JP4338838B2 - Method for integrally forming composite wings - Google Patents

Method for integrally forming composite wings Download PDF

Info

Publication number
JP4338838B2
JP4338838B2 JP22526999A JP22526999A JP4338838B2 JP 4338838 B2 JP4338838 B2 JP 4338838B2 JP 22526999 A JP22526999 A JP 22526999A JP 22526999 A JP22526999 A JP 22526999A JP 4338838 B2 JP4338838 B2 JP 4338838B2
Authority
JP
Japan
Prior art keywords
jig
frame structure
integrally forming
molded
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22526999A
Other languages
Japanese (ja)
Other versions
JP2001048097A (en
Inventor
田 淳 原
杉 京 一 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP22526999A priority Critical patent/JP4338838B2/en
Publication of JP2001048097A publication Critical patent/JP2001048097A/en
Application granted granted Critical
Publication of JP4338838B2 publication Critical patent/JP4338838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化樹脂複合材翼の一体成形方法に係り、さらに詳しくは、中空燃料タンク部品を積層治具として用いることにより組立て工数を削減し、低コスト化を可能にする複合材翼の一体成形方法に関する。
【0002】
【従来の技術】
従来の航空機の主翼の多くは、アルミニウム材のビルドアップ構造であるが、さらに軽量化を図るために、比強度の高い繊維強化樹脂複合材を使用した航空機の主翼が開発されている。しかし、その構造は、アルミニウム材のものと同じであり、製造方法は、個々の部品を成形した後、ファスナー結合したり、一体成形する場合でも、片側の外板を除いて行い、その後、別に成形した片側外板をファスナー結合している。
【0003】
成形した個々の部品をファスナー結合する方法によるインテグラルタンクは、図6に示すように、下側外板1と上側外板2と桁3と小骨(図示せず)とを組み立て治具(図示せず)により組み立て、下側外板1と上側外板2と桁3と小骨とをファスナ4により結合することで構成されており、下側外板1と上側外板2と桁3により構成されるタンク構造は、ファスナ結合されているため、ファスナ孔周り(キャップシール)5や部品合わせ面(フィレットシール)6にシール材7を塗布することで収容される燃料の漏れを防ぐようにしている。タンク構造へのシール材7の塗布は、下側外板1に形成されたアクセスホール8を通して行われる。
【0004】
【発明が解決しようとする課題】
ファスナを用いた組立て方式のインテグラルタンク主翼構造では、タンク構造にファスナを用いるため、ファスナ孔周りや部品合わせ面に燃料漏れ防止のシール材の塗布が必要であり、製造する上で作業量が多く、コスト高の要因となっている。
【0005】
本発明は上記した点に鑑みてなされたもので、軽量でかつ剛性の高い素材により作られる中空燃料タンク部品を積層治具として用いることにより組立て工数を削減し、低コスト化を可能にする複合材翼の一体成形方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の複合材翼の一体成形方法は、前後の桁と小骨とを含む骨組構造を繊維強化樹脂複合材を用いて一体成形し、前後桁と小骨と外板に囲まれる部分の箱型形状を熱可塑性樹脂で成形し、箱型形状を骨組構造の桁と小骨に固着し、これらの外周にプリプレグを積層し、積層したプリプレグを加圧加熱硬化させることで、組立て工数を削減し、低コスト化を可能にする。
【0007】
本発明の複合材翼の一体成形方法は、前後の桁と小骨とを含む骨組構造を繊維強化樹脂複合材を用いて一体成形し、前後桁と小骨と外板に囲まれる部分の箱型形状を熱可塑性樹脂で成形し、箱型形状を骨組構造の桁と小骨に固着し、これらの外周に樹脂を含浸させながらファブリックを積層し、ファブリックに含浸した樹脂を常温硬化させることで、組立て工数を削減し、低コスト化を可能にする。
【0008】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0009】
図1は本発明の複合材翼の一体成形方法に用いられる複合材骨組構造を10を示し、この複合材骨組構造10は、前桁11と後桁12と小骨13とを有する。前桁11と後桁12と小骨13は、繊維強化樹脂複合材による一体成形品である。そして、小骨13で仕切られた桁間および前縁部分には、図3に示すように、複合材骨組構造10の前桁11および小骨13に接着するように燃料タンク部品を兼用する積層治具14が配置されている。
【0010】
燃料タンク部品を兼用する積層治具14は、図2に示すように、軽量でかつ剛性の高い熱可塑性プラスチック材料をブロー成形することで外面が主翼の外形形状の一部に沿った形状をなし、かつ燃料通過孔15を形成するように成型され、図3に示すように、前桁11および小骨13に接着剤を介して固着される。
【0011】
一方、上記複合材骨組構造10の前桁11と後桁12と小骨13に囲まれる箱型空間にも、軽量でかつ剛性の高い熱可塑性プラスチック材料をブロー成形することで外面が主翼の外形形状の一部をなしかつ箱型空間に対応した形状の燃料タンク部品を兼用する積層治具15が配置されている。積層治具15は、図3に示すように、前桁11と後桁12と小骨13に接着剤を介して固着される。
【0012】
上記複合材骨組構造10に積層治具14および積層治具15を固着して形成される翼型積層治具16の外面に、図4に示すように、主翼構造の上下外板17,18に成形されるプリプレグ19が積層される。
【0013】
積層治具14および積層治具15を構成する軽量でかつ剛性の高い熱可塑性プラスチック材料は、プリプレグ19が加熱硬化処理されて成形される場合には、ポリエーテルエーテルケトン材、熱可塑性ポリイミド材、ポリフェニレンサルファイド材を用いることが好ましい。
【0014】
積層治具14および積層治具15を構成する軽量でかつ剛性の高い熱可塑性プラスチック材料は、ファブリックに含浸した樹脂が常温硬化処理されて成形される場合には、アクリロニトリルスチレン共重合樹脂材やアクリロニトリルブタジエンスチレン樹脂材を用いることが好ましい。
【0015】
つぎに、複合材翼の一体成形方法を説明する。
【0016】
前後の桁11,12と小骨13とを含む骨組構造10を繊維強化樹脂複合材を積層法もしくは樹脂含浸法を用いて一体成形するとともに、骨組構造10に固着される積層治具14および積層治具15を軽量でかつ剛性の高い熱可塑性プラスチック材料をブロー成形することで成形する。積層治具15は、骨組構造10の前後桁11,12と小骨13と成形されるべき外板17,18に囲まれる部分の箱型空間に対応した箱型に成形されている。積層治具14は、前桁と小骨とこれらの外側に成形される外板に囲まれる空間に対応した中空の箱型に成形されている。
【0017】
つぎに、骨組構造10の前後桁11,12と小骨13と成形されるべき外板に囲まれる箱型空間に接着剤を介して積層治具15を配置し、積層治具15を前後桁11,12と小骨13に固着し、骨組構造10の前桁11と小骨13に囲まれる空間に接着剤を介して積層治具14を配置し、積層治具14を前桁11と小骨13に固着する。これにより、複合材の翼型積層治具16が成形される。
【0018】
つぎに、翼型積層治具16の外面に翼型積層治具16の長手方向に対して所定角度をもたせて主翼構造の上下外板17,18を構成するプリプレグ19を積層する。
【0019】
ついで、これらを真空バッグフィルムで覆うとともに、真空バッグフィルムの中を真空引きしてオートクレーブの内部に配置し、積層したプリプレグ19を翼型積層治具16ごと加圧加熱硬化し、積層治具14,15を一体に組み込んだ主翼構造20を一体成形する。
【0020】
上記実施の形態では、翼型積層治具16に積層したプリプレグをオートクレーブで加圧加熱処理して硬化させるようにしたが、翼型積層治具16の外周に樹脂を含浸させながら繊維を積層するウエットレイ方式で外板用の繊維と樹脂を積層し、繊維に含浸した樹脂を常温硬化させて、積層治具14,15を一体に組み込んだ主翼構造20を一体成形することもできる。
【0021】
また、主翼の場合、脚や補助翼の取付部材を固定するために、バックアップ部材を設置する必要があるが、これらは点検孔より設置することができる。点検孔は硬化成形後に穿孔して設けることができる。穿孔しやすくするために、積層治具の点検孔部を穿孔しないでおき、孔部を残してプリプレグを積層することもできる。
【0022】
さらに、桁と小骨とで囲まれる部分に接着される積層治具は1つに限定されない。複数の積層治具同士を接着して1つの組立積層治具を形成し、桁と小骨とで囲まれる部分に接着固定して主翼を成形し、機器類を桁間あるいは前縁部に装備する機器がある場合は、機器を設置する部分に配置された積層治具内の空間をりようすればよい。
【0023】
【発明の効果】
以上述べたように本発明によれば、燃料タンクとして使用できる軽量かつ剛性の高い素材で作られる中空成形品を積層治具として用いることで、複合材翼を一体成形することができ、組立て工数が削減され、低コスト化が可能になる。
【図面の簡単な説明】
【図1】本発明の複合材翼の一体成形方法に用いられる骨組構造の斜視図。
【図2】本発明の複合材翼の一体成形方法に用いられる治具の1つの中空成形品の斜視図。
【図3】本発明の複合材翼の一体成形方法に用いられる積層治具を示す図。
【図4】図3の積層治具にプリプレグを積層する段階を示す図。
【図5】本発明の複合材翼の一体成形方法により成形された主翼構造を示す図。
【図6】従来の主翼の燃料タンクを示す図。
【符号の説明】
10 複合材骨組構造
11 前桁
12 後桁
13 小骨
14 積層治具
15 積層治具
16 翼型積層治具
19 プリプレグ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for integrally forming a fiber-reinforced resin composite blade, and more specifically, by using a hollow fuel tank component as a stacking jig, the number of assembly steps can be reduced and the cost of the composite blade can be reduced. The present invention relates to an integral molding method.
[0002]
[Prior art]
Many of the conventional aircraft main wings have a build-up structure made of an aluminum material, but in order to further reduce the weight, aircraft main wings using a fiber reinforced resin composite material having a high specific strength have been developed. However, the structure is the same as that of the aluminum material, and the manufacturing method is performed by excluding the outer plate on one side, even after fastener molding or integral molding after molding individual parts. The formed one-side outer plate is fastened with a fastener.
[0003]
As shown in FIG. 6, the integral tank by the method of joining the molded individual parts with a fastener is an assembly jig for assembling a lower outer plate 1, an upper outer plate 2, a girder 3 and a small bone (not shown). The lower outer plate 1, the upper outer plate 2, the girders 3, and the small bones are joined by the fasteners 4, and the lower outer plate 1, the upper outer plate 2 and the girders 3 are configured. Since the tank structure is fastened with a fastener, the sealing material 7 is applied around the fastener hole 5 (cap seal) 5 and the part mating surface (fillet seal) 6 so as to prevent leakage of the stored fuel. Yes. The sealing material 7 is applied to the tank structure through an access hole 8 formed in the lower outer plate 1.
[0004]
[Problems to be solved by the invention]
The assembly type integral tank main wing structure using fasteners uses fasteners for the tank structure, so it is necessary to apply a sealant to prevent fuel leakage around the fastener holes and to the parts mating surface. Many of them are a factor of high cost.
[0005]
The present invention has been made in view of the above points, and is a composite that reduces the number of assembling steps and enables cost reduction by using a hollow fuel tank component made of a lightweight and highly rigid material as a lamination jig. An object is to provide a method for integrally forming material blades.
[0006]
[Means for Solving the Problems]
The method for integrally forming a composite wing according to the present invention is a method of integrally forming a frame structure including front and rear girders and small bones using a fiber reinforced resin composite material, and a box shape of a portion surrounded by the front and rear girders, small bones and an outer plate Is molded with thermoplastic resin, the box shape is fixed to the girders and small bones of the frame structure, prepregs are laminated on the outer periphery, and the laminated prepregs are heat-pressed and cured to reduce assembly man-hours. Enables cost reduction.
[0007]
The method for integrally forming a composite wing according to the present invention is a method of integrally forming a frame structure including front and rear girders and small bones using a fiber reinforced resin composite material, and a box shape of a portion surrounded by the front and rear girders, small bones and an outer plate Is molded with thermoplastic resin, the box shape is fixed to the girder and small bones of the frame structure, the fabric is laminated while impregnating the resin with the outer periphery, and the resin impregnated into the fabric is cured at room temperature, thereby assembling man-hours This makes it possible to reduce costs.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
FIG. 1 shows a composite frame structure 10 used in the method for integrally forming a composite wing of the present invention, and this composite frame structure 10 has a front beam 11, a rear beam 12, and a small bone 13. The front girder 11, the rear girder 12, and the small bone 13 are integrally molded products made of a fiber reinforced resin composite material. Then, as shown in FIG. 3, as shown in FIG. 3, a laminating jig that also serves as a fuel tank part so as to adhere to the front beam 11 and the small bone 13 of the composite material frame structure 10. 14 is arranged.
[0010]
As shown in FIG. 2, the stacking jig 14 also serving as a fuel tank component is formed by blow molding a lightweight and highly rigid thermoplastic material so that the outer surface is shaped along a part of the outer shape of the main wing. And it shape | molds so that the fuel passage hole 15 may be formed, and as shown in FIG. 3, it fixes to the front beam 11 and the small bone 13 via an adhesive agent.
[0011]
On the other hand, the outer surface of the composite frame structure 10 has an outer shape of the main wing by blow-molding a lightweight and rigid thermoplastic material in a box-shaped space surrounded by the front girders 11, the rear girders 12 and the small bones 13. A laminating jig 15 that also serves as a fuel tank component having a shape corresponding to the box-shaped space is disposed. As shown in FIG. 3, the stacking jig 15 is fixed to the front beam 11, the rear beam 12, and the small bone 13 with an adhesive.
[0012]
As shown in FIG. 4, on the upper and lower outer plates 17 and 18 of the main wing structure on the outer surface of the wing-type lamination jig 16 formed by fixing the lamination jig 14 and the lamination jig 15 to the composite frame structure 10. The prepreg 19 to be molded is laminated.
[0013]
When the prepreg 19 is molded by heat curing, the lightweight and rigid thermoplastic material constituting the lamination jig 14 and the lamination jig 15 is a polyether ether ketone material, a thermoplastic polyimide material, It is preferable to use a polyphenylene sulfide material.
[0014]
The lightweight and high-stiffness thermoplastic material constituting the laminating jig 14 and laminating jig 15 is made of acrylonitrile styrene copolymer resin material or acrylonitrile when the resin impregnated in the fabric is molded after being cured at room temperature. It is preferable to use a butadiene styrene resin material.
[0015]
Next, a method for integrally forming the composite blade will be described.
[0016]
The frame structure 10 including the front and rear girders 11 and 12 and the small bones 13 is integrally formed by using a fiber reinforced resin composite or a resin impregnation method, and a laminating jig 14 and a laminating jig fixed to the frame structure 10. The tool 15 is molded by blow molding a lightweight and highly rigid thermoplastic material. The stacking jig 15 is formed in a box shape corresponding to a box-shaped space in a portion surrounded by the front and rear girders 11 and 12 and the small bone 13 and the outer plates 17 and 18 to be formed. The stacking jig 14 is formed into a hollow box shape corresponding to a space surrounded by a front girder, a small bone, and an outer plate formed outside thereof.
[0017]
Next, the laminating jig 15 is disposed via an adhesive in a box-shaped space surrounded by the front and rear girders 11 and 12 of the frame structure 10 and the small bones 13 and the outer plate to be molded. , 12 and the small bone 13, and a stacking jig 14 is disposed in the space surrounded by the front beam 11 and the small bone 13 of the frame structure 10 with an adhesive, and the stacking jig 14 is fixed to the front beam 11 and the small bone 13. To do. Thus, the composite wing-type stacking jig 16 is formed.
[0018]
Next, the prepreg 19 constituting the upper and lower outer plates 17 and 18 of the main wing structure is laminated on the outer surface of the airfoil stacking jig 16 with a predetermined angle with respect to the longitudinal direction of the airfoil stacking jig 16.
[0019]
Next, these are covered with a vacuum bag film, and the vacuum bag film is evacuated and placed inside the autoclave, and the laminated prepreg 19 is pressure-heated and cured together with the wing-type lamination jig 16 to form the lamination jig 14. , 15 are integrally molded.
[0020]
In the above embodiment, the prepreg laminated on the airfoil stacking jig 16 is cured by pressurizing and heating with an autoclave, but the fibers are laminated while impregnating the outer periphery of the airfoil stacking jig 16 with resin. The main wing structure 20 in which the laminating jigs 14 and 15 are integrated can be integrally formed by laminating fibers and resin for the outer plate by a wet tray method, and curing the resin impregnated in the fibers at room temperature.
[0021]
In the case of the main wing, it is necessary to install a backup member in order to fix the attachment members for the legs and the auxiliary wings, but these can be installed from the inspection hole. The inspection hole can be formed by drilling after the curing molding. In order to facilitate drilling, the inspection hole portion of the stacking jig may not be punched, and the prepreg may be stacked while leaving the hole portion.
[0022]
Furthermore, the lamination jig | tool adhere | attached on the part enclosed with a girder and a small bone is not limited to one. Adhering multiple stacking jigs together to form one assembly stacking jig, bonding and fixing to the part surrounded by the girders and small bones, molding the main wings, and mounting the equipment between the girders or the leading edge When there is a device, a space in the stacking jig arranged in the portion where the device is to be installed may be provided.
[0023]
【The invention's effect】
As described above, according to the present invention, by using a hollow molded product made of a lightweight and rigid material that can be used as a fuel tank as a laminating jig, it is possible to integrally form a composite wing, and assembling man-hours. Can be reduced and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view of a frame structure used in a method for integrally forming a composite wing according to the present invention.
FIG. 2 is a perspective view of one hollow molded product of a jig used in the method for integrally forming a composite blade according to the present invention.
FIG. 3 is a view showing a stacking jig used in the method for integrally forming a composite blade according to the present invention.
4 is a view showing a stage of laminating a prepreg on the laminating jig of FIG. 3. FIG.
FIG. 5 is a view showing a main wing structure formed by the method of integrally forming composite wings of the present invention.
FIG. 6 is a view showing a fuel tank of a conventional main wing.
[Explanation of symbols]
10 Composite Material Structure 11 Front Girder 12 Rear Girder 13 Small Bone 14 Lamination Jig 15 Lamination Jig 16 Airfoil Lamination Jig 19 Prepreg

Claims (2)

前後の桁と小骨とを含む骨組構造を繊維強化樹脂複合材を用いて一体成形し、前後桁と小骨と外板に囲まれる部分の箱型形状を熱可塑性樹脂で成形し、箱型形状を骨組構造の桁と小骨に固着し、これらの外周にプリプレグを積層し、積層したプリプレグを加圧加熱硬化させることを特徴とする複合材翼の一体成形方法。The frame structure including the front and rear girders and small bones is integrally molded using fiber reinforced resin composite material, and the box shape of the part surrounded by the front and rear girders, small bones and outer plate is molded with thermoplastic resin, and the box shape is A method for integrally forming a composite wing, comprising: fixing a frame structure girder and a small bone; laminating a prepreg on the outer periphery thereof; and curing the laminated prepreg under pressure and heat. 前後の桁と小骨とを含む骨組構造を繊維強化樹脂複合材を用いて一体成形し、前後桁と小骨と外板に囲まれる部分の箱型形状を熱可塑性樹脂で成形し、箱型形状を骨組構造の桁と小骨に固着し、これらの外周に樹脂を含浸させながらファブリックを積層し、ファブリックに含浸した樹脂を常温硬化させることを特徴とする複合材翼の一体成形方法。The frame structure including the front and rear girders and small bones is integrally molded using fiber reinforced resin composite material, and the box shape of the part surrounded by the front and rear girders, small bones and outer plate is molded with thermoplastic resin, and the box shape is A method for integrally forming a composite material wing, wherein a fabric is laminated to a girder and a small bone of a frame structure, a fabric is laminated while impregnating the outer periphery of the fabric, and the resin impregnated in the fabric is cured at room temperature.
JP22526999A 1999-08-09 1999-08-09 Method for integrally forming composite wings Expired - Fee Related JP4338838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22526999A JP4338838B2 (en) 1999-08-09 1999-08-09 Method for integrally forming composite wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22526999A JP4338838B2 (en) 1999-08-09 1999-08-09 Method for integrally forming composite wings

Publications (2)

Publication Number Publication Date
JP2001048097A JP2001048097A (en) 2001-02-20
JP4338838B2 true JP4338838B2 (en) 2009-10-07

Family

ID=16826686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22526999A Expired - Fee Related JP4338838B2 (en) 1999-08-09 1999-08-09 Method for integrally forming composite wings

Country Status (1)

Country Link
JP (1) JP4338838B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460299B (en) * 2006-02-17 2016-03-09 威廉·罗杰斯 The goods of composite construction and manufacture method thereof
GB0614087D0 (en) 2006-07-14 2006-08-23 Airbus Uk Ltd Composite manufacturing method
ES2322638B1 (en) * 2007-10-03 2010-02-15 Fundacion Cener-Ciemat PROCEDURE OF MANUFACTURING OF AEROGENERATOR BLADES WITH THERMOPLASTIC MATERIAL.
US8088450B2 (en) * 2009-03-13 2012-01-03 The Boeing Company Automated wing painting system
BR112017007404B1 (en) * 2014-10-08 2022-05-17 Salver S.P.A. Process for assembling aircraft control surfaces
CN112777000A (en) * 2021-03-10 2021-05-11 西安爱生技术集团公司 Heating curing folding die for gluing middle wing of unmanned aerial vehicle and middle wing assembling method
JP2022175319A (en) 2021-05-13 2022-11-25 三菱重工業株式会社 Composite material cutting apparatus and composite material cutting method
CN114194376B (en) * 2021-11-07 2024-04-30 江苏集萃碳纤维及复合材料应用技术研究院有限公司 Composite wing oil tank integrated structure

Also Published As

Publication number Publication date
JP2001048097A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US6776371B2 (en) Method of manufacturing a composite material wing and a composite material wing
US6513757B1 (en) Wing of composite material and method of fabricating the same
JP4416900B2 (en) Composite panel and method for manufacturing the same
US6234423B1 (en) Composite airfoil structures and their forming methods
EP2253460B1 (en) Method of joining composite components
JP4187878B2 (en) Aircraft composite wing and method for manufacturing the same
US20080302912A1 (en) Bladderless Mold Line Conformal Hat Stringer
CN104773283A (en) One-piece composite bifurcated winglet
JP2012511119A5 (en)
JP2004203210A (en) Method for manufacturing wing
WO2008150712A1 (en) Manufacturing process using bladderless mold line conformal hat stringer
JP2013124098A (en) Method and device for manufacturing large scale integrated aerofoil
US10005267B1 (en) Formation of complex composite structures using laminate templates
JP4338838B2 (en) Method for integrally forming composite wings
JP4545339B2 (en) COMPOSITE WING AND MANUFACTURING METHOD THEREOF
US20190291355A1 (en) Methods for forming bonded structures
JP7221611B2 (en) reinforced panel
EP1595787A1 (en) Method for fabricating a composite material control surface for an aircraft.
US20190210308A1 (en) Method for repairing a composite stringer with a composite repair cap
CN110678306B (en) Composite blade forming method, composite blade and composite blade forming die
US20230264438A1 (en) Improved stiffening structure intended to stiffen a component made of thermosetting composite material, and associated stiffening method
US11400662B2 (en) Method for manufacturing a stiffened structural panel for an aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees