JP4340596B2 - Semiconductor optical device - Google Patents

Semiconductor optical device Download PDF

Info

Publication number
JP4340596B2
JP4340596B2 JP2004196189A JP2004196189A JP4340596B2 JP 4340596 B2 JP4340596 B2 JP 4340596B2 JP 2004196189 A JP2004196189 A JP 2004196189A JP 2004196189 A JP2004196189 A JP 2004196189A JP 4340596 B2 JP4340596 B2 JP 4340596B2
Authority
JP
Japan
Prior art keywords
layer
face
diffraction grating
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004196189A
Other languages
Japanese (ja)
Other versions
JP2006019533A (en
Inventor
スィング フラ ハルプリート
博幸 神山
優 向久保
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP2004196189A priority Critical patent/JP4340596B2/en
Publication of JP2006019533A publication Critical patent/JP2006019533A/en
Application granted granted Critical
Publication of JP4340596B2 publication Critical patent/JP4340596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は半導体光素子に係り、特に光通信用モジュール、光通信システム、光ネットワークに用いる好適な送信用光素子及び光送信モジュールに関するものである。   The present invention relates to a semiconductor optical device, and more particularly, to an optical communication module, an optical communication system, and a transmission optical device and an optical transmission module suitable for use in an optical network.

従来、高速や長距離の光通信用光源の半導体レーザとして、分布帰還型(distributed feedback;DFB)レーザが用いられている。これは活性層の近傍に光の伝搬方向に沿って凹凸構造を設け、等価的に屈折率の周期変化を設けたものである。このような構造では、ブラッグ反射と呼ばれる特定の波長(ブラッグ波長)の光だけが強く反射されることになり、光ファイバの波長分散の影響を受けにくい高速光通信用の光源として使用されている。   Conventionally, a distributed feedback (DFB) laser has been used as a semiconductor laser for a light source for high-speed and long-distance optical communication. This is a structure in which a concavo-convex structure is provided in the vicinity of the active layer along the light propagation direction, and an equivalent periodical change in refractive index is provided. In such a structure, only light of a specific wavelength (Bragg wavelength) called Bragg reflection is strongly reflected, and is used as a light source for high-speed optical communication that is not easily affected by wavelength dispersion of an optical fiber. .

また、近年、ブラッグ波長での確実な発振を実現するために、凹凸の周期構造の中央部分にλ/4、あるいはλ/8(λ:波長)の位相シフトを与えた構造が提案されている。非特許文献1ではλ/4シフト構造とλ/8シフト構造のDFBレーザを比較して、λ/8シフト構造を用いることでチャーピング量の小さな直接変調型レーザを実現している。   In recent years, a structure has been proposed in which a phase shift of λ / 4 or λ / 8 (λ: wavelength) is given to the central part of the irregular periodic structure in order to realize reliable oscillation at the Bragg wavelength. . In Non-Patent Document 1, a direct modulation laser with a small amount of chirping is realized by using a λ / 8 shift structure by comparing a λ / 4 shift structure and a λ / 8 shift structure DFB laser.

IEEE Photonics Technology Letters, March 2001, Vol.13, Issue 3, pp. 245-247. "Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss"IEEE Photonics Technology Letters, March 2001, Vol.13, Issue 3, pp. 245-247. "Isolator-free 2.5-Gb / s 80-km transmission by directly modulated λ / 8 phase-shifted DFB-LDs under negative feedback effect of mirror loss "

従来、位相シフト型の分布帰還型半導体レーザ素子は、縦モードの戻り光耐力向上のためにλ/4シフト構造が用いられてきたが、λ/4シフト位置での光子密度が周囲と比較して極端に高く、電子密度が低いために、チャーピングが大きく、直接変調した場合に長距離伝送に適さないという課題があった。   Conventionally, λ / 4 shift structures have been used in phase-shifted distributed feedback semiconductor laser elements to improve the return light resistance in the longitudinal mode, but the photon density at the λ / 4 shift position is lower than the surroundings. Since the electron density is extremely high and the electron density is low, there is a problem that chirping is large and is not suitable for long-distance transmission when directly modulated.

さらに、上記文献に見られるようなλ/8シフト構造を採用しても、そのシフト位置が中心よりも前方向端面よりであったり、前方向端面反射率と、後方向端面反射率が両方とも1%以下のARコートの場合には、電子密度の平坦化が不十分であったり、前方向端面からの光出力を高めることができないという課題があった。   Furthermore, even if the λ / 8 shift structure as seen in the above document is adopted, the shift position is closer to the front end face than the center, or both the front end face reflectivity and the rear end face reflectivity are both. In the case of an AR coating of 1% or less, there are problems that the electron density is not sufficiently flattened and the light output from the front end face cannot be increased.

図1に示すように、λ/4の位相シフト構造の代わりに導波路中の回折格子にλ/8の位相シフト構造を採用し、そのλ/8の位相シフト構造の位置を導波路の中央よりも後方向端面側に形成し、かつ、前方向端面コーティング膜の反射率が後方向端面コーティング膜の反射率が小さくすることで、戻り光耐力を保つとともに、シフト位置での光子密度の低減し、チャーピングを抑制することが可能となる。   As shown in Fig. 1, instead of the λ / 4 phase shift structure, a λ / 8 phase shift structure is adopted for the diffraction grating in the waveguide, and the position of the λ / 8 phase shift structure is set at the center of the waveguide. It is formed on the rear end face side, and the reflectivity of the front end face coating film reduces the reflectivity of the rear end face coating film, thereby maintaining the return light resistance and reducing the photon density at the shift position. In addition, chirping can be suppressed.

この理由は、コーティング反射率とλ/8シフト位置の調整により、電子密度と光子密度を平坦化でき、チャーピングを更に低減できるためである。また、前方向端面コーティング膜の反射率が後方向端面コーティング膜の反射率よりも小さいために、前方向端面からの光出力を高めることができる。   This is because the electron density and photon density can be flattened and chirping can be further reduced by adjusting the coating reflectivity and the λ / 8 shift position. Further, since the reflectance of the front end face coating film is smaller than that of the rear end face coating film, the light output from the front end face can be increased.

本発明により、従来のように、λ/4の位相シフト構造を有する回折格子を形成する場合と比較して、戻り光耐力を保つとともに、チャーピングを抑制することが可能となるため、この構造を分布帰還型半導体レーザに適用することで、特に2.5Gbit/sを超える高速・中長距離の通信用途において、より安価に直接変調光送信モジュールを提供することが可能となり、より有効性を発揮できる。   According to the present invention, as compared with the conventional case where a diffraction grating having a phase shift structure of λ / 4 is formed, the return light resistance can be maintained and chirping can be suppressed. Can be applied to distributed feedback semiconductor lasers, enabling direct modulation optical transmission modules to be provided at lower cost, especially in high-speed, medium- and long-distance communication applications exceeding 2.5 Gbit / s, and is more effective. it can.

以下、図面を用いて本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明をInGaAsP系埋込ヘテロ構造のDFBレーザに適用した第一の実施例を図1を用いて説明する。図1(a)は光軸方向の断面図であり、図1(b)は上側から見た平面図である。   A first embodiment in which the present invention is applied to an InGaAsP buried heterostructure DFB laser will be described with reference to FIG. FIG. 1 (a) is a cross-sectional view in the optical axis direction, and FIG. 1 (b) is a plan view seen from above.

半導体レーザ100は、InP基板110と、InPバッファ層111と、InGaAsPクラッド層112と、InGaAsP SCH層113と、InGaAsP MQW活性層114と、InGaAsP SCH層115と、InP下側回折格子バッファ層116と、InGaAsP回折格子層117と、InP回折格子キャップ層118と、InGaAsPクラッド層119と、InGaAsコンタクト層120と、p電極121と、n電極122と、前方端面コーティング膜123と、後方端面コーティング膜124とにより構成される。なお、125は光導波路、126はp電極のパッド部である。   The semiconductor laser 100 includes an InP substrate 110, an InP buffer layer 111, an InGaAsP cladding layer 112, an InGaAsP SCH layer 113, an InGaAsP MQW active layer 114, an InGaAsP SCH layer 115, an InP lower diffraction grating buffer layer 116, InGaAsP diffraction grating layer 117, InP diffraction grating cap layer 118, InGaAsP cladding layer 119, InGaAs contact layer 120, p-electrode 121, n-electrode 122, front end face coating film 123, and rear end face coating film 124 It consists of. Reference numeral 125 denotes an optical waveguide, and 126 denotes a pad portion of a p-electrode.

ここでInPバッファ層111はn型で、膜厚は0.15μmである。InGaAsPクラッド層112はn型で、膜厚は0.2μm、バンドギャップ相当波長(λg)は1.05μmである。InGaAsP SCH層113はn型で、膜厚は0.2μm、λgは1.10μmである。InGaAsP MQW活性層114はnone-dopeタイプで、ウエル層膜厚は10nmかつλgは1.63μm、バリア層膜厚は10nmでかつλgは1.15μm、合計5周期である。   Here, the InP buffer layer 111 is n-type and has a film thickness of 0.15 μm. The InGaAsP cladding layer 112 is n-type, has a film thickness of 0.2 μm, and a band gap equivalent wavelength (λg) of 1.05 μm. The InGaAsP SCH layer 113 is n-type, has a film thickness of 0.2 μm, and λg is 1.10 μm. The InGaAsP MQW active layer 114 is of a none-dope type, the well layer thickness is 10 nm and λg is 1.63 μm, the barrier layer thickness is 10 nm and λg is 1.15 μm, for a total of five periods.

InGaAsP SCH層115はp型で、膜厚は0.2μm、λgは1.10μmである。InP下側回折格子バッファ層116はp型で、膜厚は0.1μmである。InGaAsP 回折格子層117はp型、膜厚は0.1μm、ピッチは240nmである。InP回折格子キャップ層118はp型で、膜厚は0.2μm、λgは1.10μmである。InGaAsPクラッド層119はp型で、膜厚は2.0μmである。InGaAsコンタクト層120はp型で、膜厚は0.1μmである。   The InGaAsP SCH layer 115 is p-type, has a thickness of 0.2 μm, and λg is 1.10 μm. The InP lower diffraction grating buffer layer 116 is p-type and has a thickness of 0.1 μm. The InGaAsP diffraction grating layer 117 is p-type, the film thickness is 0.1 μm, and the pitch is 240 nm. The InP diffraction grating cap layer 118 is p-type, the film thickness is 0.2 μm, and λg is 1.10 μm. The InGaAsP cladding layer 119 is p-type and has a thickness of 2.0 μm. The InGaAs contact layer 120 is p-type and has a thickness of 0.1 μm.

端面膜の発振波長に対する反射率は前方向端面の反射率が後方向端面の反射率よりも小くなるように、前方端面コーティング膜で4%、後方端面コーティング膜で88%とした。   The reflectance of the end face film with respect to the oscillation wavelength was set to 4% for the front end face coating film and 88% for the rear end face coating film so that the reflectance of the front end face was smaller than that of the rear end face.

本実施例では、SCH層とクラッド層間の回折格子は電子ビーム露光技術の適用により、λ/8の位相シフト構造を有し、そのλ/8のシフト構造の相対的な位置は導波路の全長を1とした場合に導波路の中央よりも後方向端面側になるよう前方向端面から0.9の位置に造りこんである。   In this embodiment, the diffraction grating between the SCH layer and the cladding layer has a λ / 8 phase shift structure by applying an electron beam exposure technique, and the relative position of the λ / 8 shift structure is the total length of the waveguide. Is set at 0.9 from the front end face so that it is closer to the rear end face than the center of the waveguide.

共振器長400μm、発振波長1.55μmのレーザにおいて、レーザ発振の閾値は4.5mA, 出力のスロープ効率は0.2W/A〜0.32W/Aであった。また、パルス幅と間隔が各々200ピコ秒の矩形波状の電気信号に対するチャーピング量は±0.10nm以内に抑えられ、より長距離の伝送に向いた構造であることがわかった。   In a laser having a resonator length of 400 μm and an oscillation wavelength of 1.55 μm, the laser oscillation threshold was 4.5 mA, and the output slope efficiency was 0.2 W / A to 0.32 W / A. In addition, it was found that the chirping amount for a rectangular wave electric signal having a pulse width and an interval of 200 picoseconds was suppressed within ± 0.10 nm, and the structure was suitable for transmission over a longer distance.

本発明をInGaAlAs系リッジ導波路型DFBレーザに適用した第2の実施例を、図2を用いて説明する。図2(a)は光軸方向の断面図であり、図2(b)は上側から見た平面図である。   A second embodiment in which the present invention is applied to an InGaAlAs ridge waveguide type DFB laser will be described with reference to FIG. 2A is a cross-sectional view in the optical axis direction, and FIG. 2B is a plan view seen from above.

半導体レーザ200は、InP基板210、InPバッファ層211、及びInGaAlAsクラッド層212、InGaAlAs SCH層213、InGaAlAs MQW活性層214、InGaAlAs SCH層215、InP下側回折格子バッファ層216、InGaAsP回折格子層217、InP回折格子キャップ層218、InGaAsPクラッド層219、InGaAs コンタクト層220、p電極221、n電極222、前方端面コーティング膜223、後方端面コーティング膜224により構成される。また、225が光導波路、226がp電極のパッド部である。   The semiconductor laser 200 includes an InP substrate 210, an InP buffer layer 211, an InGaAlAs cladding layer 212, an InGaAlAs SCH layer 213, an InGaAlAs MQW active layer 214, an InGaAlAs SCH layer 215, an InP lower diffraction grating buffer layer 216, and an InGaAsP diffraction grating layer 217. InP diffraction grating cap layer 218, InGaAsP cladding layer 219, InGaAs contact layer 220, p-electrode 221, n-electrode 222, front end face coating film 223, and rear end face coating film 224. Reference numeral 225 denotes an optical waveguide, and reference numeral 226 denotes a p-electrode pad.

ここでInPバッファ層211はn型で、膜厚は0.15μmである。InGaAlAsクラッド層212はn型で、膜厚は0.2μm、λgは1.05μmである。InGaAlAs SCH層213はn型で、膜厚は0.2μm、λgは1.10μmである。   Here, the InP buffer layer 211 is n-type and has a film thickness of 0.15 μm. The InGaAlAs cladding layer 212 is n-type, has a film thickness of 0.2 μm, and λg is 1.05 μm. The InGaAlAs SCH layer 213 is n-type, has a film thickness of 0.2 μm, and λg is 1.10 μm.

InGaAlAs MQW活性層はnone-dopeタイプで、ウエル層膜厚は10nmかつλgは1.60μm、バリア層膜厚は10nmかつλgは1.15μm、全5周期である。InGaAlAs SCH層215はp型で、膜厚は0.2μm、λgは1.10μmである。InP下側回折格子バッファ層216はp型で、膜厚は0.1μm、InGaAsP回折格子層217はp型で、膜厚は0.1μm、ピッチは242nmである。   The InGaAlAs MQW active layer is a none-dope type, the well layer thickness is 10 nm and λg is 1.60 μm, the barrier layer thickness is 10 nm and λg is 1.15 μm, and the total period is 5. The InGaAlAs SCH layer 215 is p-type, has a film thickness of 0.2 μm, and λg is 1.10 μm. The InP lower diffraction grating buffer layer 216 is p-type with a film thickness of 0.1 μm, and the InGaAsP diffraction grating layer 217 is p-type with a film thickness of 0.1 μm and a pitch of 242 nm.

InP回折格子キャップ層218はp型で、膜厚は0.2μm、λgは1.10μmである。InGaAsPクラッド層219はp型で、膜厚は2.0μmである。InGaAs コンタクト層220はp型で、膜厚は0.1μmである。   The InP diffraction grating cap layer 218 is p-type, the film thickness is 0.2 μm, and λg is 1.10 μm. The InGaAsP cladding layer 219 is p-type and has a thickness of 2.0 μm. The InGaAs contact layer 220 is p-type and has a thickness of 0.1 μm.

端面膜の発振波長に対する反射率は前方向端面の反射率が後方向端面の反射率よりも小くなるように、前方端面コーティング膜で2%、後方端面コーティング膜で80%とした。   The reflectance of the end face film with respect to the oscillation wavelength was set to 2% for the front end face coating film and 80% for the rear end face coating film so that the reflectance of the front end face was smaller than that of the rear end face.

この実施例において、SCH層とクラッド層間の回折格子は電子ビーム露光技術の適用により、λ/8の位相シフト構造を有し、そのλ/8のシフト構造の相対的な位置は導波路の全長を1とした場合に導波路の中央よりも後方向端面側になるよう前方向端面から0.7の位置に造りこんである。   In this embodiment, the diffraction grating between the SCH layer and the cladding layer has a λ / 8 phase shift structure by applying an electron beam exposure technique, and the relative position of the λ / 8 shift structure is the total length of the waveguide. Is set at a position of 0.7 from the front end face so that it is on the rear end face side from the center of the waveguide.

また、共振器長300μm、発振波長1.56μmのレーザにおいて、レーザ発振の閾値は6mA、 出力のスロープ効率は0.15W/A〜0.3W/Aであった。本実施例においても、パルス幅と間隔が各々200ピコ秒の矩形波状の電気信号に対するチャーピング量は±0.15nm以内に抑えられていた。   Further, in a laser having a resonator length of 300 μm and an oscillation wavelength of 1.56 μm, the laser oscillation threshold was 6 mA, and the output slope efficiency was 0.15 W / A to 0.3 W / A. Also in this embodiment, the chirping amount for the rectangular wave electric signal having a pulse width and an interval of 200 picoseconds was suppressed to within ± 0.15 nm.

上記の実施例1、2では、半導体レーザ素子の活性層としてInGaAsP、もしくはInGaAlAs、を用いたが、InP,GaAs,GaNなどの基板と格子整合する別の材質や構造を用いることも可能である。 また、上記の材質においては光の横方向の閉じ込め構造としてリッジ導波路型、埋込ヘテロ構造のいずれでもとることも可能である。   In the first and second embodiments, InGaAsP or InGaAlAs is used as the active layer of the semiconductor laser element. However, it is also possible to use another material or structure that is lattice-matched with a substrate such as InP, GaAs, or GaN. . In addition, the above materials can be either a ridge waveguide type or a buried hetero structure as a light confinement structure in the lateral direction.

図3に、この実施例2の半導体レーザを組み込んだ光送信モジュールの例を示す。これにより、図4に見られるように従来のλ/4シフトを有する屈折率導波型半導体レーザを用いた光送信モジュールではチャーピング量が±0.4nm以内であったのに対し、本実施例のλ/8シフトを有する屈折率導波型半導体レーザではチャーピング量を±0.2nm以内に抑えることができた。   FIG. 3 shows an example of an optical transmission module incorporating the semiconductor laser of the second embodiment. Accordingly, as shown in FIG. 4, the chirping amount is within ± 0.4 nm in the conventional optical transmission module using the refractive index guided semiconductor laser having the λ / 4 shift. In the refractive index guided semiconductor laser having the λ / 8 shift, the chirping amount could be suppressed to within ± 0.2 nm.

この結果、より長距離の伝送に向いたモジュールの作製を可能とし、本モジュールにより2.5Gbps伝送において400kmが実現した。更に、戻り光耐力の高さを反映し、アイソレータをはずした光送信モジュールを可能とした。   As a result, it became possible to produce a module suitable for longer distance transmission, and this module realized 400 km in 2.5 Gbps transmission. Furthermore, reflecting the high return light resistance, an optical transmission module with the isolator removed is made possible.

本発明により、従来のように、λ/4の位相シフト構造を有する回折格子を形成する場合と比較して、戻り光耐力を保つとともに、チャーピングを抑制することが可能となるため、この構造を分布帰還型半導体レーザに適用することで、特に2.5Gbit/sを超える高速・中長距離の通信用途において、より安価に直接変調光送信モジュールを提供することが可能となる。   According to the present invention, as compared with the conventional case where a diffraction grating having a phase shift structure of λ / 4 is formed, the return light resistance can be maintained and chirping can be suppressed. Is applied to a distributed feedback semiconductor laser, and it becomes possible to provide a directly modulated light transmission module at a lower cost, particularly in high-speed / medium / long-distance communication applications exceeding 2.5 Gbit / s.

本発明の第1の実施例におけるDFBレーザの断面図及び平面図を示す。Sectional drawing and top view of the DFB laser in the 1st example of the present invention are shown. 本発明の第2の実施例におけるDFBレーザの断面図及び平面図を示す。Sectional drawing and the top view of the DFB laser in the 2nd example of the present invention are shown. 本発明の第2の実施例における光送信モジュールを示す。4 shows an optical transmission module according to a second embodiment of the present invention. 本発明の第2の実施例における光送信モジュールのチャーピング特性を示す。The chirping characteristic of the optical transmission module in the 2nd Example of this invention is shown.

符号の説明Explanation of symbols

110・・・半導体基板、111・・・n型バッファ層、112・・・n型クラッド層、113・・・n型SCH層、114・・・MQW活性層、115・・・p型SCH層、116・・・回折格子バッファ層、117・・・回折格子層、118・・・回折格子キャップ層、119・・・p型クラッド層、120・・・p型コンタクト層、121・・・p電極、122・・・n電極、123・・・前方端面コーティング膜、124・・・後方端面コーティング膜、125・・・導波路、126・・・p電極パッド、210・・・半導体基板、211・・・n型バッファ層、212・・・n型クラッド層、213・・・n型SCH層、214・・・MQW活性層、215・・・p型SCH層、216・・・回折格子バッファ層、217・・・回折格子層、218・・・回折格子キャップ層、219・・・p型クラッド層、220・・・p型コンタクト層、221・・・p電極、222・・・n電極、223・・・前方端面コーティング膜、224・・・後方端面コーティング膜、225・・・導波路、226・・・p電極パッド、227・・・電流狭窄の為の絶縁溝、130・・・λ/8シフト位置、230・・・λ/8シフト位置、301・・・光送信モジュール、302・・・半導体レーザ、303・・・レーザの駆動回路、304・・・レンズ、305・・・光ファイバ、306・・・モニタPD、401・・・光送信モジュールのチャーピング特性
110 ... Semiconductor substrate, 111 ... n-type buffer layer, 112 ... n-type cladding layer, 113 ... n-type SCH layer, 114 ... MQW active layer, 115 ... p-type SCH layer 116 ... Diffraction grating buffer layer, 117 ... Diffraction grating layer, 118 ... Diffraction grating cap layer, 119 ... P-type cladding layer, 120 ... P-type contact layer, 121 ... p Electrode, 122 ... n electrode, 123 ... front end face coating film, 124 ... rear end face coating film, 125 ... waveguide, 126 ... p-electrode pad, 210 ... semiconductor substrate, 211 ... n-type buffer layer, 212 ... n-type cladding layer, 213 ... n-type SCH layer, 214 ... MQW active layer, 215 ... p-type SCH layer, 216 ... diffraction grating buffer Layer, 217 ... diffraction grating layer, 218 ... diffraction grating cap layer, 219 ... p-type cladding layer, 220 ... p-type contact layer, 221 ... p-electrode, 222 ... n-electrode 223 ... Front end Coating film, 224 ... Rear end face coating film, 225 ... Waveguide, 226 ... P electrode pad, 227 ... Insulation groove for current confinement, 130 ... λ / 8 shift position, 230 ... λ / 8 shift position, 301 ... optical transmission module, 302 ... semiconductor laser, 303 ... laser drive circuit, 304 ... lens, 305 ... optical fiber, 306 ... Monitor PD, 401 ... Chirping characteristics of optical transmission module

Claims (3)

半導体多層膜の一部に周期的な回折格子を形成した分布帰還型半導体レーザ素子であって、
当該分布帰還型半導体レーザの利得媒質がInGaAsPの量子井戸構造にて構成され、
前記回折格子は1/8波長の位相シフト構造を1箇所のみ有し、
前記1/8波長の位相シフト構造は導波路の中央よりも後方向端面側であって導波路の全長を1とした場合に前方向端面から0.9の位置に形成され、
前方向端面コーティング膜の反射率が4%であり、
後方向端面コーティング膜の反射率が88%であることを特徴とする分布帰還型半導体レーザ素子。
A distributed feedback semiconductor laser device in which a periodic diffraction grating is formed in a part of a semiconductor multilayer film,
The gain medium of the distributed feedback semiconductor laser is composed of an InGaAsP quantum well structure,
The diffraction grating has a 1/8 wavelength phase shift structure in only one place ,
The phase shift structure of 1/8 wavelength is formed at a position 0.9 from the front end face when the total length of the waveguide is 1 on the rear end face side from the center of the waveguide,
The reflectance of the front end face coating film is 4%,
A distributed feedback semiconductor laser device, wherein the reflectance of the rear end face coating film is 88% .
半導体多層膜の一部に周期的な回折格子を形成した分布帰還型半導体レーザ素子であって、
当該分布帰還型半導体レーザの利得媒質がInGaAlAsの量子井戸構造にて構成され、
前記回折格子は1/8波長の位相シフト構造を1箇所のみ有し、
前記1/8波長の位相シフト構造は導波路の中央よりも後方向端面側であって導波路の全長を1とした場合に前方向端面から0.7の位置に形成され、
前方向端面コーティング膜の反射率が2%であり、
後方向端面コーティング膜の反射率が80%であることを特徴とする分布帰還型半導体レーザ素子。
A distributed feedback semiconductor laser device in which a periodic diffraction grating is formed in a part of a semiconductor multilayer film,
The gain medium of the distributed feedback semiconductor laser is composed of an InGaAlAs quantum well structure,
The diffraction grating has a 1/8 wavelength phase shift structure in only one place,
The 1/8 wavelength phase shift structure is formed at a position of 0.7 from the front end face when the total length of the waveguide is 1 on the rear end face side from the center of the waveguide,
The reflectance of the front end face coating film is 2%,
A distributed feedback semiconductor laser device, wherein the reflectance of the rear end face coating film is 80%.
請求項1〜のいずれかに記載の分布帰還型半導体レーザ素子を用いた光送信モジュール、及び光送受信モジュール。 Optical transmission module and an optical transceiver module, using a distributed feedback semiconductor laser device according to any one of claims 1-2.
JP2004196189A 2004-07-02 2004-07-02 Semiconductor optical device Active JP4340596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196189A JP4340596B2 (en) 2004-07-02 2004-07-02 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196189A JP4340596B2 (en) 2004-07-02 2004-07-02 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JP2006019533A JP2006019533A (en) 2006-01-19
JP4340596B2 true JP4340596B2 (en) 2009-10-07

Family

ID=35793500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196189A Active JP4340596B2 (en) 2004-07-02 2004-07-02 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP4340596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018713A (en) * 2009-07-08 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Also Published As

Publication number Publication date
JP2006019533A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US7809038B2 (en) Electro-absorption optical modulator integrated with a laser to produce high speed, uncooled, long distance, low power, 1550 nm optical communication device with optimized parameters
US5737474A (en) Semiconductor optical device
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
JPH0715000A (en) Constitution of integrated monolithic laser modulator of multiple quantum well structure
US8144741B2 (en) Semiconductor laser
JP4026334B2 (en) Semiconductor laser, distributed feedback semiconductor laser, and wavelength tunable semiconductor laser
US20100142885A1 (en) Optical module
JP2010232424A (en) Semiconductor optical amplifier, and optical module
JP6717733B2 (en) Semiconductor optical integrated circuit
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JP5310533B2 (en) Optical semiconductor device
JP2723045B2 (en) Flare structure semiconductor laser
WO2018197015A1 (en) Curved waveguide laser
JP2950302B2 (en) Semiconductor laser
JP4340596B2 (en) Semiconductor optical device
JP2000036638A (en) Semiconductor light emitting device
JP3264321B2 (en) Waveguide-type semiconductor optical integrated device and method of manufacturing the same
US6760141B2 (en) Semiconductor optical modulator and semiconductor optical device
JP2669335B2 (en) Semiconductor light source and manufacturing method thereof
WO2021148120A1 (en) Single-mode dfb laser
JP3838355B2 (en) Semiconductor laser
WO2021148121A1 (en) Dfb laser with angled central waveguide section
JP5163355B2 (en) Semiconductor laser device
JP2760276B2 (en) Selectively grown waveguide type optical control device
WO2009125635A1 (en) Semiconductor laser and modulation method of semiconductor laser

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250