした場合の類似度を算出する。なお、コンピュータ100は、画像変位の検出方法としては本実施例で示した方法に限らず、他の画像変位検出方法を用いて類似度を算出してもよい。例えば、コンピュータ100は、u,v方向にそれぞれ2画素以上づつずらして類似度を算出してもよい、また、コンピュータ100は、u,v方向に加えてu,v方向に対して斜め方向にずらすことによって、合計8方向に画素をずらして類似度を算出してもよい。
本実施例では、コンピュータ100は、次に示す方法によって、部分比較画像jの画像変位を示す2次元ベクトルDを決定する。
(1)コンピュータ100は、uのプラス方向およびマイナス方向にそれぞれ1画素分ずらした場合の類似度を算出する。コンピュータ100は、プラス方向にずらすと類似度が最大になると判断した場合には、ベクトルの第1要素の値を1とする。また、コンピュータ100は、マイナス方向にずらすと類似度が最大になると判断した場合には、ベクトルの第1要素を−1とする。また、コンピュータ100は、いずれの方向にもずらさない場合に類似度が最大になると判断した場合には、ベクトルの第1要素を0とする。
(2)コンピュータ100は、vのプラス方向およびマイナス方向にそれぞれ1画素分ずらした場合の類似度を算出する。コンピュータ100は、プラス方向にずらすと類似度が最大になると判断した場合には、ベクトルの第2要素の値を1とする。また、コンピュータ100は、マイナス方向にずらすと類似度が最大になると判断した場合には、ベクトルの第2要素を−1とする。また、コンピュータ100は、いずれの方向にもずらさない場合に類似度が最大になると判断した場合には、ベクトルの第2要素を0とする。
以上の手順に従って各2次元ベクトルを算出することによって、コンピュータ100は、図13に示すように、14ブロックの各部分比較画像の画像変位を示す2次元ベクトルを含む画像変位分布ベクトル群{D}を、画像変位分布として算出する。なお、図13において、図中に示す各矢印が各部分比較画像の画像変位を示す2次元ベクトルDを示す。また、矢印ではなくピリオド記号を含む画素については、画像変位を示すベクトルがゼロベクトルであることを示す。
一般に、入力画像の照明条件が時間経過に伴って変化する場合には、比較画像と入力画像との輝度値が異なっているので、画像変位分布ベクトル群{D}を精度よく算出することができない。本発明によれば、比較画素生成処理において、照明基底ベクトル群を用いて入力画像と同一または近似の照明条件での比較画像を生成するので、入力画像を撮影したときの照明条件が変動しても、画像変位分布検出処理において、画像変位分布ベクトル群{D}を精度よく算出することができる。
(姿勢差分計算処理)次に、コンピュータ100は、生成した画像変位分布と、各小領域に対応する対象物体の3次元形状データの各部分の3次元座標データとにもとづいて、対象物体を画面上で仮想的に動かした場合に、対象物体の各部分が変位分布に最も近くなるように動く3次元運動を算出する。そして、コンピュータ100は、算出した3次元運動の計算結果を位置姿勢差分値として算出する。
3次元運動を算出する場合、コンピュータ100は、比較画像および入力画像をそれぞれ動画のフレーム画像と仮定し、比較画像のフレーム画像および入力画像のフレーム画像の順番に連続する動画像として、画像変位分布をこれらのフレーム画像間の擬似的なオプティカルフローとみなして3次元運動を算出する。コンピュータ100は、例えば、以下に示すLie代数を用いた手法に従って、オプティカルフローにもとづく物体運動推定技術を用いて3次元運動を算出する。
数5に示す行列Mは、Lie代数群であるSE(3)群を構成する。SE(3)は、3つの回転運動と3つの並進運動との合計6つの運動に分解できる。対象物体の位置/姿勢のずれが微少である場合には、行列Mは単位行列Iに近くなるので、M=Iの近傍での微分を行うことによって数式10に示す6行列が得られる。数式10に示す各行列は、SE(3)のLie代数でありM=I近傍での行列Mの増分を示す線形ベクトル空間の基底となる。
Figure 0004349367
ここで、運動が微少である場合には、行列Mは数式11に示す{M}の線形和で近似できる。
Figure 0004349367
コンピュータ100は、画像変位分布検出処理において算出した画像変位分布にもとづいて係数αを算出することによって、運動量を示す行列M、すなわち位置/姿勢のずれの量(ずれの方向)を算出することができる。
各運動モードiの方向に位置/姿勢を変化させた場合の物体表面上の各点の画像座標の偏微分は、数式12を用いて算出される。
Figure 0004349367
また、物体表面の点の画素座標[U V]の偏微分は、数式13を用いて筧出される。
Figure 0004349367
数式13において、O(Oはベクトル)は、画素座標[U V]を偏微分した量を示す。位置/姿勢を変化させた場合の物体表面の画像上での運動量をd(dはベクトル)とすると、dは、数式14に示すように、各運動モードiにおける運動量の線形和として算出される。
Figure 0004349367
数式14で算出される各点の運動量dが画像変位分布に最も近くなるように対象物体の位置姿勢推定値の更新処理を行うことによって、コンピュータ100は、位置姿勢推定値を入力画像中の正確な対象物体の位置/姿勢の値に、効率的に近づけることができる。そのため、コンピュータ100は、画像変位分布検出処理において検出した各部分比較画像Dの画像変位に対して、位置/姿勢の誤差を示すエラーeを最小化するための係数αを、数式15に示すように最小二乗法を用いて算出する。
Figure 0004349367
ここで、係数αを求めるために、数式12で用いる各部分比較画像jの3次元座標[X Y Z」を決定する必要がある。本実施例では、各部分比較画像jに含まれる物体表面の点の各3次元座標の重心(平均値)を用いる場合を説明する。3次元座標は、投影行列Γとして算出した比較画像の画素と3次元形状データとの対応関係にもとづいて容易に算出することができる。なお、3次元座標として重心を用いるのでなく、各部分比較画像の中央部に最も近い画素に対応する物体表面の点の3次元座標を用いるなど他の座標値を用いてもよい。
コンピュータ100は、数式15を用いて算出した係数αと、あらかじめ定めた所定のゲイン定数gとにもとづいて、数式16を用いて位置姿勢差分ΔMを算出する。
Figure 0004349367
本実施例では、ゲイン定数はg=1の固定値であるとする。なお、ゲイン定数gの値を大きくすることによって推定値の探索が速く収束するようにすることができる。また、位置/姿勢の誤差が小さくなるに従いゲイン定数gの値を小さくするように制御することによって、対象物体の位置/姿勢の推定精度を向上させることができる。
なお、以上に示した物体運動推定技術が、例えば、「Tom Drummond,Roberto Ciplla,Real Time Feature−Based Facial Tracking Using Lie Algebras,″IEICE Transactions on Information and Systems″,Vol.E84−D,No.12,December 2001,p.1733−1738」に記載されている。
(終了判定処理)次に、コンピュータ100は、位置姿勢推定値を更新して位置/姿勢の推定処理を繰り返し実行するか、現在の位置姿勢推定値が十分に正確な推定値であり最適位置姿勢推定値として出力するかを判定する。本実施例では、推定する対象物体の位置/姿勢の許容誤差の値の閾値をあらかじめ定めて、閾値にもとづいて終了判定を行う場合を説明する。なお、終了判定の方法として、本実施例で示す閾値を用いた方法に限られず他の方法を用いてもよい。
位置/姿勢の推定誤差として、平行移動方向および回転方向の許容誤差の閾値をあらかじめ定めてコンピュータ100が備える記憶装置などに記憶させる。本例では、平行移動方向の許容誤差を5mmとする。また、回転方向については、x軸およびy軸周りの許容誤差をそれぞれ1.5度、z軸周りの許容誤差を1度とする。なお、各許容誤差の値は本例で示した場合に限られない。
コンピュータ100は、位置姿勢差分ΔMに含まれる平行移動ベクトルと回転行列Rとにもとづいて、平行移動量および各軸周りの回転角度を算出する。コンピュータ100は、算出した平行移動量および回転角度がそれぞれあらかじめ定めた閾値より小さいか否かを判断する。閾値より小さいと判断した場合には、コンピュータ100は、現在の位置姿勢推定値が十分正確な推定値(すなわち、最適な推定値)であると判断し、現在の位置姿勢推定値を最適位置姿勢推定値として出力し処理を終了する。
平行移動量および回転角度のうちの少なくともいずれか1の値が閾値より小さくないと判断した場合には、コンピュータ100は、位置姿勢推定値の値を更新して繰り返し推定処理を実行する。コンピュータ100は、更新後の位置姿勢推定値[R|T]を現在の位置姿勢推定[R|T]にもとづいて数式17を用いて算出する。
Figure 0004349367
ここで、数式17において、Euclideaniseとは、行列を回転移動行列に修正する操作を意味する。例えば、Euclideanise(E)は、行列Eを回転移動行列に修正する操作を意味し、特異値分解E=UWVにもとづき行列E’=UVを算出することによって実現される。
コンピュータ100は、数式17を用いて算出した更新後の位置/姿勢を示す回転行列および平行移動ベクトルにもとづいて現在の位置姿勢推定を更新し、比較画像生成処理以降の処理を繰り返し実行する。
なお、本実施例では、終了判定を行って位置/姿勢の更新を繰り返し実行する場合を説明したが、終了判定処理を行わずに1度だけ位置姿勢推定値を更新してそのまま処理を終了するようにしてもよい。そのようにすれば、対象物体の位置/姿勢の推定処理をより高速に行うことができる。
また、本実施例では、対象物体の位置および姿勢の両方を推定する物***置姿勢推定システムについて説明したが、本発明は、対象物体の位置のみを推定する物***置推定システム、または対象物体の姿勢のみを推定する物体姿勢推定システムとしても適用可能である。
本発明による物体の状態を推定する推定システムを、画像に写っている物体の位置/姿勢を計測する計測装置に適用することができる。また、位置/姿勢が変化する物体がどのような物体であるかを、画像を用いて識別したり照合するための認識装置に適用することができる。また、ビデオ画像中で移動する物体を、動画像を用いて追跡する追跡装置に適用することができる。さらに、これらの計測装置、認識装置または追跡装置を、コンピュータを用いて実現するためのプログラムなどの用途に適用することができる。

Claims (33)

  1. 位置および姿勢の少なくとも一方である位置姿勢が推定される物体が写っている入力画像を入力する画像入力手段と、
    物体の3次元形状データを記憶する3次元形状データ記憶手段と、
    前記3次元形状データ記憶手段に記憶されている3次元形状データを用いて、物体が所定の位置姿勢にある画像を比較画像として生成する比較画像生成手段と、
    前記比較画像生成手段で生成された比較画像と入力画像とを所定の大きさの小領域に分割し、前記比較画像と前記入力画像との位置関係を前記小領域ごとに検出する画像位置関係検出手段と、
    前記画像位置関係検出手段で検出された位置関係を用いて、比較画像中における物体の位置姿勢の修正量を計算する修正量計算手段と、
    記比較画像生成手段で比較画像生成の際に設定された物体の位置姿勢、これに前記修正量計算手段で求められた修正量を加算することによって修正して新たな物体の位置姿勢を算出する状態修正手段と
    を備えることを特徴とする物体の位置姿勢を推定する推定システム。
  2. 前記修正量計算手段で求められた修正量にもとづいて、前記比較画像生成手段で設定された物体の位置姿勢が適切であるか否かを判定する状態判定手段を更に備え、
    適切であると判定されたときには、前記比較画像生成手段で設定された物体の位置姿勢が推定値として出力され、
    適切でないと判定されたときには、前記状態修正手段で算出された新たな物体の位置姿勢を所定の位置姿勢に設定したときの前記比較画像生成手段による比較画像の生成処理、前記画像位置関係検出手段による位置関係の検出処理、および前記修正量計算手段による修正量の算出処理を含む推定処理が再度実行されることを特徴とする請求項1記載の物体の位置姿勢を推定する推定システム。
  3. 前記状態判定手段は、前記修正量計算手段で求められた修正量が所定量より小さいときには、物体の位置姿勢が適切であると判定し、修正量が所定量より小さくないときには、物体の位置姿勢が適切でないと判定することを特徴とする請求項2記載の物体の位置姿勢を推定する推定システム。
  4. 推定処理を再度実行した後の比較画像と入力画像との第1の類似度を算出する第1の類似度算出手段と、
    推定処理を再度実行する前の比較画像と入力画像との第2の類似度を算出する第2の類似度算出手段とを更に備え、
    前記状態判定手段は、第1の類似度と第2の類似度とを比較し、第1の類似度が第2の類似度より大きいときには、物体の位置姿勢が適切でないと判定し、第1の類似度が第2の類似度より大きくないときには、物体の位置姿勢が適切であると判定することを特徴とする請求項2記載の物体の位置姿勢を推定する推定システム。
  5. 前記画像入力手段は、物体が写っている動画像を入力する手段であり、
    前記画像位置関係検出手段は、入力画像として動画像の最新のフレーム画像を用いることを特徴とする請求項1記載の物体の位置姿勢を推定する推定システム。
  6. 前記比較画像生成手段は、
    照明条件によって変化する物体表面の輝度値を再現する手段と、
    再現した輝度値を用いて入力画像に近い照明条件での比較画像を生成する手段と
    を備えることを特徴とする請求項1記載の物体の位置姿勢を推定する推定システム。
  7. 照明条件による物体表面の輝度の変動を示す照明基底画像群を記憶する照明基底画像群記憶手段を更に備え、
    前記比較画像生成手段は、前記照明基底画像群記憶手段に記憶されている照明基底画像群を用いて物体表面の輝度値を再現することを特徴とする請求項6記載の物体の位置姿勢を推定する推定システム。
  8. 物体の3次元形状データおよび物体表面の反射率データを計測する3次元形状計測手段と、
    前記3次元形状計測手段で計測された3次元形状データおよび物体表面の反射率データを用いて、所定の照明条件における物体表面の輝度の変動を示す照明基底画像を計算する照明基底計算手段と
    を更に備えたことを特徴とする請求項7記載の物体の位置姿勢を推定する推定システム。
  9. 前記照明基底計算手段は、複数の照明条件の下での3次元形状データの各点の輝度値を示すベクトル群を算出し、このベクトル群から主成分分析によって固有値の大きい順に基底ベクトル群を求め、この基底ベクトル群を照明基底画像群として出力し、
    前記比較画像生成手段は、物体の3次元形状データを用いて現時点での推定値に物体ある画像の画素と物体の3次元形状データの点との対応関係を求め、この対応関係を用いて推定値に物体がある画像に照明基底画像群を投影した画像照明基底群を生成し、この画像照明基底群の線形結合によって入力画像に最も近い画像を比較画像として生成することを特徴とする請求項8記載の物体の位置姿勢を推定する推定システム。
  10. 前記修正量計算手段は、比較画像と入力画像との小領域ごとの位置関係を示す画像変位分布と物体の3次元形状データとを用いて、比較画像における各小領域に対応する物体の部分の移動量が画像変位分布に近い値となる物体の3次元運動量を修正量として算出することを特徴とする請求項1記載の物体の位置姿勢を推定する推定システム。
  11. 前記比較画像生成手段で生成された比較画像および入力画像の輝度値にもとづいてそれぞれの画像特徴量を抽出する特徴抽出手段を更に備え、
    前記画像位置関係検出手段は、前記特徴抽出手段で抽出された画像特徴量にもとづいて比較画像と入力画像との位置関係を小領域ごとに検出することを特徴とする請求項1記載の物体の位置姿勢を推定する推定システム。
  12. 位置および姿勢の少なくとも一方である位置姿勢が推定される物体が写っている入力画像を入力するステップと、
    物体の3次元形状データを用いて、物体が所定の位置姿勢にある画像を比較画像として生成するステップと、
    比較画像と入力画像とを所定の大きさの小領域に分割し、前記比較画像と前記入力画像との位置関係を前記小領域ごとに検出するステップと、
    検出された位置関係を用いて、比較画像中における物体の位置姿勢の修正量を計算するステップと、
    較画像生成の際に設定された物体の位置姿勢、これに前記修正量を加算することによって修正して新たな物体の位置姿勢を算出するステップと
    を備えることを特徴とする物体の位置姿勢を推定する推定方法。
  13. 計算された修正量にもとづいて、比較画像生成の際に設定された物体の位置姿勢が適切であるか否かを判定するステップと、
    適切であると判定されたときに、比較画像生成の際に設定された物体の位置姿勢を推定値として出力するステップとを更に備え、
    適切でないと判定されたときには、算出された新たな物体の位置姿勢を所定の位置姿勢として比較画像を生成する前記ステップ、位置関係を検出する前記ステップ、および修正量を計算する前記ステップを含む推定処理を再度実行することを特徴とする請求項12記載の物体の位置姿勢を推定する推定方法。
  14. 判定する前記ステップは、修正量が所定量より小さいときには、物体の位置姿勢が適切であると判定し、修正量が所定量より小さくないときには、物体の位置姿勢が適切でないと判定することを特徴とする請求項13記載の物体の位置姿勢を推定する推定方法。
  15. 推定処理を再度実行した後の比較画像と入力画像との第1の類似度を算出するステップと、
    推定処理を再度実行する前の比較画像と入力画像との第2の類似度を算出するステップとを更に備え、
    判定する前記ステップは、第1の類似度と第2の類似度とを比較し、第1の類似度が第2の類似度より大きいときには、物体の位置姿勢が適切でないと判定し、第1の類似度が第2の類似度より大きくないときには、物体の位置姿勢が適切であると判定することを特徴とする請求項13記載の物体の位置姿勢を推定する推定方法。
  16. 画像を入力する前記ステップは、物体が写っている動画像を入力し、
    位置関係を検出する前記ステップは、入力画像として動画像の最新のフレーム画像を用いることを特徴とする請求項12記載の物体の位置姿勢を推定する推定方法。
  17. 比較画像を生成する前記ステップは、
    照明条件によって変化する物体表面の輝度値を再現するステップと、
    再現した輝度値を用いて入力画像に近い照明条件での比較画像を生成するステップと
    を備えることを特徴とする請求項12記載の物体の位置姿勢を推定する推定方法。
  18. 比較画像を生成する前記ステップは、照明条件による物体表面の輝度の変動を示す照明基底画像群を用いて物体表面の輝度値を再現することを特徴とする請求項17記載の物体の位置姿勢を推定する推定方法。
  19. 物体の3次元形状データおよび物体表面の反射率データを計測するステップと、
    3次元形状データおよび物体表面の反射率データを用いて、所定の照明条件における物体表面の輝度の変動を示す照明基底画像を計算するステップと
    を更に備えたことを特徴とする請求項18記載の物体の位置姿勢を推定する推定方法。
  20. 照明基底画像を計算する前記ステップは、複数の照明条件の下での3次元形状データの各点の輝度値を示すベクトル群を算出し、このベクトル群から主成分分析によって固有値の大きい順に基底ベクトル群を求め、この基底ベクトル群を照明基底画像群として出力し、
    比較画像を生成する前記ステップは、物体の3次元形状データを用いて現時点での推定値に物体がある画像の画素と物体の3次元形状データの点との対応関係を求め、この対応関係を用いて推定値に物体がある画像に照明基底画像群を投影した画像照明基底群を生成し、この画像照明基底群の線形結合によって入力画像に最も近い画像を比較画像として生成することを特徴とする請求項19記載の物体の位置姿勢を推定する推定方法。
  21. 修正量を計算する前記ステップは、比較画像と入力画像との小領域ごとの位置関係を示す画像変位分布と物体の3次元形状データとを用いて、比較画像における各小領域に対応する物体の部分の移動量が画像変位分布に近い値となる物体の3次元運動量を修正量として算出することを特徴とする請求項12記載の物体の位置姿勢を推定する推定方法。
  22. 比較画像および入力画像の輝度値にもとづいてそれぞれの画像特徴量を抽出するステップを更に備え、
    位置関係を検出する前記ステップは、画像特徴量にもとづいて比較画像と入力画像との位置関係を小領域ごとに検出することを特徴とする請求項12記載の物体の位置姿勢を推定する推定方法。
  23. 位置および姿勢の少なくとも一方である位置姿勢が推定される物体が写っている入力画像を入力するステップと、
    物体の3次元形状データを用いて、物体が所定の位置姿勢にある画像を比較画像として生成するステップと、
    比較画像と入力画像とを所定の大きさの小領域に分割し、前記比較画像と前記入力画像との位置関係を前記小領域ごとに検出するステップと、
    検出された位置関係を用いて、比較画像中における物体の位置姿勢の修正量を計算するステップと、
    較画像生成の際に設定された物体の位置姿勢、これに前記修正量を加算することによって修正して新たな物体の位置姿勢を算出するステップと
    をコンピュータに実行させるための物体の位置姿勢を推定する推定プログラム。
  24. 計算された修正量にもとづいて、比較画像生成の際に設定された物体の位置姿勢が適切であるか否かを判定するステップと、
    適切であると判定されたときに、比較画像生成の際に設定された物体の位置姿勢を推定値として出力するステップと、
    適切でないと判定されたときに、算出された新たな物体の位置姿勢を所定の位置姿勢として比較画像を生成する前記ステップ、位置関係を検出する前記ステップ、および修正量を計算する前記ステップを含む推定処理を再度実行するステップと
    をコンピュータに更に実行させるための請求項23記載の物体の位置姿勢を推定する推定プログラム。
  25. 判定する前記ステップとして、修正量が所定量より小さいときには、物体の位置姿勢が適切であると判定し、修正量が所定量より小さくないときには、物体の位置姿勢が適切でないと判定するステップをコンピュータに実行させるための請求項24記載の物体の位置姿勢を推定する推定プログラム。
  26. 推定処理を再度実行した後の比較画像と入力画像との第1の類似度を算出するステップと、
    推定処理を再度実行する前の比較画像と入力画像との第2の類似度を算出するステップと、
    判定する前記ステップとして、第1の類似度と第2の類似度とを比較し、第1の類似度が第2の類似度より大きいときには、物体の位置姿勢が適切でないと判定し、第1の類似度が第2の類似度より大きくないときには、物体の位置姿勢が適切であると判定するステップと
    をコンピュータに更に実行させるための請求項24記載の物体の位置姿勢を推定する推定プログラム。
  27. 画像を入力する前記ステップとして、物体が写っている動画像を入力するステップと、
    位置関係を検出する前記ステップとして、入力画像として動画像の最新のフレーム画像を用いるステップと
    をコンピュータに実行させるための請求項23記載の物体の位置姿勢を推定する推定プログラム。
  28. 比較画像を生成する前記ステップにおいて、
    照明条件によって変化する物体表面の輝度値を再現するステップと、
    再現した輝度値を用いて入力画像に近い照明条件での比較画像を生成するステップと
    をコンピュータに実行させるための請求項23記載の物体の位置姿勢を推定する推定プログラム。
  29. 比較画像を生成する前記ステップとして、照明条件による物体表面の輝度の変動を示す照明基底画像群を用いて物体表面の輝度値を再現するステップをコンピュータに実行させるための請求項28記載の物体の位置姿勢を推定する推定プログラム。
  30. 物体の3次元形状データおよび物体表面の反射率データを計測するステップと、
    3次元形状データおよび物体表面の反射率データを用いて、所定の照明条件における物体表面の輝度の変動を示す照明基底画像を計算するステップと
    をコンピュータに更に実行させるための請求項29記載の物体の位置姿勢を推定する推定プログラム。
  31. 照明基底画像を計算する前記ステップとして、複数の照明条件の下での3次元形状データの各点の輝度値を示すベクトル群を算出し、このベクトル群から主成分分析によって固有値の大きい順に基底ベクトル群を求め、この基底ベクトル群を照明基底画像群として出力するステップと、
    比較画像を生成する前記ステップとして、物体の3次元形状データを用いて現時点での推定値に物体がある画像の画素と物体の3次元形状データの点との対応関係を求め、この対応関係を用いて推定値に物体がある画像に照明基底画像群を投影した画像照明基底群を生成し、この画像照明基底群の線形結合によって入力画像に最も近い画像を比較画像として生成するステップと
    をコンピュータに実行させるための請求項30記載の物体の位置姿勢を推定する推定プログラム。
  32. 修正量を計算する前記ステップとして、比較画像と入力画像との小領域ごとの位置関係を示す画像変位分布と物体の3次元形状データとを用いて、比較画像における各小領域に対応する物体の部分の移動量が画像変位分布に近い値となる物体の3次元運動量を修正量として算出するステップをコンピュータに実行させるための請求項23記載の物体の位置姿勢を推定する推定プログラム。
  33. 比較画像および入力画像の輝度値にもとづいてそれぞれの画像特徴量を抽出するステップと、
    位置関係を検出する前記ステップとして、画像特徴量にもとづいて比較画像と入力画像との位置関係を小領域ごとに検出するステップと
    をコンピュータに更に実行させるための請求項23記載の物体の位置姿勢を推定する推定プログラム。
JP2005515150A 2003-10-30 2004-10-28 物体の位置姿勢を推定する推定システム、推定方法および推定プログラム Active JP4349367B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003370137 2003-10-30
JP2003370137 2003-10-30
PCT/JP2004/016030 WO2005043466A1 (ja) 2003-10-30 2004-10-28 物体の状態を推定する推定システム、推定方法および推定プログラム

Publications (2)

Publication Number Publication Date
JPWO2005043466A1 JPWO2005043466A1 (ja) 2007-11-29
JP4349367B2 true JP4349367B2 (ja) 2009-10-21

Family

ID=34543849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515150A Active JP4349367B2 (ja) 2003-10-30 2004-10-28 物体の位置姿勢を推定する推定システム、推定方法および推定プログラム

Country Status (8)

Country Link
US (1) US7809159B2 (ja)
EP (1) EP1679657B1 (ja)
JP (1) JP4349367B2 (ja)
KR (1) KR100886439B1 (ja)
CN (2) CN102298778B (ja)
AU (1) AU2004285183A1 (ja)
CA (1) CA2540084A1 (ja)
WO (1) WO2005043466A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878657B2 (en) 2018-07-25 2020-12-29 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
US11521460B2 (en) 2018-07-25 2022-12-06 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886439B1 (ko) * 2003-10-30 2009-03-04 닛본 덴끼 가부시끼가이샤 물체 상태를 추정하는 추정 시스템, 추정 방법, 및 추정프로그램
US7860340B2 (en) * 2004-11-04 2010-12-28 Nec Corporation Three-dimensional shape estimation system and image generation system
CN100492409C (zh) 2005-06-03 2009-05-27 日本电气株式会社 图像处理***、三维形状估计***、对象位置/姿态估计***和图像产生***
JP5538667B2 (ja) * 2007-04-26 2014-07-02 キヤノン株式会社 位置姿勢計測装置及びその制御方法
KR100951890B1 (ko) * 2008-01-25 2010-04-12 성균관대학교산학협력단 상황 모니터링을 적용한 실시간 물체 인식 및 자세 추정 방법
US8648863B1 (en) * 2008-05-20 2014-02-11 Pixar Methods and apparatus for performance style extraction for quality control of animation
JP2010045584A (ja) * 2008-08-12 2010-02-25 Sony Corp 立体画像補正装置、立体画像補正方法、立体画像表示装置、立体画像再生装置、立体画像提供システム、プログラム及び記録媒体
JP5791751B2 (ja) * 2009-06-18 2015-10-07 キヤノン株式会社 画像認識方法及び画像認識装置
WO2011012142A1 (en) * 2009-07-29 2011-02-03 Metaio Gmbh Method for determining the pose of a camera with respect to at least one real object
JP2011039918A (ja) * 2009-08-17 2011-02-24 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
TWI405143B (zh) * 2009-11-27 2013-08-11 Altek Corp 用於辨識的物件影像校正裝置與其方法
JP5393531B2 (ja) * 2010-02-25 2014-01-22 キヤノン株式会社 位置姿勢推定装置、位置姿勢推定方法、プログラム、記憶媒体
JP5757063B2 (ja) * 2010-03-29 2015-07-29 ソニー株式会社 情報処理装置および方法、並びにプログラム
KR101213477B1 (ko) 2010-05-04 2012-12-24 삼성에스디아이 주식회사 고용량 음극 물질이 코팅된 수퍼 도전성 나노 입자를 포함하는 음극 활물질 및 이를 포함하는 리튬 전지
US8768101B1 (en) * 2010-06-30 2014-07-01 The United States Of America As Represented By The Secretary Of The Air Force Target image registration and fusion
JP5496008B2 (ja) * 2010-08-06 2014-05-21 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法、およびプログラム
KR101727486B1 (ko) * 2010-10-25 2017-04-17 삼성전자 주식회사 휴대 단말기의 자세 판단 방법 및 장치
US9235894B2 (en) 2011-01-27 2016-01-12 Metaio Gmbh Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
US9437005B2 (en) * 2011-07-08 2016-09-06 Canon Kabushiki Kaisha Information processing apparatus and information processing method
WO2013069012A1 (en) * 2011-11-07 2013-05-16 Dimensional Perception Technologies Ltd. Method and system for determining position and/or orientation
US9329269B2 (en) * 2012-03-15 2016-05-03 GM Global Technology Operations LLC Method for registration of range images from multiple LiDARS
CN103324938A (zh) * 2012-03-21 2013-09-25 日电(中国)有限公司 训练姿态分类器及物体分类器、物体检测的方法及装置
US9043261B2 (en) * 2012-05-31 2015-05-26 Nec Corporation Latent variable model estimation apparatus, and method
US9237340B2 (en) * 2012-10-10 2016-01-12 Texas Instruments Incorporated Camera pose estimation
US9012846B2 (en) * 2012-11-23 2015-04-21 Blackberry Limited Handheld device with surface reflection estimation
JP6143469B2 (ja) * 2013-01-17 2017-06-07 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
WO2014139118A1 (en) * 2013-03-14 2014-09-18 Intel Corporation Adaptive facial expression calibration
CN104156689B (zh) * 2013-05-13 2017-03-22 浙江大华技术股份有限公司 一种对目标对象的特征信息进行定位的方法和设备
JP6271953B2 (ja) * 2013-11-05 2018-01-31 キヤノン株式会社 画像処理装置、画像処理方法
JP6066940B2 (ja) * 2014-01-30 2017-01-25 三菱電機株式会社 画像ナビゲーション装置、衛星および画像ナビゲーション方法
JP6383189B2 (ja) * 2014-06-16 2018-08-29 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP6491959B2 (ja) * 2015-06-03 2019-03-27 新日鉄住金ソリューションズ株式会社 情報処理装置、情報処理方法及びプログラム
JP6464934B2 (ja) * 2015-06-11 2019-02-06 富士通株式会社 カメラ姿勢推定装置、カメラ姿勢推定方法およびカメラ姿勢推定プログラム
US11099631B2 (en) 2015-11-13 2021-08-24 Andrew R. Basile, JR. Virtual reality system with posture control
EP3232368A1 (en) * 2016-04-14 2017-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Determining facial parameters
US11181385B2 (en) * 2016-10-25 2021-11-23 Mitsubishi Electric Corporation Map data generating apparatus, terminal apparatus, and map data generating method
JP2018092273A (ja) 2016-11-30 2018-06-14 富士通株式会社 姿勢推定方法、姿勢推定プログラム及び姿勢推定装置
KR20180075224A (ko) * 2016-12-26 2018-07-04 삼성전자주식회사 객체의 인식 결과를 제공하는 방법 및 전자 장치
CN107194968B (zh) * 2017-05-18 2024-01-16 腾讯科技(上海)有限公司 图像的识别跟踪方法、装置、智能终端和可读存储介质
CN108731664B (zh) * 2018-05-18 2020-08-11 深圳一清创新科技有限公司 机器人状态估计方法、装置、计算机设备和存储介质
JP6904922B2 (ja) * 2018-05-30 2021-07-21 Kddi株式会社 情報処理装置及びプログラム
JP6988704B2 (ja) * 2018-06-06 2022-01-05 トヨタ自動車株式会社 センサ制御装置、物体探索システム、物体探索方法及びプログラム
CN111104816B (zh) * 2018-10-25 2023-11-03 杭州海康威视数字技术股份有限公司 一种目标物的姿态识别方法、装置及摄像机
CN110246160B (zh) * 2019-06-20 2022-12-06 腾讯科技(深圳)有限公司 视频目标的检测方法、装置、设备及介质
US10949982B1 (en) * 2019-06-21 2021-03-16 Amazon Technologies, Inc. Moving object recognition, speed estimation, and tagging
CN111046733B (zh) * 2019-11-12 2023-04-18 宁波大学 一种基于稀疏和深度的3d人体姿态估计方法
JP7362453B2 (ja) * 2019-11-28 2023-10-17 株式会社日立製作所 モデル作成装置及びモデル作成方法
CN112199418B (zh) * 2020-09-30 2023-03-03 深圳市智物联网络有限公司 一种工业对象的状态识别方法、装置及设备
CN113887408B (zh) * 2021-09-30 2024-04-23 平安银行股份有限公司 活化人脸视频的检测方法、装置、设备及存储介质
CN114648639B (zh) * 2022-05-19 2022-08-23 魔视智能科技(武汉)有限公司 一种目标车辆的检测方法、***及装置
CN117294832B (zh) * 2023-11-22 2024-03-26 湖北星纪魅族集团有限公司 数据处理方法、装置、电子设备和计算机可读存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989364B2 (ja) * 1992-03-12 1999-12-13 シャープ株式会社 画像処理装置及び画像処理方法
US5499306A (en) * 1993-03-08 1996-03-12 Nippondenso Co., Ltd. Position-and-attitude recognition method and apparatus by use of image pickup means
CN1045129C (zh) * 1993-03-29 1999-09-15 松下电器产业株式会社 个人识别装置
US5819016A (en) * 1993-10-05 1998-10-06 Kabushiki Kaisha Toshiba Apparatus for modeling three dimensional information
JP3725207B2 (ja) * 1995-07-20 2005-12-07 日本電信電話株式会社 画像位置合わせ方法及びそれを用いる製品検査装置
US6081273A (en) * 1996-01-31 2000-06-27 Michigan State University Method and system for building three-dimensional object models
US6173066B1 (en) * 1996-05-21 2001-01-09 Cybernet Systems Corporation Pose determination and tracking by matching 3D objects to a 2D sensor
JP3070541B2 (ja) 1997-10-03 2000-07-31 日本電気株式会社 動的輪郭抽出装置
TW413795B (en) * 1999-02-26 2000-12-01 Cyberlink Corp An image processing method of 3-D head motion with three face feature points
JP2000348186A (ja) 1999-06-03 2000-12-15 Fujitsu Ltd 物体追跡装置及び方法
WO2001067749A2 (en) 2000-03-07 2001-09-13 Sarnoff Corporation Camera pose estimation
US6956569B1 (en) * 2000-03-30 2005-10-18 Nec Corporation Method for matching a two dimensional image to one of a plurality of three dimensional candidate models contained in a database
JP2002063567A (ja) * 2000-08-23 2002-02-28 Nec Corp 物***置姿勢推定装置及びその方法並びそれを用いた特徴点位置抽出方法及び画像照合方法
US6697761B2 (en) * 2000-09-19 2004-02-24 Olympus Optical Co., Ltd. Three-dimensional position/orientation sensing apparatus, information presenting system, and model error detecting system
JP3983469B2 (ja) * 2000-11-14 2007-09-26 富士フイルム株式会社 画像処理装置、方法及び記録媒体
JP4167390B2 (ja) 2000-11-20 2008-10-15 日本電気株式会社 物体照合方法,物体照合装置,およびそのプログラムを記録した記録媒体
US6834119B2 (en) * 2001-04-03 2004-12-21 Stmicroelectronics, Inc. Methods and apparatus for matching multiple images
JP4573085B2 (ja) 2001-08-10 2010-11-04 日本電気株式会社 位置姿勢認識装置とその位置姿勢認識方法、及び位置姿勢認識プログラム
JP4161659B2 (ja) * 2002-02-27 2008-10-08 日本電気株式会社 画像認識システム及びその認識方法並びにプログラム
JP4060615B2 (ja) * 2002-03-05 2008-03-12 株式会社東芝 画像処理装置及び超音波診断装置
KR100886439B1 (ko) * 2003-10-30 2009-03-04 닛본 덴끼 가부시끼가이샤 물체 상태를 추정하는 추정 시스템, 추정 방법, 및 추정프로그램
US7616807B2 (en) * 2005-02-24 2009-11-10 Siemens Corporate Research, Inc. System and method for using texture landmarks for improved markerless tracking in augmented reality applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878657B2 (en) 2018-07-25 2020-12-29 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
US11455864B2 (en) 2018-07-25 2022-09-27 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
US11521460B2 (en) 2018-07-25 2022-12-06 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same

Also Published As

Publication number Publication date
KR20060054475A (ko) 2006-05-22
KR100886439B1 (ko) 2009-03-04
US20070009135A1 (en) 2007-01-11
WO2005043466A1 (ja) 2005-05-12
CN102298778A (zh) 2011-12-28
AU2004285183A1 (en) 2005-05-12
EP1679657A4 (en) 2011-05-18
CA2540084A1 (en) 2005-05-12
US7809159B2 (en) 2010-10-05
CN102298778B (zh) 2015-06-17
JPWO2005043466A1 (ja) 2007-11-29
CN1864176A (zh) 2006-11-15
EP1679657A1 (en) 2006-07-12
EP1679657B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP4349367B2 (ja) 物体の位置姿勢を推定する推定システム、推定方法および推定プログラム
US10334168B2 (en) Threshold determination in a RANSAC algorithm
US11830216B2 (en) Information processing apparatus, information processing method, and storage medium
JP5612916B2 (ja) 位置姿勢計測装置、その処理方法、プログラム、ロボットシステム
JP6573354B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US10636151B2 (en) Method for estimating the speed of movement of a camera
US9014433B2 (en) Measurement apparatus, information processing apparatus, information processing method, and storage medium
JP5671281B2 (ja) 位置姿勢計測装置、位置姿勢計測装置の制御方法及びプログラム
JP4774818B2 (ja) 画像処理装置及び画像処理方法
JP2006520055A (ja) 2次元画像からの3次元オブジェクトの不変視点検出および識別
JP2011198349A (ja) 情報処理方法及びその装置
JP7479324B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2009230703A (ja) オブジェクト検出方法、オブジェクト検出装置、およびオブジェクト検出プログラム
EP3185212B1 (en) Dynamic particle filter parameterization
JP2002366958A (ja) 画像認識方法および画像認識装置
KR101766823B1 (ko) 불규칙한 조도 변화에 강건한 영상 기반 주행거리 측정 시스템 및 방법
JP2006227739A (ja) 画像処理装置及び画像処理方法
JP2005031044A (ja) 三次元誤差測定装置
JP5359477B2 (ja) 道路領域推定装置及びプログラム
JP2018185655A (ja) 物体検出装置、物体検出方法、物体検出プログラムおよび物体検出システム
Hild Dynamic Face Image Capture from Color Video in Conjunction with Planar Laser Scanning

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4