JP4339321B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4339321B2
JP4339321B2 JP2006012777A JP2006012777A JP4339321B2 JP 4339321 B2 JP4339321 B2 JP 4339321B2 JP 2006012777 A JP2006012777 A JP 2006012777A JP 2006012777 A JP2006012777 A JP 2006012777A JP 4339321 B2 JP4339321 B2 JP 4339321B2
Authority
JP
Japan
Prior art keywords
intake
fuel injection
value
control
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012777A
Other languages
English (en)
Other versions
JP2007192171A (ja
Inventor
将樹 上野
勝治 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006012777A priority Critical patent/JP4339321B2/ja
Priority to DE602007000970T priority patent/DE602007000970D1/de
Priority to EP07000040A priority patent/EP1811160B1/en
Priority to US11/650,948 priority patent/US7400967B2/en
Publication of JP2007192171A publication Critical patent/JP2007192171A/ja
Application granted granted Critical
Publication of JP4339321B2 publication Critical patent/JP4339321B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関し、特に排気還流機構を備える内燃機関の燃焼室内における空燃比を正確に制御するものに関する。
特許文献1には、排気還流機構を備えるディーゼル機関の制御装置が示されている。この制御装置によれば、アクセルペダル踏み込み量及び機関回転数に応じて予め設定されたマップを用いて燃焼室内に供給されるガス量Gfが算出されるとともに、吸入空気量センサにより吸入空気量Gaが検出される。さらにガス量Gfから吸入空気量Gaを減算することにより得られる還流ガス量Geが算出され、この還流ガス量Geと、排気系に設けられた酸素濃度センサにより検出される排気中の酸素濃度OXとに応じて、排気還流機構を介して還流される排気中の空気量Gaeが算出される。そして、燃焼室内に供給される空気量Gcylは、(Ga+Gae)として算出され、この空気量Gcylに応じて燃料噴射量が算出される。
特開平8−61112号公報
内燃機関、特にディーゼル機関では、近年NOxや粒子状物質(PM)の排出量が厳しく規制されているため、従来のように供給燃料量に対して空気を過剰に供給する制御手法では、要求される性能を得ることができなくなっている。そのため、機関の吸入空気量及び燃焼室内の混合気の空燃比をより適切に制御することが必要になってきている。
上述した従来の制御装置では、機関運転状態に応じて吸入空気量の目標値を設定し、実際の吸入空気量を目標値に制御する技術は採用されておらず、近年の厳格な性能要求を満たすような吸入空気量制御及び燃料供給制御を行うことは困難であった。
本発明はこの点に着目してなされたものであり、内燃機関の吸気状態及び燃焼混合気の空燃比をより厳密に制御し、良好な運転性能及び排気特性を得ることができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の吸気管(2)または燃焼室内に燃料を噴射する燃料噴射手段(9)を備えた内燃機関の制御装置において、前記機関へ導入する吸気の状態を示す吸気状態パラメータ(GA,PI)を検出する吸気状態パラメータ検出手段(21,24)と、前記機関の運転状態を示す運転状態パラメータ(NE,TRQ)に応じて前記吸気状態パラメータの要求値(Giades,Pides)を算出する要求値算出手段(42)と、前記吸気状態パラメータGA,PI)が前記要求値(Giades,Pides)と一致するように前記吸気状態を制御する吸気状態制御手段(43,3,6,12)と、前記運転状態パラメータ(NE,TRQ)、及び前記吸気状態パラメータと前記要求値との偏差(δGa,δPi)に応じて制御値(Mfcmd)を算出し、該制御値(Mfcmd)により前記燃料噴射手段(9)による燃料噴射量を制御する燃料噴射制御手段(44)とを備え、前記燃料噴射制御手段(44)は、前記運転状態パラメータ(NE,TRQ)に応じて基本制御値(Mfmap)を算出する基本制御値算出手段と、前記運転状態パラメータ(NE,TRQ)に応じて前記基本制御値の変化率を示す変化率パラメータ(Dmfga,Dmfpi)を算出する変化率パラメータ算出手段と、前記吸気状態パラメータと前記要求値との偏差(δGa,δPi)に前記変化率パラメータ(Dmfga,Dmfpi)を乗算することにより補正値(δGa・Dmfga,δPi・Dmfpi)を算出する補正値算出手段と、前記基本制御値を前記補正値(δGa・Dmfga,δPi・Dmfpi)で補正することにより、前記燃料噴射量の制御値(Mfcmd)を算出する制御値算出手段とを備え、該制御値算出手段により算出される制御値(Mfcmd)により前記燃料噴射制御を行うことを特徴とする。
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記燃料噴射制御手段(44)は、前記運転状態パラメータ(NE,TRQ)、及び前記吸気状態パラメータと前記要求値との偏差(δGa,δPi)に応じて、前記燃料噴射手段(9)による燃料噴射時期(φfcmd)を制御することを特徴とする。
請求項に記載の発明は、請求項1または2に記載の内燃機関の制御装置において、前記吸気状態パラメータは、吸気圧(PI)、吸入酸素分圧(PIO)、及び吸入不活性ガス分圧(PII)のうちのいずれか2つであることを特徴とする。
請求項に記載の発明は、請求項1または2に記載の内燃機関の制御装置において、前記機関は排気を吸気系に還流させる排気還流機構を備え、前記吸気状態パラメータは、吸気圧(PI)、吸入新気流量(GA)、及び還流排気流量(GR)のうちのいずれか2つであることを特徴とする。
請求項に記載の発明は、請求項またはに記載の内燃機関の制御装置において、前記吸気状態パラメータは、さらに吸気温度(TI)を含み、吸気温度の基準値(Tinorm)を算出する吸気温度基準値算出手段をさらに備え、前記燃料噴射制御手段は、検出される吸気温度(TI)と前記基準値(Tinorm)との偏差(δTi)に応じた制御を行うことを特徴とする。
請求項に記載の発明は、請求項1からのいずれか1項に記載の内燃機関の制御装置において、前記運転状態パラメータに応じて前記機関の燃焼モード(Mdcmb)を決定する燃焼モード決定手段(41)を備え、前記燃料噴射制御手段(44)は、前記燃焼モードに対応して設定された制御用マップを用いて前記制御値(Mfcmd)の算出を行うことを特徴とする。
請求項に記載の発明は、請求項に記載の内燃機関の制御装置において、前記燃焼モード決定手段(41)が燃焼モード(Mdcmd)を変更した場合において、前記燃料噴射制御手段は、前記偏差(δGa,δPi)の絶対値が所定閾値(εga2,εga3,εpi2,εpi3)以上であるときは、変更前の燃焼モードに対応した制御用マップを使用し、前記偏差(δGa,δPi)の絶対値が前記所定閾値(εga2,εga3,εpi2,εpi3)より小さいときは、変更後の燃焼モードに対応した制御用マップを使用することを特徴とする。
請求項1に記載の発明によれば、機関へ導入する吸気の状態を示す吸気状態パラメータが検出され、機関の運転状態を示す運転状態パラメータに応じて吸気状態パラメータの要求値が算出されるとともに、吸気状態パラメータが要求値と一致するように吸気状態が制御され、運転状態パラメータ、及び吸気状態パラメータと要求値との偏差に応じて燃料噴射量が制御される。したがって、機関運転状態に応じた望ましい吸気状態が実現されるとともに、その吸気状態に適した燃料噴射量の制御が行われ、良好な機関運転性能及び排気特性を得ることができる。より具体的には、運転状態パラメータに応じて基本制御値及び基本制御値の変化率を示す変化率パラメータが算出され、吸気状態パラメータと要求値との偏差に変化率パラメータを乗算することにより補正値が算出される。そして、基本制御値を前記補正値で補正することにより、燃料噴射量及び燃料噴射時期の制御値が算出され、この制御値により燃料噴射制御が行われる。したがって、吸気状態パラメータが要求値と完全に一致していない状態でも、その偏差に応じた適切な燃料噴射量の制御値が得られ、正確な制御を行うことができる。また、偏差に変化率パラメータを乗算することにより補正値を算出するようにしたので、実際の吸気状態パラメータ値に適した燃料噴射量の算出に使用するマップの設定点を比較的少なくし、メモリ容量やマップ設定のための工数を抑制しつつ、精度の高い燃料噴射制御を実現することができる。
請求項2に記載の発明によれば、運転状態パラメータ、及び吸気状態パラメータと要求値との偏差に応じて、燃料噴射手段による燃料噴射時期が制御される。したがって、吸気状態制御により実現される吸気状態に適した燃料噴射時期の制御が行われ、良好な機関運転性能及び排気特性を得ることができる。
請求項に記載の発明によれば、吸気状態パラメータは、吸気圧、吸気酸素分圧、及び不活性ガス分圧のうちのいずれか2つとされ、請求項に記載の発明によれば、吸気状態パラメータは、吸気圧、吸入新気流量、及び還流排気流量のうちのいずれか2つとされる。これらの吸気状態パラメータを用いることにより、燃焼室内の酸素質量及び不活性ガス質量を所望値に制御することが可能となり、燃料噴射制御を適切に行うことができる。
請求項に記載の発明によれば、吸気状態パラメータは、さらに吸気温度を含むので、吸気温度変化の影響を加味してより正確な制御を行うことができる。
請求項に記載の発明によれば、運転状態パラメータに応じて機関の燃焼モードが決定され、該決定された燃焼モードに対応して設定された制御用マップを用いて制御値の算出が行われる。すなわち、空燃比や燃料噴射時期が異なる複数の燃焼モードが機関運転状態に応じて選択され、その選択される燃焼モードに対応した制御用マップを用いることにより、燃焼モード毎に最適な制御値を得ることができる。
請求項に記載の発明によれば、燃焼モードが変更されたときは、吸気状態パラメータと要求値との偏差の絶対値が所定閾値以上であるときは、変更前の燃焼モードに対応した制御用マップが使用され、吸気状態パラメータの偏差の絶対値が所定閾値より小さいときは、変更後の燃焼モードに対応した制御用マップが使用される。燃焼モードが変更された直後の過渡状態においては、実際の吸気状態パラメータと要求値との偏差が大きくなり易いので、その偏差が小さくなるまでは変更前の燃焼モードに対応した制御マップを使用することにより、制御の安定化を図ることができる。
以下本発明の実施の形態を図面を参照して説明する。
[第1の実施形態]
図1は本発明の第1の実施形態にかかる内燃機関と、その制御装置の構成を示す図である。内燃機関(以下「エンジン」という)1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各気筒に燃料噴射弁9が設けられている。燃料噴射弁9は、電子制御ユニット(以下「ECU」という)20に電気的に接続されており、燃料噴射弁9の開弁時間は、ECU20により制御される。
エンジン1は、吸気管2,排気管4、及びターボチャージャ8を備えている。ターボチャージャ8は、排気の運動エネルギにより回転駆動されるタービンホイール10を有するタービン11と、タービンホイール10とシャフト14を介して連結されたコンプレッサホイール15を有するコンプレッサ16とを備えている。コンプレッサホイール15は、エンジン1に吸入される空気の加圧(圧縮)を行う。
タービン11は、タービンホイール10に吹き付けられる排気ガスの流量を変化させるべく開閉駆動される複数の可変ベーン12(2個のみ図示)及び該可変ベーンを開閉駆動するアクチュエータ(図示せず)を有しており、可変ベーン12の開度(以下「ベーン開度」という)VOを変化させることにより、タービンホイール10に吹き付けられる排気ガスの流量を変化させ、タービンホイール10の回転速度を変更できるように構成されている。可変ベーン12を駆動するアクチュエータは、ECU20に接続されており、ベーン開度VOは、ECU20により制御される。より具体的には、ECU20は、デューティ比可変の制御信号をアクチュエータに供給し、これによってベーン開度VOを制御する。なお、可変ベーンを有するターボチャージャの構成は広く知られており、例えば特開平1−208501号公報に示されている。
吸気管2のコンプレッサ16の下流側にはインタークーラ18が設けられ、さらにインタークーラ18の下流側には、スロットル弁3が設けられている。スロットル弁3は、アクチュエータ19により開閉駆動可能に構成されており、アクチュエータ19はECU20に接続されている。ECU20は、アクチュエータ19を介して、スロットル弁3の開度制御を行う。
排気管4と吸気管2との間には、排気ガスを吸気管2に環流する排気還流通路5が設けられている。排気還流通路5には、排気還流量を制御するための排気還流制御弁(以下[EGR弁」という)6が設けられている。EGR弁6は、ソレノイドを有する電磁弁であり、その弁開度はECU20により制御される。EGR弁6には、その弁開度(弁リフト量)LACTを検出するリフトセンサ7が設けられており、その検出信号はECU20に供給される。排気還流通路5及びEGR弁6より、排気還流機構が構成される。
吸気管2には、吸入空気流量GAを検出する吸入空気流量センサ21、コンプレッサ16の下流側の吸気圧(過給圧)PBを検出する過給圧センサ22、吸気温TIを検出する吸気温センサ23、及び吸気圧PIを検出する吸気圧センサ24が設けられている。また、排気管4には、タービン11の上流側の排気圧PEを検出する排気圧センサ25が設けられている。これらのセンサ21〜25は、ECU20と接続されており、センサ21〜25の検出信号は、ECU20に供給される。
排気管4の、タービン11の下流側には、排気ガス中に含まれる炭化水素などの酸化を促進する触媒コンバータ31と、粒子状物質(主としてすすからなる)を捕集する粒子状物質フィルタ32とが設けられている。
エンジン1により駆動される車両のアクセルペダル(図示せず)の踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ27、、エンジン回転数(回転速度)NEを検出するエンジン回転数センサ28、及び大気圧PAを検出する大気圧センサ29がECU20に接続されており、これらのセンサの検出信号は、ECU20に供給される。
ECU20は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、タービン11の可変ベーン12を駆動するアクチュエータ、燃料噴射弁9、EGR弁6、スロットル弁3を駆動するアクチュエータ19などに駆動信号を供給する出力回路から構成される。
ECU20は、エンジン1の運転状態に応じて、エンジン1の燃焼モードを決定するとともに、要求新気流量Giades、要求吸気圧Pides、及び基準吸気温Tinormを算出し、エンジン1に吸入されるガス(新気+還流ガス)の状態(以下「吸気状態」という)の制御を行う。より具体的には、検出される吸入空気流量GA及び吸気圧PIが、要求新気流量Giades及び要求吸気圧Pidesと一致するように、ベーン開度VO、スロットル弁開度TH、及びEGR弁6のリフト量(開度)LACTを制御する吸気状態制御を実行する。
ECU20は、さらにエンジン運転状態、並びに要求新気流量Giades、要求吸気圧Pides、及び基準吸気温Tinormに応じて、燃料噴射弁9による燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出し、エンジン運転状態及び吸気状態に適した燃料噴射制御を行う。
図2は、上記吸気状態制御及び燃料噴射制御を行う制御モジュールの構成を示す機能ブロック図である。この図に示される各ブロックの機能は、実際にはECU20のCPUにより実行される演算処理により実現される。なお、以下に示す種々の制御パラメータ算出用のマップは、予め行った実験結果に基づき、公知の最適化ツール(コンピュータプログラム)を用いて設定されている。
図2に示す制御モジュールは、燃焼モード決定部41と、吸気状態パラメータ要求値設定部42と、吸気状態制御部43と、燃料噴射制御部44とを備えている。以下これらの機能ブロックの機能を順次説明する。
燃焼モード決定部41は、エンジン回転数NE及び要求トルクTRQに応じて、エンジン1の燃焼モードの決定を行う。具体的には、リーン燃焼モード、リッチ燃焼モード、及び予混合燃焼モードのいずれかを選択し、燃焼モードパラメータMdcmbを出力する。本実施形態では、燃焼モードパラメータMdcmbは、「1」〜「3」に値に設定され、「1」はリーン燃焼モードに対応し、「2」はリッチ燃焼モードに対応し、「3」は予混合燃焼モードに対応する。
リーン燃焼モードは、エンジン1の燃焼室内の混合気の空燃比を、理論空燃比よりリーン側の値に設定する燃焼モードであり、リッチ燃焼モードは、空燃比を理論空燃比近傍または理論空燃比よりリッチ側の値に設定する燃焼モードであり、予混合燃焼モードは、リーン燃焼モードより排気還流量を増加させることにより、空燃比を理論空燃比から20程度に設定し、着火遅れ時間(燃料噴射から実際に着火するまでの時間)が長くして予混合燃焼を実現する燃焼モードである。予混合燃焼モードは、予め設定された予混合燃焼領域(エンジン回転数NE及び要求トルクTRQで決まる運転領域)で採用される。
なお、要求トルクTRQは、エンジン回転数NE及びアクセルペダル操作量APに応じて算出される。要求トルクTRQは、アクセルペダル操作量APが増加するほど、増加するように設定される。
吸気状態パラメータ要求値設定部42は、エンジン回転数NE及び要求トルクTRQ、並びに燃焼モードパラメータMdcmbに応じて、要求新気流量Giades、要求吸気圧Pides、及び基準吸気温Tinormの設定を行う。基本的には、エンジン回転数NEが高くなるほど、また要求トルクTRQが大きくなるほど、要求新気流量Giades及び要求吸気圧Pidesが増加するように設定される。基準吸気温Tinormは、要求新気流量Giades及び要求吸気圧Pidesが実現された状態での実際の吸気温を検出することにより、実験的に求められる。
吸気状態制御部43は、要求新気流量Giades及び要求吸気圧Pidesと、検出されるエンジン回転数NE、吸入空気流量GA、吸気圧PI、排気圧PE、及び大気圧PAに応じて、可変ベーン12の開度指令値(以下「ベーン開度指令値」という)θvcmd、スロットル弁3の開度指令値(以下「スロットル弁開度指令値」という)θthcmd、及びEGR弁6の開度指令値(以下「EGR弁開度指令値」とう)θrcmdを算出する。すなわち、吸気状態制御部43は、可変ベーン開度θvcmd、スロットル弁開度指令値θthcmd、及びEGR弁開度指令値θrcmdを制御することにより、検出される吸入空気流量GA及び吸気圧PIを、要求新気流量Giades及び要求吸気圧Pidesに収束させる制御を行う。
燃料噴射制御部44は、燃焼モードパラメータMdcmb、要求新気流量Giades、要求吸気圧Pides及び基準吸気温Tinormと、検出されるエンジン回転数NE、吸入空気流量GA、吸気圧PI、吸気温TIに応じて、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出する。燃料噴射弁9は、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdに応じた駆動信号により、駆動される。
図3は、吸気状態パラメータ要求値設定部42の構成を示すブロック図である。吸気状態パラメータ要求値設定部42は、第1要求値設定部101と、第2要求値設定部102と、第3要求値設定部103と、スイッチ部104〜106とを備えている。第1要求値設定部101は、エンジン回転数NE及び要求トルクTRQに応じて、リーン燃焼モードに適したGiades1マップ、Pides1マップ、及びTinorm1マップ(いずれも図示せず)の検索を行い、第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1基準吸気温Tinorm1を算出する。第2要求値設定部102は、エンジン回転数NE及び要求トルクTRQに応じて、リッチ燃焼モードに適したGiades2マップ、Pides2マップ、及びTinorm2マップ(いずれも図示せず)の検索を行い、第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2基準吸気温Tinorm2を算出する。第3要求値設定部103は、エンジン回転数NE及び要求トルクTRQに応じて、予混合燃焼モードに適したGiades3マップ、Pides3マップ、及びTinorm3マップ(いずれも図示せず)の検索を行い、第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3基準吸気温Tinorm3を算出する。
スイッチ部104は、燃焼モードパラメータMdcmbに応じて第1〜第3要求新気流量Giades1,Giades2,Giades3の何れか1つを選択し、要求新気流量Giadesとして出力する。Mdcmb=1のとき、第1要求新気流量Giades1が選択され、Mdcmb=2のとき、第2要求新気流量Giades2が選択され、Mdcmb=3のとき、第3要求新気流量Giades3が選択される。スイッチ部105及び106においても同様の切換が行われ、Mdcmb=1のとき、第1要求吸気圧Pides1及び第1基準吸気温Tinorm1が選択され、Mdcmb=2のとき、第2要求吸気圧Pides2及び第2基準吸気温Tinorm2が選択され、Mdcmb=3のとき、第3要求吸気圧Pides3及び第3基準吸気温Tinorm3が選択される。
図4は、吸気状態制御部43の構成を示すブロック図である。吸気状態制御部43は、要求還流ガス分圧算出部51と、目標仕事率算出部53、実仕事率推定部54、目標排気圧算出部55、除算部52、目標吸気圧算出部56、乗算部57、減算部58、分圧推定部59、モデル予測コントローラ60、θv変換部61、θth変換部62、及びθr変換部63を備えている。
要求還流ガス分圧算出部51は、図5に示すように、要求新気分圧算出部74、温度補正部76、及び減算部77とからなる。要求新気分圧算出部74は、エンジン回転数NE及び要求新気流量Giadesに応じて、Piaマップを検索し、要求新気分圧マップ値Piamapdを算出する。要求新気分圧は、エンジン1に吸入されるガス中の新気分圧の望ましい値である。Piaマップは、吸気温TIが所定温度TINORである状態に対応して設定されている。
1シリンダ容積を占める新気質量Miaと、要求新気分圧マップ値Piamapdとは、下記式(1)で示す関係を有する。
Piamapd={R・TINOR/(ηv・Vs)}Mia (1)
ここでRはガス定数、ηvは体積効率、Vsは気筒の容積である。
式(1)より、吸気温TIに対応する要求新気分圧Piadesは、下記式(2)で与えられる。
Piades=(TI/TINOR)Piamapd (2)
温度補正部76は、検出される吸気温TIを式(2)に適用して、マップ値Piamapdを補正し、要求新気分圧Piadesを算出する。
減算部77は、要求吸気圧Pidesから要求新気分圧Piadesを減算することにより、要求還流ガス分圧Pirdesを算出する。
図4に戻り、目標仕事率算出部53は、要求吸気圧Pides、要求新気流量Giades及び大気圧PAに応じてWcrefマップの検索、あるいは下記式(3a)による演算により、コンプレッサ16の目標仕事率Wcrefを算出する。Wcrefマップは、要求吸気圧Pides、または要求新気流量Giadesが増加するほど、また大気圧PAが低下するほど、目標仕事率Wcrefが増加するように設定されている。実仕事率推定部54は、検出される過給圧PB及び吸入空気流量GAを下記式(3b)に適用し、コンプレッサ16の実仕事率推定値Wcestを算出する。
Figure 0004339321
ここでηcmpはコンプレッサの効率、cpは空気の定圧比熱、TAは大気温度、κaは空気の比熱比である。
目標排気圧算出部55は、実仕事率推定値Wcestが目標仕事率Wcrefと一致するように、目標排気圧Perefを算出する。具体的には、目標排気圧算出部55は、実仕事率推定値Wcestが目標仕事率Wcrefより小さいときは、目標排気圧Perefを高める方向に更新し、逆に実仕事率推定値Wcestが目標仕事率Wcrefより大きいときは、目標排気圧Perefを下げる方向に更新する。
目標吸気圧算出部56は、要求吸気圧Pidesと、検出される過給圧PBとを比較し、低い方を選択することにより、目標吸気圧Pirefを算出する。除算部52は、要求還流ガス分圧Pirdesを要求吸気圧Pidesで除算することにより、要求還流ガス比率RPIRを算出し、乗算部57は、目標吸気圧Pirefに要求還流ガス比率RPIRを乗算することにより、目標還流ガス分圧Pirrefを算出する。減算部58は、目標吸気圧Pirefから目標還流ガス分圧Pirrefを減算することにより、目標新気分圧Piarefを算出する。
分圧推定部59は、図6に示すように、新気分圧推定部81と、温度補正部83と、減算部84とからなる。新気分圧推定部81は、検出されるエンジン回転数NE及び吸入空気流量GAに応じて、新気分圧推定マップ値Piamapを算出する。新気分圧推定マップ値Piamapは、吸入空気流量GAが増加するほど、またエンジン回転数NEが減少するほど、増加するように算出される。より具体的には、新気分圧推定マップ値Piamapは、吸入空気流量GAに比例し、エンジン回転数NEに反比例するように設定されている。温度補正部83は、図5に示す温度補正部76と同様に、検出吸気温TIに応じて、新気分圧推定マップ値Piamapを補正し、推定新気分圧Piaestを算出する。減算部84は、検出される吸気圧PIから推定新気分圧Piaestを減算することにより、推定還流ガス分圧Pirestを算出する。
図4に戻り、モデル予測コントローラ60は、検出される排気圧PE、推定新気分圧Piaest及び推定還流ガス分圧Pirestが、それぞれ目標排気圧Peref、目標新気分圧Piaref及び目標還流ガス分圧Pirrefと一致するように、モデル予測制御を用いて、タービン11を通過するガス流量の指令値であるタービンガス流量指令値Gvcmd、スロットル弁3を通過する新気流量の指令値である新気流量指令値Gthcmd及びEGR弁6を通過する還流ガス流量の指令値である還流ガス流量指令値Grcmdを算出する。
θv変換部61は、検出される排気圧PE及び大気圧PAに応じて、タービンガス流量指令値Gvcmdを、可変ベーン12の開度指令値(以下「ベーン開度指令値」という)θvcmdに変換する。具体的には、以下のようにして変換を行う。
タービン11をノズルとしてモデル化することにより、下記式(4)の関係が成立する。
Gvcmd=Atb(θvcmd)・U(PE)・Φ(PA/PE) (4)
ここで、Atb(θvcmd)はベーン開度の関数である可変ベーンの有効開口面積であり、U(PE)は下記式(5)により算出される上流条件関数であり、Φ(PA/PE)は可変ベーン12の下流側圧力と上流側圧力との比の関数である。式(5)のρeは、タービン11を通過する排気ガスの密度であり、式(6)及び(7)のκeは、タービン11を通過する排気ガスの比熱比である。排気ガスの流速が音速より低いとき、式(6)が適用され、排気ガスの流速が音速以上であるとき、式(7)が適用される。
Figure 0004339321
式(4)から有効開口面積Atb(θvcmd)は、下記式(8)により算出され、有効開口面積Atb(θvcmd)に応じて予め設定されている変換テーブルを検索することにより、ベーン開度指令値θvcmdが算出される。
Atb(θvcmd)=Gvcmd/{U(PE)・Φ(PA/PE)} (8)
θth変換部62及びθr変換部63も同様にしてそれぞれ下記式(9)及び(10)により、それぞれスロットル弁3の有効開口面積Ath(θth)及びEGR弁6の有効開口面積Ar(θr)を算出し、有効開口面積Ath(θth)及びAr(θr)に応じて変換テーブルを検索することにより、スロットル弁開度指令値θthcmd及びEGR弁開度指令値θrcmdを算出する。
Ath(θthcmd)=Gthcmd/{U(PB)・Φ(PI/PB)} (9)
Ar(θrcmd) =Grcmd/{U(PE)・Φ(PI/PE)} (10)
なお、式(9)のU(PB),Φ(PI/PB)、及び式(10)のΦ(PI/PE)は、下記式(11)〜(15)で与えられる。
Figure 0004339321
Figure 0004339321
ここで、式(11)のρaは空気の密度であり、式(12)(13)のκaは空気の比熱比である。
θv変換部61,θth変換部62及びθr変換部63から出力されるベーン開度指令値θvcmd、スロットル弁開度指令値θth及びEGR弁開度指令値θrに基づいて、可変ベーン12の開度、スロットル弁3の開度、及びEGR弁6の開度が制御される。
次にモデル予測コントローラ60について説明する。先ず、コントローラ60による制御の対象をモデル化した制御対象モデルについて説明する。
容積Vのチャンバ内気体の質量M及び圧力Pの関係は、絶対温度Tを用いて下記式(20)で示される。
PV=MRT (20)
この式を時間微分することにより、下記式(21)が得られる。
Figure 0004339321
ここで、κnは、チャンバ内の気体の比熱比κ以下で1.0以上の値をとるポリトロープ指数である。
これを吸気管2内の新気分圧Piaに適用すると、下記式(22)が得られる。
Figure 0004339321
ここで、G'thはスロットル弁3を通過する単位時間当たりの新気流量であり、G'zは気筒内に流入する単位時間当たりの吸入ガス流量であり、Piは吸気圧である。また定数kiは下記式(23)で与えられる。
Figure 0004339321
ここで、Tiは吸気温、Viは吸気管のスロットル弁3より下流側の容積、κniは、ポリトロープ指数である。
式(22)の吸入ガス流量G'zは、下記式(24)で表すことができるので、式(22)は下記式(25)のように表すことができる。
Figure 0004339321
ここで、NEはエンジン回転数、Pcylは気筒内圧力、Vcylは気筒容積、Tcylは気筒内温度、ηvは体積効率である。
式(25)では、新気分圧Piaの係数がエンジン回転数NEに依存するため、クランク角度αを基準とする式に変換する(具体的には、両辺にdt/dα=1/NEを乗算する)と、下記式(26)が得られる。式(26)のGthは、スロットル弁3を通過する単位クランク角当たりの新気流量である。
また吸気管内の還流ガス分圧Pirについても、同様にして下記式(27)が得られる。式(26)のGrは、EGR弁6を通過する単位クランク角当たりの還流ガス流量である。
Figure 0004339321
一方排気管4のタービン上流側の排気ガスについては、下記式(28)が成立する。
Figure 0004339321
ここで、Peは排気管4のタービン上流側における排気圧、G'rは単位時間当たりの還流ガス流量、Teは排気温度、Veは排気管4のタービン上流側の容積、κneはポリトロープ指数である。
吸入ガス流量G'zは、式(24)をさらに変形することにより、下記式(29)で表すことができる。
G'z==k'ηv×Pi=k'ηv(Pia+Pir) (29)
これを式(28)に適用すると、下記式(30)が得られ、さらにクランク角度基準に変換することにより、下記式(31)が得られる。
Figure 0004339321
式(26)、(27)及び(31)をまとめると、下記式(32)が得られる。
Figure 0004339321
次に式(32)により定義される制御対象モデルを、サンプリング周期hで離散化した時刻kを用いた離散時間系の制御対象モデルに変換すると、その制御対象モデルは下記式(34)により定義され、式(34)の制御出力x(k)、制御入力u(k)、モデルパラメータ行列A及びBは、それぞれ下記式(35)〜(38)で表される。
x(k+1)=Ax(k)+Bu(k) (34)
Figure 0004339321
図7は、モデル予測制御の概要を説明するための図である。この図では、制御出力x(k)を、目標値(ベクトル)rに一致させる制御が示されており、以下のような手順で演算が行われる。
1)現時刻kにおいて出力x(k)を計測し、目標値rに徐々に近づく参照軌道xR(破線)を算出する。
2)予測式を用いて未来の出力の予測値xP(k+i)を求め、一致区間において予測値xPが参照軌道xRにできるだけ近づくように、現時刻k以降Huステップ(図7ではHu=2)の期間である制御区間において、制御入力u(k),u(k+1),…,u(k+Hu-1)を、最適化演算アルゴリズムにより算出する。
3)得られた制御入力のうちu(k)のみを実際に制御対象に入力する。
4)時刻(k+1)以後、上記1)〜3)の手順を繰り返す。
次にモデル予測制御の詳細を説明する。式(34)を繰り返し適用することにより、例えばx(k+2)は下記式(39)で与えられ、一般に離散時間i経過後の出力であるx(k+i)は、下記式(40)で与えられる。
Figure 0004339321
制御入力uは、時刻kから(k+Hu−1)までの制御区間において変化し、以後は一定値をとると仮定して、制御出力xの予測値x(k+i)を算出し、その予測値x(k+i)が一致区間において目標値と一致するように(目標値からのずれを示す評価関数Vの値が最小となるように)、今回の制御入力u(k)が決定される。
制御入力u(k)を決定するためには、式(40)を制御入力変化量Δu(k)を用いた式に変換し、先ず最適な制御入力変化量Δu(k)optを求めて、最適制御入力変化量Δu(k)optを積算することにより、制御入力u(k)を算出する手法が採用される。
制御入力変化量Δu(k)と、制御入力u(k)との関係は、下記式(41)で表される。
u(k)=Δu(k)+u(k-1) (41)
式(41)の関係を用いて式(40)を変換すると、下記式(42)及び(43)が得られる。式(42)は、離散時間iが1からHuまでの期間に適用され、式(43)は、離散時間iが(Hu+1)からHpまでの期間に適用される。式(42)及び(43)のIは、単位行列である。式(42)と(43)をまとめて行列及びベクトルの形式で表すと、式(44)が得られる。
Figure 0004339321
Figure 0004339321
次に評価関数Vを下記式(45)で定義すると、式(45)は式(46)〜(48)のようにベクトルX(k)、T(k)、及びΔU(k)を定義することにより、式(49)のようの書き直すことができる。なお、式(45)のQ(i)及びR(i)は重み係数であり、式(49)の重み行列Q、Rは、式(50)、(51)で与えられる。
Figure 0004339321
Figure 0004339321
また式(44)の係数行列を下記式(52)〜(54)に示すように、Ψ、Γ、Θで表すと、一致区間(k+Hw〜k+Hp)における予測値ベクトルX(k)は、下記式(55)で表される。
Figure 0004339321
X(k)=Ψx(k)+Γu(k-1)+ΘΔu(k) (55)
ここで追従誤差ε(k)を下記式(56)で定義すると、式(49)の評価関数Vは、下記式(57)のように変形できる。
ε(k)=T(k)−Ψx(k)−Γu(k-1) (56)
Figure 0004339321
また重み行列Q、Rの平方根に相当する行列SQ、SRを下記式(58)、(59)で定義すると、式(60)で表されるベクトルの二乗長が、式(57)で示される評価関数Vに相当する。
Figure 0004339321
したがって、最適な制御入力変化量ベクトルΔU(k)optは、式(60)のベクトルの長さを最小化するΔU(k)として求められる。これは、QRアルゴリズムを用いて求めることができる(例えば「モデル予測制御」Jan M. Maciejowski著、2005年1月20日、東京電機大学出版局発行(以下「文献1」という)を参照)。
文献1に示された表記法を用いれば、最適な制御入力変化量ベクトルΔu(k)optは、下記式(61)、(62)及び(63)で示される。式(63)のバックスラッシュ記号が、最小2乗解を求める演算を示している。またImはm行m列の単位行列であり、Omはm行m列のすべての要素が「0」である行列である。すなわち行列[Immm…Om]は、ベクトルΔU(k)から、実際に制御入力u(k)の演算に使用されるベクトルΔu(k)のみを抽出するための行列である。
Δu(k)opt=KMPC・ε(k) (61)
KMPC=[Immm…Om]KFULL (62)
Figure 0004339321
図8は、モデル予測コントローラ60の構成を示す機能ブロック図である。モデル予測コントローラ60は、目標値ベクトル算出部91と、減算部92と、最適入力変化量算出部93と、積算部94と、遅延部95と、自由応答出力算出部96とから構成される。図8には、制御入力u(k)が制御対象100に入力され、制御出力x(k)がモデル予測コントローラ60にフィードバックされる構成が示されている。
本実施形態では、制御区間を決めるパラメータHu及び一致区間の開始時刻を示すパラメータHwをともに「1」とし、一致区間の終了時刻を示すパラメータHpを「2」とし、重み行列Q、Rは、対角要素がすべて「1」で他の要素がすべて「0」である単位行列としている(実質的に重み付け無しの設定としている)。したがって、最適入力変化量Δu(k)optの算出に必要な行列SQ、SRは、下記式(65)、(66)で与えられ、行列Θは、下記式(67)で与えられる。追従誤差ε(k)の算出に必要な行列Ψ及びΓ、並びに目標値ベクトルT(k)は、下記式(68)〜(70)で与えられる。
Figure 0004339321
図8の目標値ベクトル算出部91は、目標値ベクトルT(k)を以下のようにして算出する。
1)現在の制御偏差e(k)を下記式(71)により算出する。s(k)は、本実施形態では、下記式(72)で与えられる、目標値ベクトル算出部91の入力(以下「設定値ベクトル」という)である。
e(k)=s(k)−x(k) (71)
Figure 0004339321
2)iステップ後の制御偏差e(k+i)を下記式(73)により算出する。
e(k+i)=λi×e(k) (73)
ここでλは、出力x(k+i)が目標値r(k+i)に近づく速度を示すパラメータ(以下「収束速度パラメータ」という)であり、0から1の間の値に設定される。収束速度パラメータλは、その値が小さくなるほど収束速度が速くなることを示す。
3)下記式(74)により、参照軌道を示す目標値r(k+i)を算出する。
r(k+i)=s(k+i)−e(k+i) (74)
ただし、本実施形態では、未来の設定値ベクトルs(k+i)は、現在値s(k)と等しいとして、目標値ベクトルT(k)は、下記式(75)により算出される。
Figure 0004339321
遅延部95は、制御入力u(k)を1サンプル周期だけ遅延させ、u(k-1)を出力する。自由応答出力算出部96は、制御出力x(k)及び制御入力u(k-1)を下記式(76)に適用することにより、自由応答出力xFを算出する。
xF=Ψx(k)+Γu(k-1) (76)
式(76)は、式(55)のΔu(k)を「0」としたものであり、自由応答出力xFは、制御入力u(k)の変化が無い場合の制御出力に相当する。
減算部92は、目標値ベクトルT(k)から自由応答出力xFを減算する。最適入力変化量算出部93は、式(56)により、最適入力変化量Δu(k)optを算出する。積算部94は、最適入力変化量Δu(k)optを積算することにより、制御入力u(k)を算出する。モデル予測コントローラ60は、算出された制御入力u(k)=(Gth(k) Gr(k) Gv(k))Tを、新気流量指令値Gthcmd(k),還流ガス流量指令値Grcmd(k),及びタービンガス流量指令値Gvcmd(k)として出力する。
図9は、本実施形態における制御動作例を説明するためのタイムチャートであり、同図(a)〜(c)は、制御入力u(k)=(Gthcmd(k) Grcmd(k) Gvcmd(k))Tの推移を示し、同図(d)〜(f)は対応する制御出力x(k)=(Piaest Pirest PE)Tの推移を示す。時刻t1において、吸気管内の還流ガス分圧Pirを高めるためにEGR弁6が開弁されるが、このときタービン11のベーン開度は、排気圧PEを一定に維持するように若干閉じ方向に制御される。また時刻t2において、排気圧PEを高めるためにベーン開度が閉じ方向に制御されるが、このときEGR弁6の開度は、還流ガス分圧Pieを一定に維持するように若干閉じ方向に制御される。また時刻t3において、新気分圧Piaを増加させるためにスロットル弁3が開弁されるが、このときベーン開度は、排気圧PEを一定に維持するように開き方向に制御される。
このように本実施形態によれば、相互に関連しあうガスパラメータである、吸気管内の新気分圧Pia及び還流ガス分圧Pirと、排気圧PEとが、それぞれの目標値に独立して整定させることが可能となる。したがって、これらのガスパラメータをエンジン1の運転状態に応じて適切に制御し、エンジン1の性能を最大限に引き出すことができる。
吸気状態制御部43によれば、吸気状態パラメータの推定値である推定新気分圧Piaest及び推定還流ガス分圧Pirestが算出されるとともに、排気圧の目標値Peref及び吸気管内の新気分圧及び還流ガス分圧の目標値Piaref,Pirrefが算出される。そして、検出される排気圧PE,推定新気分圧Piaest及び推定還流ガス分圧Pirestが、それぞれの目標値Peref,Piaref,及びPirrefに一致するように、モデル予測制御を用いてタービン11のベーン開度、EGR弁6の開度、及びスロットル弁3の開度が制御される。その結果、排気ガスの状態を最適に維持しつつ機関に吸気状態を最適に制御することができる。またモデル予測制御を用いることにより、複数入力・複数出力の制御対象の複数出力、すなわち排気圧PE、新気分圧Pia及び還流ガス分圧Pirを、それぞれ対応する目標値Peref,Piaref,及びPirrefへ、同時に且つ同じ速さで一致させることが可能となる。その結果、エンジン1に吸入されるガス(新気及び還流排気ガス)の流量制御を総合的に、きめ細かく行い、機関の性能を最大限に引き出すことができる。また制御対象モデルが数式で定義することができれば、モデル予測制御の制御系を構築することができるため、様々なハードウエア構成に容易に適用することができ、汎用性が高いという利点があり、制御に必要なマップ設定のための工数を大幅に低減することができる。
またエンジン回転数NE及び要求トルクTRQに応じて、定常状態に対応した定常状態目標値としての要求吸気圧Pidesが、要求吸気圧算出部72により算出され、検出される過給圧PBと要求吸気圧Pidesの小さい方を選択することにより、目標吸気圧Pirefが算出される。さらに目標吸気圧Pirefに基づいて目標還流ガス分圧Pirrefが実現可能な値に再設定される。これにより過給圧PBの変化遅れにより目標吸気圧Piref及び目標還流ガス分圧Pirrefが不適切な値に設定されることを防止することができる。
また大気圧PA、要求吸気圧Pides及び要求新気流量Giadesに応じてコンプレッサホイール15の目標仕事率Wcrefが算出されるとともに、検出される過給圧PB及び新気流量GAに応じて、コンプレッサホイール15の実仕事率推定値Wcestが算出される。そして、コンプレッサホイール15の実仕事率推定値Wcestが目標仕事率Wcrefに一致するように目標排気圧Perefが算出される。さらに、そのようにして算出される目標排気圧Perefに、検出排気圧PEが一致するように、ベーン開度、EGR弁開度及びスロットル弁開度が算出される。すなわち、目標排気圧Perefの算出においてマスタフィードバック制御が行われ、流量制御機構(タービンの可変ベーン12、EGR弁6、及びスロットル弁3)の制御量の算出においてスレーブフィードバック制御が行われるカスケード制御が実行されるので、応答の遅い過給圧制御の制御性能を向上させることができる。
制御対象モデルは、タービンの可変ベーン12、EGR弁6、及びスロットル弁3を通過するガスの質量流量Gv、Gr、及びGthを制御入力として定義される(式(34)〜(38))ので、例えば可変ベーン12やEGR弁6の制御量を、制御入力として定義する場合に比べて制御対象モデルを定義する数式を簡略化でき、ECU20のCPUの演算負荷を軽減できる。また、可変ベーン12、EGR弁6、またはスロットル弁3の流量特性が変更されたときは、流量を弁の開度に変換する変換特性を置き換えるだけで足り、モデル予測制御を行うコントローラ60の制御ロジックを変更する必要がない。また可変ベーン12の開度、EGR弁6及びスロットル弁3の弁開度をフィードバック制御するローカルフィードバック制御を追加することにより、弁開度の外乱に対する制御性能を向上させることができる。これは、一種のカスケード制御の効果であり、弁開度指令値に対する実開度の応答が十分に(コントローラ60の制御対象である吸排気ガスの挙動と比較して)速い場合にこの効果は特に大きくなる。
図10は、図2の燃料噴射制御部44の構成を示すブロック図である。燃料噴射制御部44は、偏差算出部111と、過渡制御部112と、第1指令値算出部113と、第2指令値算出部114と、第3指令値算出部115と、スイッチ部116及び117とを備えている。
燃料噴射制御部44は、基本的には5つの入力パラメータ(TRQ,NE,GA,PI,TI)に応じて、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出するものである。これを、5次元のマップを用いて算出する手法を採用すると、設定点の組み合わせが膨大なものとなり、実現することは非常に難しい。そこで、本実施形態では、要求トルクTRQ及びエンジン回転数NEを入力パラメータとする複数の2次元マップを用いて、5つの入力パラメータ(TRQ,NE,GA,PI,TI)の値に最適な燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出する手法を採用した。
より具体的には、5つの入力パラメータr,s,x,y,zで決まる関数f(r,s,x,y,z)を、下記式(101)で近似する。
Figure 0004339321
ここで、f(r,s)|(xsp,ysp,zsp)は、パラメータx,y,zがそれぞれ設定値xsp,ysp,zspであるときの関数f(r,s)の値を示し、また偏微分係数値∂f(r,s)/∂x|(xsp,ysp,zsp)等も同様である。
本実施形態では、要求トルクTRQ及びエンジン回転数NEがパラメータr及びsに相当し、吸入空気流量GA,吸気圧PI,及び吸気温TIが、それぞれパラメータx,y,及びzに相当し、要求新気流量Giades、要求吸気圧Pides、及び基準吸気温Tinormが、それぞれ設定値xsp、ysp、及びzspに相当する。
したがって、f(r,s),∂f(r,s)/∂x,∂f(r,s)/∂y,及び∂f(r,s)/∂zを、それぞれ基本値(Mf,φf)、流量変化率パラメータ(Dmfga,Dφfga)、圧力変化率パラメータ(Dmfpi,Dφfpi)、吸気温変化率パラメータ(Dmfti,Dφfti)として、要求トルクTRQ及びエンジン回転数NEに応じたマップに設定しておくことにより、4つの2次元マップの検索と、式(101)に相当する数式の演算とにより、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出することができる。
燃料噴射制御部44は、この手法により燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdの算出を行うものである。
偏差算出部111は、下記式(102)〜(104)により、新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiを算出する。これらの偏差が、式(101)の(x−xsp)、(y−ysp)、及び(z−zsp)に相当する。
δGa=GA−Giades (102)
δPi=PI−Pides (103)
δTi=TI−Tinorm (104)
過渡制御部112は、燃焼モードパラメータMdcmb、新気流量偏差δGa、及び吸気圧偏差δPiに応じて、修正燃焼モードパラメータFMdcmbを算出する。エンジン1の運転状態が定常的な状態にあるときは、修正燃焼モードパラメータFMdcmbは、燃焼モードパラメータMdcmbと等しくなり、燃焼モードパラメータMdcmbが変更されたとき(例えば「1」から「2」に変更されたとき)は、新気流量偏差δGa及び吸気圧偏差δPiがともに所定偏差量以上である間は、修正燃焼モードパラメータFMdcmbは前回値(「1」)のまま維持され、新気流量偏差δGa及び吸気圧偏差δPiがともに所定偏差量より小さくなると、変更後の燃焼モードパラメータMdcmb(「2」)に設定される。
第1指令値算出部113は、要求トルクTRQ、エンジン回転数NE、並びに新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiに応じて、リーン燃焼モードに適した第1燃料噴射量Mfcmd1及び第1燃料噴射時期φfcmd1を算出する。第2指令値算出部114は、要求トルクTRQ、エンジン回転数NE、並びに新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiに応じて、リッチ燃焼モードに適した第2燃料噴射量Mfcmd2及び第2燃料噴射時期φfcmd2を算出する。第3指令値算出部115は、要求トルクTRQ、エンジン回転数NE、並びに新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiに応じて、予混合燃焼モードに適した第3燃料噴射量Mfcmd3及び第3燃料噴射時期φfcmd3を算出する。
スイッチ部116は、修正燃焼モードパラメータFMdcmbに応じて、第1〜第3燃料噴射量Mfcmd1,Mfcmd2,Mfcmd3の何れか1つを選択し、燃料噴射量指令値Mfcmdとして出力する。スイッチ部117は、修正燃焼モードパラメータFMdcmbに応じて、第1〜第3燃料噴射時期φfcmd1,φfcmd2,φfcmd3の何れか1つを選択し、燃料噴射時期指令値φfcmdとして出力する。すなわち、FMdcmb=1のとき、第1燃料噴射量Mfcmd1及び第1燃料噴射時期φfcmd1が選択され、FMdcmb=2のとき、第2燃料噴射量Mfcmd2及び第2燃料噴射時期φfcmd2が選択され、FMdcmb=3のとき、第3燃料噴射量Mfcmd3及び第3燃料噴射時期φfcmd3が選択される。
図11は、第1指令値算出部113の構成を示す図である。第1指令値算出部113は、第1及び第2基本値算出部121,141と,第1及び第2流量変化率パラメータ算出部122,142と、第1及び第2圧力変化率パラメータ算出部123,143と、第1及び第2温度変化率パラメータ算出部124,144と、乗算部125〜127,145〜147と、加算部128〜130,148〜150とを備えている。
第1基本値算出部121は、要求トルクTRQ及びエンジン回転数NEに応じてMf1マップを検索し、第1燃料噴射量基本値Mf1を算出する。第1流量変化率パラメータ算出部122は、要求トルクTRQ及びエンジン回転数NEに応じてDmfga1マップを検索し、第1流量変化率パラメータDmfga1を算出する。第1圧力変化率パラメータ算出部123は、要求トルクTRQ及びエンジン回転数NEに応じてDmfpi1マップを検索し、第1圧力変化率パラメータDmfpi1を算出する。第1温度変化率パラメータ算出部124は、要求トルクTRQ及びエンジン回転数NEに応じてDmfti1マップを検索し、第1温度変化率パラメータDmfti1を算出する。
上記Mf1マップ、Dmfga1マップ、Dmfpi1マップ、及びDmfti1マップは、リーン燃焼モードに適した値が設定されており、かつ要求トルクTRQ及びエンジン回転数NEにより定まる格子点は、第1要求値設定部101で使用されるマップの格子点と同一となるように設定されている。
乗算部125は、新気流量偏差δGaに第1流量変化率パラメータDmfga1を乗算し、乗算部126は、吸気圧偏差δPiに第1圧力変化率パラメータDmfpi1を乗算し、乗算部127は、吸気温偏差δTiに第1温度変化率パラメータDmfti1を乗算する。加算部128及び129は、乗算部125〜127の出力を加算して第1燃料噴射量補正値Mfcr1を算出し、加算部130は、第1燃料噴射量基本値Mf1に第1燃料噴射量補正値Mfcr1を加算し、第1燃料噴射量Mfcmd1を算出する。
第2基本値算出部141は、要求トルクTRQ及びエンジン回転数NEに応じてφf1マップを検索し、第1燃料噴射時期基本値φf1を算出する。第2流量変化率パラメータ算出部142は、要求トルクTRQ及びエンジン回転数NEに応じてDφfga1マップを検索し、第2流量変化率パラメータDφfga1を算出する。第2圧力変化率パラメータ算出部143は、要求トルクTRQ及びエンジン回転数NEに応じてDφfpi1マップを検索し、第2圧力変化率パラメータDφfpi1を算出する。第2温度変化率パラメータ算出部144は、要求トルクTRQ及びエンジン回転数NEに応じてDφfti1マップを検索し、第2温度変化率パラメータDφfti1を算出する。
上記φf1マップ、Dφfga1マップ、Dφfpi1マップ、及びDφfti1マップは、リーン燃焼モードに適した値が設定されており、かつ要求トルクTRQ及びエンジン回転数NEにより定まる格子点は、第1要求値設定部101で使用されるマップの格子点と同一となるように設定されている。
乗算部145は、新気流量偏差δGaに第2流量変化率パラメータDφfga1を乗算し、乗算部146は、吸気圧偏差δPiに第2圧力変化率パラメータDφfpi1を乗算し、乗算部147は、吸気温偏差δTiに第2温度変化率パラメータDφfti1を乗算する。加算部148及び149は、乗算部145〜147の出力を加算して、第1燃料噴射時期補正値φfcr1を算出し、加算部150は、第1燃料噴射時期基本値φf1に第1燃料噴射時期補正値φfcr1を加算し、第1燃料噴射時期φfcmd1を算出する。
したがって、第1指令値算出部113における第1燃料噴射量Mfcmd1及び第1燃料噴射時期φfcmd1の演算は、下記式(105)及び(106)で表される。
Mfcmd1=Mf1+Mfcr1
=Mf1+δGa・Dmfga1+δPi・Dmfpi1+δTi・Dmfti1
(105)
φfcmd1=φf1+φfcr1
=φf1+δGa・Dφfga1+δPi・Dφfpi1+δTi・Dφfti1
(106)
図10に示す第2指令値算出部114及び第3指令値算出部115は、第1指令値算出部113と同様に構成され、下記式(107)〜(110)により、第2燃料噴射量Mfcmd2及び第2燃料噴射時期φfcmd2、並びに第3燃料噴射量Mfcmd3及び第3燃料噴射時期φfcmd3が算出される。
Mfcmd2=Mf2+Mfcr2
=Mf2+δGa・Dmfga2+δPi・Dmfpi2+δTi・Dmfti2
(107)
φfcmd2=φf2+φfcr2
=φf2+δGa・Dφfga2+δPi・Dφfpi2+δTi・Dφfti2
(108)
Mfcmd3=Mf3+Mfcr3
=Mf3+δGa・Dmfga3+δPi・Dmfpi3+δTi・Dmfti3
(109)
φfcmd3=φf3+φfcr3
=φf3+δGa・Dφfga3+δPi・Dφfpi3+δTi・Dφfti3
(110)
図12及び図13は、上述した吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。この処理は、ECU20のCPUで所定時間(例えば )毎に実行される。
ステップS11では、検出されるエンジン回転数NE及び要求トルクTRQを取得し、次いでエンジン回転数NE及び要求トルクTRQに応じて、燃焼モードパラメータMdcmbを決定する(ステップS12)。燃焼モードパラメータMdcmbは、選択された燃焼モードがリーン燃焼モードであれば「1」に設定され、リッチ燃焼モードであれば「2」に設定され、予混合燃焼モードであれば「3」に設定される。
ステップS13では、燃焼モードパラメータMcmbの値が「1」〜「3」のいずれであるかを判別する。燃焼モードパラメータMcmbの値が「1」であってリーン燃焼モードが選択されているときは、ステップS14に進み、エンジン回転数NE及び要求トルクTRQに応じて、Giades1マップ、Pides1マップ、及びTinorm1マップを検索し、第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1基準吸気温Tinorm1を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び基準吸気温Tinormを、それぞれ算出した第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1基準吸気温Tinorm1に設定する(ステップS15)。
燃焼モードパラメータMcmbの値が「2」であってリッチ燃焼モードが選択されているときは、ステップS13からステップS16に進み、エンジン回転数NE及び要求トルクTRQに応じて、Giades2マップ、Pides2マップ、及びTinorm2マップを検索し、第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2基準吸気温Tinorm2を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び基準吸気温Tinormを、それぞれ算出した第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2基準吸気温Tinorm2に設定する(ステップS17)。
燃焼モードパラメータMcmbの値が「3」であって予混合燃焼モードが選択されているときは、ステップS13からステップS18に進み、エンジン回転数NE及び要求トルクTRQに応じて、Giades3マップ、Pides3マップ、及びTinorm3マップを検索し、第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3基準吸気温Tinorm3を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び基準吸気温Tinormを、それぞれ算出した第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3基準吸気温Tinorm3に設定する(ステップS19)。
ステップS20では、検出される吸入空気流量GA,吸気圧PI,及び吸気温TIなどの検出パラメータを取得する。ステップS21では、上述した吸気状態制御を実行し、ベーン開度指令値θvcmd、スロットル弁開度指令値θthcmd、及びEGR弁開度指令値θrcmdを算出する。
続く図13のステップS31では、新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiを算出する。ステップS32では、ステップS13と同様に、燃焼モードパラメータMcmbの値が「1」〜「3」のいずれであるかを判別する。燃焼モードパラメータMcmbの値が「1」であってリーン燃焼モードが選択されたときは、ステップS33に進み、修正燃焼モードパラメータFMdcmbを「1」に設定する。その後ステップS38に進む。
燃焼モードパラメータMcmbの値が「2」であってリッチ燃焼モードが選択されたときは、ステップS32からステップS34に進み、新気流量偏差δGaの絶対値が第1所定閾値εga2(例えば0.05×Giades)より小さく、かつ吸気圧偏差δPiの絶対値が第2所定閾値εpi2(例えば0.05×Pides)より小さいか否かを判別する。この答が否定(NO)、すなわち|δGa|≧εga2または|δPi|≧εpi2が成立するときは、修正燃焼モードパラメータFMdcmbを変更することなく(前回値を保持して)、ステップS38に進む。一方ステップS34の答が肯定(YES)であるときは、修正燃焼モードパラメータFMdcmbを「2」に設定し(ステップS35)、ステップS38に進む。
燃焼モードパラメータMcmbの値が「3」であって予混合燃焼モードが選択されたときは、ステップS32からステップS36に進み、新気流量偏差δGaの絶対値が第3所定閾値εga3(例えば0.05×Giades)より小さく、かつ吸気圧偏差δPiの絶対値が第4所定閾値εpi3(例えば0.05×Pides)より小さいか否かを判別する。この答が否定(NO)、すなわち|δGa|≧εga3または|δPi|≧εpi3が成立するときは、修正燃焼モードパラメータFMdcmbを変更することなく(前回値を保持して)、ステップS38に進む。一方ステップS36の答が肯定(YES)であるときは、修正燃焼モードパラメータFMdcmbを「3」に設定し(ステップS37)、ステップS38に進む。
ステップS38では、修正燃焼モードパラメータFMdcmbの値が、「1」〜「3」のいずれであるかを判別し、修正燃焼モードパラメータFMdcmbの値が「1」であるときは、第1燃料噴射指令値マップの検索処理を実行し(ステップS39)、修正燃焼モードパラメータFMdcmbの値が「2」であるときは、第2燃料噴射指令値マップの検索を実行し(ステップS40)、修正燃焼モードパラメータFMdcmbの値が「3」であるときは、第3燃料噴射指令値マップの検索を実行する(ステップS41)。
図14は、ステップS39で実行される検索処理のフローチャートである。
ステップS51では、エンジン回転数NE及び要求トルクTRQに応じてMf1マップを検索して、燃料噴射量基本値Mf1を算出し、基本燃料噴射量Mfmapを燃料噴射量基本値Mf1に設定する(ステップS52)。ステップS53では、エンジン回転数NE及び要求トルクTRQに応じてDmfga1マップを検索して、第1流量変化率パラメータDmfga1を算出し、流量変化率パラメータDmfgaを第1流量変化率パラメータDmfga1に設定する(ステップS54)。
ステップS55では、エンジン回転数NE及び要求トルクTRQに応じてDmfpi1マップを検索して、第1圧力変化率パラメータDmfpi1を算出し、圧力変化率パラメータDmfpiを第1圧力変化率パラメータDmfpi1に設定する(ステップS56)。ステップS57では、エンジン回転数NE及び要求トルクTRQに応じてDmfti1マップを検索して、第1温度変化率パラメータDmfti1を算出し、温度変化率パラメータDmftiを第1温度変化率パラメータDmfti1に設定する(ステップS58)。
ステップS59では、エンジン回転数NE及び要求トルクTRQに応じてφf1マップを検索して、燃料噴射時期基本値φf1を算出し、基本燃料噴射時期φfmapを燃料噴射時期基本値φf1に設定する(ステップS60)。ステップS61では、エンジン回転数NE及び要求トルクTRQに応じてDφfga1マップを検索して、第2流量変化率パラメータDφfga1を算出し、流量変化率パラメータDφfgaを第2流量変化率パラメータDφfga1に設定する(ステップS62)。
ステップS63では、エンジン回転数NE及び要求トルクTRQに応じてφfpi1マップを検索して、第2圧力変化率パラメータDφfpi1を算出し、圧力変化率パラメータDφfpiを第2圧力変化率パラメータDφfpi1に設定する(ステップS64)。ステップS65では、エンジン回転数NE及び要求トルクTRQに応じてDφfti1マップを検索して、第2温度変化率パラメータDφfti1を算出し、温度変化率パラメータDφftiを第2温度変化率パラメータDφfti1に設定する(ステップS66)。
以上のようにして、リーン燃焼モードに適した基本燃料噴射量Mfmap、第1流量変化率パラメータDmfga、第1圧力変化率パラメータDmfpi、第1温度変化率パラメータDmfti、基本燃料噴射時期φfmap、第2流量変化率パラメータDφfga、第2圧力変化率パラメータDφfpi、及び第2温度変化率パラメータDφftiが算出される。
図13に戻り、ステップS40及びS41の第2燃料噴射指令値マップの検索処理及び第3燃料噴射指令値マップの検索処理は、図14に示す第1燃料噴射指令値マップの検索処理と同様に構成される。すなわち、第2燃料噴射指令値マップの検索処理では、リッチ燃焼モードに適した基本燃料噴射量Mfmap、第1流量変化率パラメータDmfga、第1圧力変化率パラメータDmfpi、第1温度変化率パラメータDmfti、基本燃料噴射時期φfmap、第2流量変化率パラメータDφfga、第2圧力変化率パラメータDφfpi、及び第2温度変化率パラメータDφftiが算出され、第3燃料噴射指令値マップの検索処理では、予混合燃焼モードに適した基本燃料噴射量Mfmap、第1流量変化率パラメータDmfga、第1圧力変化率パラメータDmfpi、第1温度変化率パラメータDmfti、基本燃料噴射時期φfmap、第2流量変化率パラメータDφfga、第2圧力変化率パラメータDφfpi、及び第2温度変化率パラメータDφftiが算出される。
ステップS42では、下記式(111)により、燃料噴射量補正値Mfcrを算出し、ステップS43では、下記式(112)により、燃料噴射時期補正値φfcrを算出する。
Mfcr=δGa・Dmfga+δPi・Dmfpi+δTi・Dmfti (111)
φfcr=δGa・Dφfga+δPi・Dφfpi+δTi・Dφfti (112)
ステップS44では、下記式(113)により、燃料噴射量指令値Mfcmdを算出し、ステップS45では、下記式(114)により、燃料噴射時期指令値φfcmdを算出する。
Mfcmd=Mfmap+Mfcr (113)
φfcmd=φfmap+φfcr (114)
以上詳述したように本実施形態では、エンジン1の吸気(新気及び還流排気)の状態を示す吸気状態パラメータとして、吸入空気流量GA、吸気圧PI、及び吸気温TIが検出され、エンジン運転状態を示すエンジン回転数NE及び要求トルクTRQに応じて吸気状態パラメータの要求値である、要求新気流量Giades及び要求吸気圧Pides、並びに基準吸気温Tinormが算出されるとともに、吸入空気流量GA及び吸気圧PIが、それぞれ要求新気流量Giades及び要求吸気圧Pidesと一致するように吸気状態が制御される。さらにエンジン回転数NE、要求トルクTRQ、並びに吸入空気流量GA、吸気圧PI、及び吸気温TIと、対応する要求値(Giades、Pides)及び基準値(Tinorm)との偏差に応じて燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdが算出され、燃料噴射弁9がこれらの指令値に応じて制御される。したがって、エンジン運転状態に応じた望ましい吸気状態が実現されるとともに、その吸気状態に適した燃料噴射量及び燃料噴射時期の制御が行われ、良好な機関運転性能及び排気特性を得ることができる。
より具体的には、エンジン回転数NE及び要求トルクTRQに応じて基本燃料噴射量Mfmap及び基本燃料噴射時期φfmapが算出されるとともに、基本燃料噴射量Mfmapの変化率を示す第1流量変化率パラメータDmfga、第1圧力変化率パラメータDmfpi、及び第1温度変化率パラメータDmfti、並びに基本燃料噴射時期φfmapの変化率を示す第2流量変化率パラメータDφfga、第2圧力変化率パラメータDφfpi、及び第2温度変化率パラメータDφftiが算出される。そして、検出される吸気状態パラメータと要求値または基準値との偏差を示す新気流量偏差δGa、吸気圧偏差δPi、及び吸気温偏差δTiに、それぞれ対応する変化率パラメータ(Dmfga、Dmfpi、Dmfti、Dφfga、Dφfpi、Dφfti)を乗算して加算することにより補正値Mfcr、φfcrが算出される。そして、基本燃料噴射量Mfmap及び基本燃料噴射時期φfmapに補正値Mfcr、φfcrを加算することにより、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdが算出され、これらの指令値により燃料噴射制御が行われる。したがって、吸気状態パラメータGA,PI,TIが要求値または基準値と完全に一致していない状態でも、その偏差δGa、δPi、及びδTiに応じた適切な燃料噴射量及び燃料噴射時期の指令値が得られ、正確な制御を行うことができる。また、偏差δGa、δPi、及びδTiに変化率パラメータを乗算することにより補正値Mfcr、φfcrを算出するようにしたので、実際の吸気状態パラメータ値に適した燃料噴射量及び燃料噴射時期の算出に使用するマップの設定点を比較的少なくし、メモリ容量やマップ設定のための工数を抑制しつつ、精度の高い燃料噴射制御を実現することができる。
さらに吸気状態パラメータに吸気温TIを含めることにより、吸気温変化の影響を加味してより正確な制御を行うことができる。
また燃焼モード毎に設定されたマップを用いて、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdを算出するようにしたので、燃焼モード毎に最適な指令値を得ることができる。
また燃焼モードパラメータMdcmbが、リッチ燃焼モードまたは予混合燃焼モードに変更された直後において、新気流量偏差δGa及び吸気圧偏差δPiの絶対値が所定閾値以上であるときは、修正燃焼モードパラメータFMdcmbが変更前の値に維持され(図13,ステップ34,S36)、変更前の燃焼モードに対応した制御用マップが使用される。そして、新気流量偏差δGa及び吸気圧偏差δPiの絶対値が所定閾値より小さくなると、修正燃焼モードパラメータFMdcmbを燃焼モードパラメータMdcmbと一致させ(図13,ステップS35,S37)、変更後の燃焼モードに対応した制御用マップが使用される。燃焼モードを変更したときの過渡状態においては、新気流量偏差δGa及び吸気圧偏差δPiが大きくなり易いので、その偏差が小さくなるまでは変更前の燃焼モードに対応した制御マップを使用することにより、制御の安定化を図ることができる。
本実施形態では、燃料噴射弁9が燃料噴射手段に相当し、吸入空気流量センサ21、吸気温センサ23、及び吸気圧センサ24が吸気状態パラメータ検出手段に相当する。またスロットル弁3、EGR弁6、及び可変ベーン12が吸気状態制御手段の一部を構成し、ECU20が燃焼モード決定手段、要求値算出手段、、吸気温度基準値算出手段、吸気状態制御手段の一部、及び燃料噴射制御手段を構成する。具体的には、燃焼モード決定部41が燃焼モード決定手段に相当し、吸気状態パラメータ要求値設定部42が要求値算出手段及び吸気温度基準値算出手段に相当し、吸気状態制御部43が吸気状態制御手段の一部に相当し、燃料噴射制御部44が燃料噴射制御手段に相当する。
[第2の実施形態]
本実施形態は、エンジン回転数NE及び要求トルクTRQに応じて要求新気流量Giades、要求吸気圧Pides、及び要求吸入酸素分圧Piodesを算出し、要求吸気圧Pides及び要求吸入酸素分圧Piodesを実現する吸気状態制御を行うとともに、要求吸気圧Pides及び要求吸入酸素分圧Piodesに対応する燃料噴射制御を行うようにしたものである。要求吸入酸素分圧Piodesは、吸気中の酸素分圧(以下「吸入酸素分圧」という)の要求値である。なお、要求新気流量Giadesは、本実施形態では吸気状態制御部におけるコンプレッサホイール15の目標仕事率Wcrefの算出にのみ適用されるものであり、特許請求の範囲に記載した「吸気状態パラメータ」に相当しない。
吸入酸素分圧に着目した制御を行うため、図15に示すように吸気中の酸素濃度CIOを検出する吸気酸素濃度センサ30が吸気管2に設けられている。また排気中の酸素濃度CEOを検出する排気酸素濃度センサ26が排気管4の、タービン11と触媒コンバータ31との間に設けられている。
図16は、本実施形態において、吸気状態制御及び燃料噴射制御を行う制御モジュールの構成を示す機能ブロック図である。この制御モジュールは、燃焼モード決定部41、吸気状態パラメータ要求値設定部42a、吸気状態制御部43a、及び燃料噴射制御部44aを備えている。燃焼モード決定部41は、第1の実施形態(図2)の燃焼モード決定部と同一である。
吸気状態パラメータ要求値設定部42aは、図17に示すように、第1要求値設定部101aと、第2要求値設定部102aと、第3要求値設定部103aと、スイッチ部104,105,及び106aとを備えている。スイッチ部104,105は、図3に示すスイッチ部104,105と同一である。
第1要求値設定部101aは、エンジン回転数NE及び要求トルクTRQに応じて、リーン燃焼モードに適したGiades1マップ、Pides1マップ、及びPiodes1マップの検索を行い、第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1要求吸入酸素分圧Piodes1を算出する。第2要求値設定部102aは、エンジン回転数NE及び要求トルクTRQに応じて、リッチ燃焼モードに適したGiades2マップ、Pides2マップ、及びPiodes2マップの検索を行い、第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2要求吸入酸素分圧Piodes2を算出する。第3要求値設定部103aは、エンジン回転数NE及び要求トルクTRQに応じて、予混合燃焼モードに適したGiades3マップ、Pides3マップ、及びPiodes3マップの検索を行い、第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3要求吸入酸素分圧Piodes3を算出する。
スイッチ部106aは、燃焼モードパラメータMdcmbに応じて第1〜第3要求吸入酸素分圧Piodes1,Piodes2,Piodes3の何れか1つを選択し、要求吸入酸素分圧Piodesとして出力する。Mdcmb=1のとき、第1要求吸入酸素分圧Piodes1が選択され、Mdcmb=2のとき、第2要求吸入酸素分圧Piodes2が選択され、Mdcmb=3のとき、第3要求吸入酸素分圧Piodes3が選択される。
吸気状態制御部43aは、図18に示すように構成される。すなわち、図4に示す吸気状態制御部43の要求還流ガス分圧算出部51及び減算部58を削除し、除算部52、乗算部57、及びモデル予測コントローラ60を、それぞれ除算部52a、乗算部57a、及びモデル予測コントローラ60aに変更し、さらに乗算部57bを追加することにより、吸気状態制御部43aが得られる。
除算部52aは、要求吸入酸素分圧Piodesを要求吸気圧Pidesで除算することにより、要求吸入酸素比率RPIOを算出し、乗算部57aは、目標吸気圧Pirefに要求吸入酸素比率RPIOを乗算して目標吸入酸素分圧Piorefを算出する。乗算部57bは、検出吸気圧PIに検出吸気酸素濃度CIOを乗算し、吸入酸素分圧PIOを算出する。
モデル予測コントローラ60aには、目標排気圧Peref及び検出排気圧PEとともに、目標吸気圧Piref、検出吸気圧PI、目標吸入酸素分圧Pioref、検出吸入酸素分圧PIO、及び検出排気酸素濃度CEOが供給される。モデル予測コントローラ60aは、検出される排気圧PE、吸気圧PI及び吸入酸素分圧PIOが、それぞれ目標排気圧Peref、目標吸気圧Piref及び目標吸入酸素分圧Piorefと一致するように、モデル予測制御を用いて、タービンガス流量指令値Gvcmd、新気流量指令値Gthcmd及び還流ガス流量指令値Grcmdを算出する。
次に本実施形態における吸気状態制御系のモデルについて説明する。
先ず吸気圧Piについては、下記式(201)が成立する。ここで、吸入ガス流量G'zは、下記式(24)(再掲)で表すことができるので、これを式(201)に適用することにより、式(202)が得られる。
Figure 0004339321
また吸入酸素分圧Pioについては、吸気管内の酸素の質量をMioとして、下記式(203)が成立する。
Pio・Vi=Mio・R・Ti (203)
これを微分することにより、下記式(204)が得られる。また、空気に含まれる酸素の比率をraoとし、排気に含まれる酸素の比率をreoとすると、下記式(205)が成立する。ここで空気中の酸素比率raoは定数(0.232)であり、排気中の酸素比率reoは、検出される排気酸素濃度CEOを用いる。
Figure 0004339321
上記式(204)に、式(205)及び(24)を適用すると、下記式(206)が得られる。
Figure 0004339321
また排気圧Peについては、下記式(28)(再掲)の関係が成立するので、これに式(24)の関係を適用して整理すると、下記式(207)が得られる。
Figure 0004339321
式(202)、(206)、及び(207)をまとめ、さらにクランク角度基準に変換することにより、制御対象モデルを定義する下記式(208)が得られる。したがって、この式(208)に基づいて、上述した第1の実施形態と同一の手法により、制御入力u(k)を算出することができる。
Figure 0004339321
図19は、図17の燃料噴射制御部44aの構成を示すブロック図である。燃料噴射制御部44aは、偏差算出部111aと、過渡制御部112aと、第1指令値算出部113aと、第2指令値算出部114a、第3指令値算出部115aと、スイッチ部116及び117と、乗算部118とを備えている。スイッチ部116及び117は、図10に示すものと同様に動作する。
乗算部118は、吸気圧PIに吸気酸素濃度CIOを乗算し、吸入酸素分圧PIOを算出する。偏差算出部111aは、下記式(211)及び(212)により、吸入酸素分圧偏差δPio及び吸気圧偏差δPiを算出する。
δPio=PIO−Piodes (211)
δPi=PI−Pides (212)
過渡制御部112aは、燃焼モードパラメータMdcmb、吸入酸素分圧偏差δPio、及び吸気圧偏差δPiに応じて、修正燃焼モードパラメータFMdcmbを算出する。エンジン1の運転状態が定常的な状態にあるときは、修正燃焼モードパラメータFMdcmbは、燃焼モードパラメータMdcmbと等しくなり、燃焼モードパラメータMdcmbが変更されたとき(例えば「1」から「2」に変更されたとき)は、吸入酸素分圧偏差δPio及び吸気圧偏差δPiがともに所定偏差量以上である間は、修正燃焼モードパラメータFMdcmbは前回値(「1」)のまま維持され、吸入酸素分圧偏差δPio及び吸気圧偏差δPiがともに所定偏差量より小さくなると、変更後の燃焼モードパラメータMdcmb(「2」)に設定される。
第1指令値算出部113aは、要求トルクTRQ、エンジン回転数NE、並びに吸入酸素分圧偏差δPio及び吸気圧偏差δPiに応じて、リーン燃焼モードに適した第1燃料噴射量Mfcmd1及び第1燃料噴射時期φfcmd1を算出する。第2指令値算出部114aは、要求トルクTRQ、エンジン回転数NE、並びに吸入酸素分圧偏差δPio及び吸気圧偏差δPiに応じて、リッチ燃焼モードに適した第2燃料噴射量Mfcmd2及び第2燃料噴射時期φfcmd2を算出する。第3指令値算出部115aは、要求トルクTRQ、エンジン回転数NE、並びに吸入酸素分圧偏差δPio及び吸気圧偏差δPiに応じて、予混合燃焼モードに適した第3燃料噴射量Mfcmd3及び第3燃料噴射時期φfcmd3を算出する。
図20は、第1指令値算出部113aの構成を示す図である。第1指令値算出部113aは、第1及び第2基本値算出部121,141と,第1及び第2酸素分圧変化率パラメータ算出部122a,142aと、第1及び第2圧力変化率パラメータ算出部123,143と、乗算部125a,126,145a,146と、加算部129a,130,149a,150とを備えている。図11に示すブロックと同一符号を付したブロックは、図11に示すブロックと同一の機能を有する。以下異なる点のみ説明する。
第1酸素分圧変化率パラメータ算出部122aは、要求トルクTRQ及びエンジン回転数NEに応じてDmfpio1マップを検索し、第1酸素分圧変化率パラメータDmfpio1を算出する。上記Dmfpio1マップは、リーン燃焼モードに適した値が設定されており、かつ要求トルクTRQ及びエンジン回転数NEにより定まる格子点は、第1要求値設定部101aで使用されるマップの格子点と同一となるように設定されている。
乗算部125aは、吸入酸素分圧偏差δPioに第1酸素分圧変化率パラメータDmfpio1を乗算し、加算部129aは、乗算部125a及び126の出力を加算して第1燃料噴射量補正値Mfcr1を算出する。
第2酸素分圧変化率パラメータ算出部142aは、要求トルクTRQ及びエンジン回転数NEに応じてDφfpio1マップを検索し、第2酸素分圧変化率パラメータDφfpio1を算出する。上記Dφfpio1マップは、リーン燃焼モードに適した値が設定されており、かつ要求トルクTRQ及びエンジン回転数NEにより定まる格子点は、第1要求値設定部101aで使用されるマップの格子点と同一となるように設定されている。
乗算部145aは、吸入酸素分圧偏差δPioに第2酸素分圧変化率パラメータDφfpio1を乗算し、加算部149aは、乗算部145a及び146の出力を加算して第1燃料噴射時期補正値φfcr1を算出する。
したがって、第1指令値算出部113aにおける第1燃料噴射量Mfcmd1及び第1燃料噴射時期φfcmd1の演算は、下記式(213)及び(214)で表される。
Mfcmd1=Mf1+Mfcr1
=Mf1+δPio・Dmfpio1+δPi・Dmfpi1 (213)
φfcmd1=φf1+φfcr1
=φf1+δPio・Dφfpio1+δPi・Dφfpi1 (214)
図19に示す第2指令値算出部114a及び第3指令値算出部115aは、第1指令値算出部113aと同様に構成され、下記式(215)〜(218)により、第2燃料噴射量Mfcmd2及び第2燃料噴射時期φfcmd2、並びに第3燃料噴射量Mfcmd3及び第3燃料噴射時期φfcmd3が算出される。
Mfcmd2=Mf2+Mfcr2
=Mf2+δPio・Dmfpio2+δPi・Dmfpi2 (215)
φfcmd2=φf2+φfcr2
=φf2+δPio・Dφfpio2+δPi・Dφfpi2 (216)
Mfcmd3=Mf3+Mfcr3
=Mf3+δPio・Dmfpio3+δPi・Dmfpi3 (217)
φfcmd3=φf3+φfcr3
=φf3+δPio・Dφfpio3+δPi・Dφfpi3 (218)
図21及び図22は、上述した吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。この処理は、図12及び図13に示す処理のステップS14〜S21,S31,S34,S36,S39〜S43を、それぞれステップS14a〜S21a,S31a,S34a,S36a,S39a〜S43aに変更し、ステップS20bを追加したものである。
ステップS14aでは、エンジン回転数NE及び要求トルクTRQに応じて、Giades1マップ、Pides1マップ、及びPiodes1マップを検索し、第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1要求吸入酸素分圧Piodes1を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び要求吸入酸素分圧Piodesを、それぞれ算出した第1要求新気流量Giades1、第1要求吸気圧Pides1、及び第1要求吸入酸素分圧Piodes1に設定する(ステップS15a)。
ステップS16aでは、エンジン回転数NE及び要求トルクTRQに応じて、Giades2マップ、Pides2マップ、及びPiodes2マップを検索し、第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2要求吸入酸素分圧Piodes2を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び要求吸入酸素分圧Piodesを、それぞれ算出した第2要求新気流量Giades2、第2要求吸気圧Pides2、及び第2要求吸入酸素分圧Piodes2に設定する(ステップS17a)。
ステップS18aでは、エンジン回転数NE及び要求トルクTRQに応じて、Giades3マップ、Pides3マップ、及びPiodes3マップを検索し、第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3要求吸入酸素分圧Piodes3を算出する。次いで、要求新気流量Giades、要求吸気圧Pides及び要求吸入酸素分圧Piodesを、それぞれ算出した第3要求新気流量Giades3、第3要求吸気圧Pides3、及び第3要求吸入酸素分圧Piodes3に設定する(ステップS19a)。
ステップS20aでは、検出される吸気酸素濃度CIO,吸気圧PIなどの検出パラメータを取得し、ステップS21aでは、吸気圧PIに吸気酸素濃度CIOを乗算することにより、吸入酸素分圧PIOを算出する。
ステップS21aでは、図18を参照して説明した吸気状態制御を実行し、ベーン開度指令値θvcmd、スロットル弁開度指令値θthcmd、及びEGR弁開度指令値とう)θrcmdを算出する。
続く図22のステップS31aでは、吸入酸素分圧偏差δPio及び吸気圧偏差δPiを算出する。
ステップS34aでは、吸入酸素分圧偏差δPioの絶対値が第5所定閾値εpio2(例えば0.05×Piodes)より小さく、かつ吸気圧偏差δPiの絶対値が第2所定閾値εpi2(例えば0.05×Pides)より小さいか否かを判別する。この答が否定(NO)、すなわち|δPio|≧εpio2または|δPi|≧εpi2が成立するときは、修正燃焼モードパラメータFMdcmbを変更することなく(前回値を保持して)、ステップS38に進む。一方ステップS34aの答が肯定(YES)であるときは、修正燃焼モードパラメータFMdcmbを「2」に設定し(ステップS35)、ステップS38に進む。
ステップS36aでは、吸入酸素分圧偏差δPioの絶対値が第6所定閾値εpio3(例えば0.05×Piodes)より小さく、かつ吸気圧偏差δPiの絶対値が第4所定閾値εpi3(例えば0.05×Pides)より小さいか否かを判別する。この答が否定(NO)、すなわち|δPio|≧εpio3または|δPi|≧εpi3が成立するときは、修正燃焼モードパラメータFMdcmbを変更することなく(前回値を保持して)、ステップS38に進む。一方ステップS36aの答が肯定(YES)であるときは、修正燃焼モードパラメータFMdcmbを「3」に設定し(ステップS37)、ステップS38に進む。
ステップS39aでは、リーン燃焼モードに対応した第1燃料噴射指令値マップの検索処理を実行し、ステップS40aでは、リッチ燃焼モードに対応した第2燃料噴射指令値マップの検索処理を実行し、ステップS41aでは、予混合燃焼モードに対応した第3燃料噴射指令値マップの検索処理を実行する。
図23は、ステップS39aで実行される検索処理のフローチャートである。この処理は、図14に示す処理のステップS53,S54,S61,及びS62を、それぞれステップS53a,S54a,S61a,及びS62aに変更し、ステップS57,S58,S65,及びS66を削除したものである。
ステップS53aでは、エンジン回転数NE及び要求トルクTRQに応じてDmfpio1マップを検索して、第1酸素分圧変化率パラメータDmfpio1を算出し、酸素分圧変化率パラメータDmfpioを第1酸素分圧変化率パラメータDmfpio1に設定する(ステップS54a)。
ステップS61aでは、エンジン回転数NE及び要求トルクTRQに応じてDφfpio1マップを検索して、第2酸素分圧変化率パラメータDφfpio1を算出し、酸素分圧変化率パラメータDφfpioを第2酸素分圧変化率パラメータDφfpio1に設定する(ステップS62a)。
図23の処理により、リーン燃焼モードに適した基本燃料噴射量Mfmap、第1酸素分圧変化率パラメータDmfpio、第1圧力変化率パラメータDmfpi、基本燃料噴射時期φfmap、第2酸素分圧変化率パラメータDφfpio、及び第2圧力変化率パラメータDφfpiが算出される。
図22に戻り、ステップS40a及びS41aの第2燃料噴射指令値マップの検索処理及び第3燃料噴射指令値マップの検索処理は、図23に示す第1燃料噴射指令値マップの検索処理と同様に構成される。すなわち、第2燃料噴射指令値マップの検索処理では、リッチ燃焼モードに適した基本燃料噴射量Mfmap、第1酸素分圧変化率パラメータDmfpio、第1圧力変化率パラメータDmfpi、基本燃料噴射時期φfmap、第2酸素分圧変化率パラメータDφfpio、及び第2圧力変化率パラメータDφfpiが算出され、第3燃料噴射指令値マップの検索処理では、予混合燃焼モードに適した基本燃料噴射量Mfmap、第1酸素分圧変化率パラメータDmfpio、第1圧力変化率パラメータDmfpi、基本燃料噴射時期φfmap、第2酸素分圧変化率パラメータDφfpio、及び第2圧力変化率パラメータDφfpiが算出される。
ステップS42aでは、下記式(219)により、燃料噴射量補正値Mfcrを算出し、ステップS43aでは、下記式(220)により、燃料噴射時期補正値φfcrを算出する。
Mfcr=δPio・Dmfpio+δPi・Dmfpi (219)
φfcr=δPio・Dφfpio+δPi・Dφfpi (220)
以上詳述したように本実施形態では、吸気状態パラメータとして、吸気圧PI及び吸入酸素分圧PIO(吸気酸素濃度CIO)が検出され、エンジン運転状態を示すエンジン回転数NE及び要求トルクTRQに応じて吸気状態パラメータの要求値である、要求吸気圧Pides及び要求吸入酸素分圧Piodesが算出されるとともに、吸気圧PI及び吸入酸素分圧PIOが、それぞれ要求吸気圧Pides及び要求吸入酸素分圧PIOと一致するように吸気状態が制御される。またエンジン回転数NE及び要求トルクTRQ、並びに吸気圧PI及び吸入酸素分圧PIOと対応する要求値(Pides、Piodes)との偏差に応じて燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdが算出され、燃料噴射弁9がこれらの指令値に応じて制御される。したがって、エンジン運転状態に応じた望ましい吸気状態が実現されるとともに、その吸気状態に適した燃料噴射量及び燃料噴射時期の制御が行われ、良好な機関運転性能及び排気特性を得ることができる。
より具体的には、エンジン回転数NE及び要求トルクTRQに応じて基本燃料噴射量Mfmap及び基本燃料噴射時期φfmapが算出されるとともに、基本燃料噴射量Mfmapの変化率を示す第1圧力変化率パラメータDmfpi及び第1酸素分圧変化率パラメータDφfpio、並びに基本燃料噴射時期φfmapの変化率を示す第2圧力変化率パラメータDφfpi及び第2酸素分圧変化率パラメータDφfpioが算出される。そして、検出される吸気状態パラメータと要求値との偏差を示す吸気圧偏差δPi及び吸入酸素分圧偏差δPioに、それぞれ対応する変化率パラメータ(Dmfpi、Dmfpio、Dφfpi、及びDφfpio)を乗算して加算することにより補正値Mfcr、φfcrが算出される。基本燃料噴射量Mfmap及び基本燃料噴射時期φfmapに補正値Mfcr、φfcrを加算することにより、燃料噴射量指令値Mfcmd及び燃料噴射時期指令値φfcmdが算出され、これらの指令値により燃料噴射制御が行われる。したがって、吸気状態パラメータPI及びPIOが要求値と完全に一致していない状態でも、その偏差δPi及びδPioに応じた適切な燃料噴射量及び燃料噴射時期の指令値が得られ、正確な制御を行うことができる。また、偏差δPi及びδPioに変化率パラメータを乗算することにより補正値Mfcr、φfcrを算出するようにしたので、実際の吸気状態パラメータ値に適した燃料噴射量及び燃料噴射時期の算出に使用するマップの設定点を比較的少なくし、メモリ容量やマップ設定のための工数を抑制しつつ、精度の高い燃料噴射制御を実現することができる。
本実施形態では、吸気圧センサ24及び吸気酸素濃度センサ30が吸気状態パラメータ検出手段に相当する。また、スロットル弁3、EGR弁6、及び可変ベーン12が吸気状態制御手段の一部を構成し、ECU20が燃焼モード決定手段、要求値算出手段、吸気状態制御手段の一部、及び燃料噴射制御手段を構成する。具体的には、燃焼モード決定部41が燃焼モード決定手段に相当し、吸気状態パラメータ要求値設定部42aが要求値算出手段に相当し、吸気状態制御部43aが吸気状態制御手段の一部に相当し、燃料噴射制御部44aが燃料噴射制御手段に相当する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、第1の実施形態において、吸気状態パラメータとして、吸気圧PI、還流ガス流量GR、及び吸気温TI、あるいは吸入空気流量(吸入新気流量)GA、還流ガス流量GR、及び吸気温TIを用いるようにしてもよい。また第2の実施形態において、吸気状態パラメータとして、吸気圧PI及び不活性ガス分圧PII、あるいは吸入酸素分圧PIO及び不活性ガス分圧PIIを用いるようにしてもよい。
以下にこのような吸気状態パラメータを採用しても、燃料噴射制御を適切に行うことができる理由を説明する。
燃料噴射制御を適切に行うためには、燃焼室内の酸素質量Mo及び不活性ガス質量Miを所望値に制御することが必要である。吸気圧PIは、下記式(301)で示すように、吸入酸素分圧PIOと、吸入不活性ガス分圧PIIとの和に等しい。
PI=PIO+PII (301)
また燃焼室内の全ガス質量Mtは、燃焼室内の酸素質量Moと、不活性ガス質量Miとの和に等しい。さらに前記式20(PV=MRT)の関係、及びエンジンの体積効率を考慮すると、吸気圧PI、吸入酸素分圧PIO、及び吸入不活性ガス分圧PIIは、下記式(302)〜(304)で表すことができる。
PI=kEV×Mt (302)
PIO=kEV×Mo (303)
PII=kEV×Mi (304)
ここで、kEVは、式(20)の関係及びエンジンの体積効率を考慮して算出される係数である。
したがって、酸素質量Mo及び不活性ガス質量Miを所望値に制御するには、吸気圧PI、吸入酸素分圧PIO、及び吸入不活性ガス分圧PIIのうちのいずれか2つを要求値に制御すればよい。いずれか2つが決まると残りの1つは、式(301)の関係から決まるからである。
吸入不活性ガス分圧PIIは、検出される吸気圧PIから吸入酸素分圧PIOを減算することにより、求めることができる。
一方、吸気圧PIは下記式(305)で示すように、新気分圧PIAと、還流ガス分圧PIRとの和で表すこともできる。
PI=PIA+PIR (305)
また、吸入酸素分圧PIO及び吸入不活性ガス分圧PIIは、下記式(306)及び(307)で表すことができる。reo及びraoは、それぞれ排気中の酸素比率、及び空気中の酸素比率である。
PIO=reo×PIR+rao×PIA (306)
PII=(1−reo)×PIR+(1−rao)×PIA (307)
上記式(305)〜(307)で示される関係を用いると、吸気圧PI,新気分圧PIA,及び還流ガス分圧PIRのうちのいずれか2つを制御することにより、酸素質量Mo及び不活性ガス質量Miを所望値に制御することができる。すなわち、吸気圧PI,新気分圧PIA,及び還流ガス分圧PIRのうちのいずれか2つを吸気状態パラメータとして採用してもよい。
ただし、実際には新気分圧PIA及び還流ガス分圧PIRを直接検出することは困難であるため、相関のある検出可能なパラメータである新気流量、すなわち吸入空気流量GAと、還流ガス流量GRとを用いることが望ましい。吸気圧PI,新気分圧PIA,及び還流ガス分圧PIRは、下記式(308)〜(310)で表すことができるので(式(24)、(26)参照)、新気分圧PIA及び還流ガス分圧PIRに代えて、吸入空気流量GA及び還流ガス流量GRを吸気状態パラメータとして使用可能である。
PI=kηV×GZ (308)
PIA=kηV×GA (309)
PIR=kηV×GR (310)
ここで、GZは、吸入空気流量GAと、還流ガス流量GRとを加算した吸入ガス流量であり、還流ガス流量GRは、式(308)の関係を用いて算出される吸入ガス流量GZから吸入空気流量GAを減算することにより、算出することができる。
また上述した実施形態では、本発明をディーゼル内燃機関の制御に適用した例を示したが、ガソリン内燃機関の制御にも適用可能である。ガソリン内燃機関についてには、吸気管内に燃料噴射を行う場合にも適用可能である。
また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。
本発明の第1の実施形態にかかる内燃機関及びその制御装置の構成を示す図である。 内燃機関の吸気状態制御及び燃料噴射制御を行う制御モジュールの構成を示す機能ブロック図である。 図2の吸気状態パラメータ要求値設定部の構成を示すブロック図である。 図2の吸気状態制御部の構成を示すブロック図である。 図4の要求還流ガス圧算出部の構成を示すブロック図である。 図4の分圧推定部の構成を示すブロック図である。 モデル予測制御の概要を説明するための図である。 図4に示すモデル予測コントローラの構成を示すブロック図である。 制御動作例を説明するためのタイムチャートである。 図2の燃料噴射制御部の構成を示すブロック図である。 図10の第1指令値算出部の構成を示す図である。 吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。 吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。 図13の処理で実行される第1燃料噴射指令値マップの検索処理のフローチャートである。 本発明の第2の実施形態にかかる内燃機関及びその制御装置の構成を示す図である。 内燃機関の吸気状態制御及び燃料噴射制御を行う制御モジュールの構成を示す機能ブロック図である。 図16の吸気状態パラメータ要求値設定部の構成を示すブロック図である。 図16の吸気状態制御部の構成を示すブロック図である。 図16の燃料噴射制御部の構成を示すブロック図である。 図19の第1指令値算出部の構成を示す図である。 吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。 吸気状態制御及び燃料噴射制御を実行する処理のフローチャートである。 図22の処理で実行される第1燃料噴射指令値マップの検索処理のフローチャートである。
符号の説明
1 内燃機関
2 吸気管
3 スロットル弁(吸気状態制御手段)
6 排気還流弁(吸気状態制御手段)
8 ターボチャージャ
9 燃料噴射弁(燃料噴射手段)
12 可変ベーン(吸気状態制御手段)
20 電子制御ユニット(燃焼モード決定手段、要求値算出手段、吸気温度基準値算出手段、吸気状態制御手段、燃料噴射制御手段)
21 吸入空気流量センサ(吸気状態パラメータ検出手段)
23 吸気温センサ(吸気状態パラメータ検出手段)
24 吸気圧センサ(吸気状態パラメータ検出手段)
30 吸気酸素濃度センサ(吸気状態パラメータ検出手段)
41 燃焼モード決定部(燃焼モード決定手段)
42,42a 吸気状態パラメータ要求値設定部(目標値算出手段、吸気温度基準値算出手段)
43,43a 吸気状態制御部(吸気状態制御手段)
44,44a 燃料噴射制御部(燃料噴射制御手段)

Claims (7)

  1. 内燃機関の吸気管または燃焼室内に燃料を噴射する燃料噴射手段を備えた内燃機関の制御装置において、
    前記機関へ導入する吸気の状態を示す吸気状態パラメータを検出する吸気状態パラメータ検出手段と、
    前記機関の運転状態を示す運転状態パラメータに応じて前記吸気状態パラメータの要求値を算出する要求値算出手段と、
    前記吸気状態パラメータが前記要求値と一致するように前記吸気状態を制御する吸気状態制御手段と、
    前記運転状態パラメータ、及び前記吸気状態パラメータと前記要求値との偏差に応じて制御値を算出し、該制御値により前記燃料噴射手段による燃料噴射量を制御する燃料噴射制御手段とを備え
    前記燃料噴射制御手段は、前記運転状態パラメータに応じて基本制御値を算出する基本制御値算出手段と、前記運転状態パラメータに応じて前記基本制御値の変化率を示す変化率パラメータを算出する変化率パラメータ算出手段と、前記吸気状態パラメータと前記要求値との偏差に前記変化率パラメータを乗算することにより補正値を算出する補正値算出手段と、前記基本制御値を前記補正値で補正することにより、前記燃料噴射量の制御値を算出する制御値算出手段とを備え、該制御値算出手段により算出される制御値により前記燃料噴射制御を行うことを特徴とする内燃機関の制御装置。
  2. 前記燃料噴射制御手段は、前記運転状態パラメータ、及び前記吸気状態パラメータと前記要求値との偏差に応じて、前記燃料噴射手段による燃料噴射時期を制御することを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記吸気状態パラメータは、吸気圧、吸入酸素分圧、及び吸入不活性ガス分圧のうちのいずれか2つであることを特徴とする請求項1または2に記載の内燃機関の制御装置。
  4. 前記機関は排気を吸気系に還流させる排気還流機構を備え、前記吸気状態パラメータは、吸気圧、吸入新気流量、及び還流排気流量のうちのいずれか2つであることを特徴とする請求項1または2に記載の内燃機関の制御装置。
  5. 前記吸気状態パラメータは、さらに吸気温度を含み、吸気温度の基準値を算出する吸気温度基準値算出手段をさらに備え、前記燃料噴射制御手段は、検出される吸気温度と前記基準値との偏差に応じた制御を行うことを特徴とする請求項またはに記載の内燃機関の制御装置。
  6. 前記運転状態パラメータに応じて前記機関の燃焼モードを決定する燃焼モード決定手段を備え、前記燃料噴射制御手段は、前記燃焼モードに対応して設定された制御用マップを用いて前記制御値の算出を行うことを特徴とする請求項1からのいずれか1項に記載の内燃機関の制御装置。
  7. 前記燃焼モード決定手段が燃焼モードを変更した場合において、前記燃料噴射制御手段は、前記偏差の絶対値が所定閾値以上であるときは、変更前の燃焼モードに対応した制御用マップを使用し、前記偏差の絶対値が前記所定閾値より小さいときは、変更後の燃焼モードに対応した制御用マップを使用することを特徴とする請求項に記載の内燃機関の制御装置。
JP2006012777A 2006-01-20 2006-01-20 内燃機関の制御装置 Expired - Fee Related JP4339321B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006012777A JP4339321B2 (ja) 2006-01-20 2006-01-20 内燃機関の制御装置
DE602007000970T DE602007000970D1 (de) 2006-01-20 2007-01-02 Steuersystem für einen Verbrennungsmotor
EP07000040A EP1811160B1 (en) 2006-01-20 2007-01-02 Control system for internal combustion engine
US11/650,948 US7400967B2 (en) 2006-01-20 2007-01-09 Control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012777A JP4339321B2 (ja) 2006-01-20 2006-01-20 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2007192171A JP2007192171A (ja) 2007-08-02
JP4339321B2 true JP4339321B2 (ja) 2009-10-07

Family

ID=37907163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012777A Expired - Fee Related JP4339321B2 (ja) 2006-01-20 2006-01-20 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US7400967B2 (ja)
EP (1) EP1811160B1 (ja)
JP (1) JP4339321B2 (ja)
DE (1) DE602007000970D1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220147072A1 (en) * 2020-11-11 2022-05-12 Horiba Stec, Co., Ltd. Concentration control system, concentration control method and program for a concentration control system

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246002B2 (en) * 2003-11-20 2007-07-17 General Electric Company Method for controlling fuel splits to gas turbine combustor
US7467614B2 (en) 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine
JP4332140B2 (ja) * 2005-07-15 2009-09-16 トヨタ自動車株式会社 内燃機関の制御装置
US7389773B2 (en) 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
JP2007113563A (ja) * 2005-09-26 2007-05-10 Honda Motor Co Ltd 内燃機関の制御装置
US7831374B2 (en) * 2008-06-06 2010-11-09 Southwest Research Institute Combustion control system for internal combustion engine with rich and lean operating conditions
JP5053221B2 (ja) * 2008-06-27 2012-10-17 本田技研工業株式会社 内燃機関の過給圧制御装置
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
JP5155911B2 (ja) * 2009-03-13 2013-03-06 本田技研工業株式会社 内燃機関の過給圧制御装置
JP5347676B2 (ja) * 2009-04-16 2013-11-20 いすゞ自動車株式会社 内燃機関の制御方法及び制御装置
US8538657B2 (en) * 2009-04-30 2013-09-17 General Electric Company Systems and methods for controlling fuel flow to a turbine component
DE102009028307A1 (de) * 2009-08-06 2011-02-10 Ford Global Technologies, LLC, Dearborn Verfahren zum Steuern eines Verbrennungsmotors
US8620461B2 (en) 2009-09-24 2013-12-31 Honeywell International, Inc. Method and system for updating tuning parameters of a controller
JP5333120B2 (ja) 2009-09-25 2013-11-06 富士通株式会社 エンジン制御プログラム、方法及び装置
US8504175B2 (en) * 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
WO2012057756A1 (en) * 2010-10-28 2012-05-03 International Engine Intellectual Property Company, Llc Start of injection timing
JP5664774B2 (ja) * 2011-05-26 2015-02-04 トヨタ自動車株式会社 内燃機関の制御装置
JP5929015B2 (ja) * 2011-06-06 2016-06-01 日産自動車株式会社 内燃機関の排気還流装置
US9267449B2 (en) 2011-06-16 2016-02-23 GM Global Technology Operations LLC Control system and method for coordinating throttle and boost
US9677493B2 (en) 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
US9157390B2 (en) 2011-09-21 2015-10-13 GM Global Technology Operations LLC Selective exhaust gas recirculation diagnostic systems and methods
US9650934B2 (en) 2011-11-04 2017-05-16 Honeywell spol.s.r.o. Engine and aftertreatment optimization system
US20130111905A1 (en) 2011-11-04 2013-05-09 Honeywell Spol. S.R.O. Integrated optimization and control of an engine and aftertreatment system
US9249764B2 (en) 2012-03-06 2016-02-02 GM Global Technology Operations LLC Engine control systems and methods with humidity sensors
US10066564B2 (en) 2012-06-07 2018-09-04 GM Global Technology Operations LLC Humidity determination and compensation systems and methods using an intake oxygen sensor
US9932917B2 (en) 2012-03-21 2018-04-03 GM Global Technology Operations LLC Exhaust gas recirculation control systems and methods
US20130268176A1 (en) * 2012-04-05 2013-10-10 GM Global Technology Operations LLC Exhaust gas recirculation control systems and methods for low engine delta pressure conditions
US9353696B2 (en) * 2012-05-24 2016-05-31 Cummins Ip, Inc. Combustion controller for internal combustion engine
US9915197B2 (en) * 2012-06-26 2018-03-13 International Engine Intellectual Property Company, Llc. Control method for variable geometry exhaust turbine
US8925319B2 (en) 2012-08-17 2015-01-06 General Electric Company Steam flow control system
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9243524B2 (en) 2014-03-26 2016-01-26 GM Global Technology Operations LLC Engine control systems and methods for transmission upshifts
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9765703B2 (en) * 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9328671B2 (en) * 2013-04-23 2016-05-03 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9599053B2 (en) 2014-03-26 2017-03-21 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9378594B2 (en) 2014-03-26 2016-06-28 GM Global Technology Operations LLC Fault diagnostic systems and methods for model predictive control
US9335004B2 (en) 2012-12-07 2016-05-10 General Electric Company Method and system for use in combustion product control
JP5716764B2 (ja) * 2013-02-05 2015-05-13 株式会社デンソー エンジン制御装置
US9341133B2 (en) 2013-03-06 2016-05-17 GM Global Technology Operations LLC Exhaust gas recirculation control systems and methods
US9429078B1 (en) * 2013-03-14 2016-08-30 Tucson Embedded Systems, Inc. Multi-compatible digital engine controller
DE102014105277B4 (de) * 2013-04-23 2019-08-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Systeme und verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102014105275B4 (de) 2013-04-23 2019-09-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102014105278B4 (de) 2013-04-23 2019-09-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102014105276B4 (de) 2013-04-23 2019-05-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Systeme und verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
US9631567B2 (en) 2013-08-15 2017-04-25 GM Global Technology Operations LLC Sensor based measurement and purge control of fuel vapors in internal combustion engines
US20160131089A1 (en) * 2014-11-12 2016-05-12 Deere And Company Variable geometry turbocharger feed forward control system and method
US20160131057A1 (en) * 2014-11-12 2016-05-12 Deere And Company Fresh air flow and exhaust gas recirculation control system and method
US9683513B2 (en) * 2014-12-01 2017-06-20 Ford Global Technologies, Llc Methods and systems for learning variability of a direct fuel injector
EP3051367B1 (en) 2015-01-28 2020-11-25 Honeywell spol s.r.o. An approach and system for handling constraints for measured disturbances with uncertain preview
EP3056706A1 (en) 2015-02-16 2016-08-17 Honeywell International Inc. An approach for aftertreatment system modeling and model identification
EP3091212A1 (en) 2015-05-06 2016-11-09 Honeywell International Inc. An identification approach for internal combustion engine mean value models
EP3125052B1 (en) 2015-07-31 2020-09-02 Garrett Transportation I Inc. Quadratic program solver for mpc using variable ordering
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US9835094B2 (en) 2015-08-21 2017-12-05 Deere & Company Feed forward exhaust throttle and wastegate control for an engine
DE102016121338B4 (de) 2015-11-23 2020-06-18 The Regents Of The University Of Michigan System und Verfahren zum Steuern einer Brennkraftmaschine sowie nichtflüchtiges Speichermedium
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US9789876B1 (en) 2016-06-16 2017-10-17 GM Global Technology Operations LLC Axle torque control system for a motor vehicle
JP6328201B2 (ja) * 2016-10-05 2018-05-23 三菱電機株式会社 内燃機関の制御装置
WO2018101918A1 (en) 2016-11-29 2018-06-07 Honeywell International Inc. An inferential flow sensor
CN106837614B (zh) * 2017-01-22 2019-05-24 浙江吉利动力总成有限公司 一种低压废气再循环控制***及方法
US10125712B2 (en) 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
US10119481B2 (en) 2017-03-22 2018-11-06 GM Global Technology Operations LLC Coordination of torque interventions in MPC-based powertrain control
US10399574B2 (en) 2017-09-07 2019-09-03 GM Global Technology Operations LLC Fuel economy optimization using air-per-cylinder (APC) in MPC-based powertrain control
US10358140B2 (en) 2017-09-29 2019-07-23 GM Global Technology Operations LLC Linearized model based powertrain MPC
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
US10619586B2 (en) 2018-03-27 2020-04-14 GM Global Technology Operations LLC Consolidation of constraints in model predictive control
US10661804B2 (en) 2018-04-10 2020-05-26 GM Global Technology Operations LLC Shift management in model predictive based propulsion system control
US10859159B2 (en) 2019-02-11 2020-12-08 GM Global Technology Operations LLC Model predictive control of torque converter clutch slip
CN109828465A (zh) * 2019-02-28 2019-05-31 北京金自天正智能控制股份有限公司 一种用于钛白粉甲苯燃烧器的控制方法
US11312208B2 (en) 2019-08-26 2022-04-26 GM Global Technology Operations LLC Active thermal management system and method for flow control
US11008921B1 (en) 2019-11-06 2021-05-18 GM Global Technology Operations LLC Selective catalytic reduction device control
DE102020208865A1 (de) 2020-07-16 2022-01-20 Volkswagen Aktiengesellschaft Verfahren zum Einstellen einer Drosselklappe, Motorsteuergerät und ein Fahrzeug
CN115263579B (zh) * 2022-08-01 2023-05-09 西华大学 一种发动机节气门控制信号产生装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053813A (ja) * 1983-09-02 1985-03-27 Nippon Denso Co Ltd 熱式空気流量検出装置
JPS60122239A (ja) * 1983-12-07 1985-06-29 Mazda Motor Corp エンジンの燃料噴射装置
JPH0765523B2 (ja) * 1989-07-20 1995-07-19 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
GB9100224D0 (en) * 1991-01-05 1991-02-20 Lucas Ind Plc Method of and apparatus for controlling wheel spin
JP3259536B2 (ja) 1994-08-22 2002-02-25 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
JPH10299555A (ja) * 1997-04-25 1998-11-10 Mitsubishi Motors Corp 電子スロットル制御装置付き内燃機関の制御装置
US6167863B1 (en) * 1997-06-03 2001-01-02 Nissan Motor Co., Ltd. Engine with torque control
JP3680500B2 (ja) * 1997-07-02 2005-08-10 日産自動車株式会社 内燃機関の制御装置
JP3627464B2 (ja) * 1997-08-28 2005-03-09 日産自動車株式会社 エンジンの制御装置
US6032640A (en) * 1998-10-02 2000-03-07 The University Of British Columbia Control method for spark-ignition engines
JP4354068B2 (ja) * 2000-02-02 2009-10-28 本田技研工業株式会社 内燃機関の排ガスの空燃比制御装置
DE10114049A1 (de) * 2001-03-15 2002-09-19 Volkswagen Ag Verfahren und Vorrichtung zur Regelung einer externen Abgasrückführrate und/oder eines Luft-Kraftstoff-Verhältnisses
US6948475B1 (en) * 2002-11-12 2005-09-27 Clean Air Power, Inc. Optimized combustion control of an internal combustion engine equipped with exhaust gas recirculation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220147072A1 (en) * 2020-11-11 2022-05-12 Horiba Stec, Co., Ltd. Concentration control system, concentration control method and program for a concentration control system
US11906984B2 (en) * 2020-11-11 2024-02-20 Horiba Stec, Co., Ltd. Concentration control system, concentration control method and program for a concentration control system

Also Published As

Publication number Publication date
DE602007000970D1 (de) 2009-06-10
JP2007192171A (ja) 2007-08-02
EP1811160B1 (en) 2009-04-29
EP1811160A1 (en) 2007-07-25
US20070174003A1 (en) 2007-07-26
US7400967B2 (en) 2008-07-15

Similar Documents

Publication Publication Date Title
JP4339321B2 (ja) 内燃機関の制御装置
US10830164B2 (en) Fresh air flow and exhaust gas recirculation control system and method
US7457701B2 (en) Air quantity estimation apparatus for internal combustion engine
EP3020940B1 (en) A variable geometry turbocharger control method and system for an engine air system with a variable geometry turbocharger having adjustable vanes
JP4184058B2 (ja) 制御装置
JP2007113563A (ja) 内燃機関の制御装置
EP1617056B1 (en) Control system for internal combustion engine
EP1643101B1 (en) Intake air amount control device of internal combustion engine and control device
US20060116808A1 (en) Air quantity estimation apparatus for internal combustion engine
JP2007506033A (ja) 内燃エンジンの燃焼を制御し、性能と放出を予測する方法
JP3998136B2 (ja) 内燃機関の空燃比制御装置
JP5293766B2 (ja) エンジン制御装置
JP5257479B2 (ja) エンジン制御装置
JP4712097B2 (ja) 内燃機関の制御装置
JP2005301764A (ja) 制御対象モデルを用いた制御装置
Ventura et al. NLQR control of high pressure EGR in diesel engine
EP1645740B1 (en) Intake airvolume controller of internal combustion engine
di Gaeta et al. Idle speed control of GDI-SI engines via ECU-1D engine co-simulation
Rayasam Robust Multiple-Input Multiple-Output Control of Gas Exchange Processes in Advanced Internal Combustion Engines
JP5337645B2 (ja) 内燃機関の燃料噴射制御装置
JP2010144674A (ja) 制御装置
Ma Model based control and efficient calibration for crank-to-run transition in SI engines
JPH11351067A (ja) 内燃機関のegr制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees