JP4338427B2 - Hydroponics equipment - Google Patents

Hydroponics equipment Download PDF

Info

Publication number
JP4338427B2
JP4338427B2 JP2003116137A JP2003116137A JP4338427B2 JP 4338427 B2 JP4338427 B2 JP 4338427B2 JP 2003116137 A JP2003116137 A JP 2003116137A JP 2003116137 A JP2003116137 A JP 2003116137A JP 4338427 B2 JP4338427 B2 JP 4338427B2
Authority
JP
Japan
Prior art keywords
swirl chamber
culture solution
cylindrical swirl
liquid
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116137A
Other languages
Japanese (ja)
Other versions
JP2004321009A (en
Inventor
久恒 梨子木
一郎 手柴
博徳 田中
辰彦 高瀬
隆明 岩崎
Original Assignee
株式会社 多自然テクノワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 多自然テクノワークス filed Critical 株式会社 多自然テクノワークス
Priority to JP2003116137A priority Critical patent/JP4338427B2/en
Publication of JP2004321009A publication Critical patent/JP2004321009A/en
Application granted granted Critical
Publication of JP4338427B2 publication Critical patent/JP4338427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、栽培槽内に収容した培養液を介して養分を供給しながら農作物などの各種植物を栽培する水耕栽培装置に関する。
【0002】
【従来の技術】
水耕栽培装置において使用されている培養液中の溶存酸素濃度が低下すると、植物の生育状態が悪化することが知られている。そこで、培養液に微細気泡を供給して溶存酸素濃度を高めることによって植物の生育状態を活性化することのできる水耕栽培装置が開発されている。
【0003】
このような水耕栽培装置としては、加圧液体と気体との導入部と円筒状の気泡発生空間を有し、導入部内に、気泡発生空間に開口する加圧液体導入孔と気体導入孔を形成し、加圧液体導入孔を導入部の端面に開口し、気体導入孔を導入部の側面に開口したマイクロバブル発生ノズルを用いて培養液中へ微細気泡を供給するもの(例えば、特許文献1参照。)、あるいは、略漏斗状を成す円錐容体の絞り側に吐出口を設け、対向側には中央に空気吸入口を有する漏斗壁を形成したマイクロバブル発生器の周部に複数の流入管を形成した気液混合装置を用いて培養液中へ微細気泡を供給するもの(例えば、特許文献2参照。)などがある。
【0004】
【特許文献1】
特開2002−142582号公報(第4−5頁、第1図、第4図)
【特許文献2】
特開2000−236762号公報(第3−4頁、第1図、第3図)
【0005】
【発明が解決しようとする課題】
特許文献1に記載された水耕栽培酸素供給システムを構成するマイクロバブル発生ノズルは、水と空気とを導入してマイクロバブルを発生させる機構として、内径が小さく、変曲部や凹凸部を有する複雑な流路が内蔵されているため、実際に稼働させた場合、培養液中の異物や空気中の塵埃などが経路に詰まるなどのトラブルが発生する可能性が高い。このようなトラブルを回避するには、フィルタを設置して定期的なメンテナンスを行うことが必要であるため、面倒である。
【0006】
特許文献2に記載されたマイクロバブル水耕栽培システムを構成する漏斗形状の気液混合装置の場合、比較的簡単な構造であり、細かな流路も少ないので、培養液中の異物などが詰まる可能性は低い。しかしながら、水平面などに載置しただけでは安定保持し難い形状であるため、実際に使用する場合は、様々な保持部材を必要とし、構造の複雑化を招きやすい。
【0007】
本発明が解決しようとする課題は、取り扱いが容易で、定期的なメンテナンスなどが不要であり、耐久性に優れ、植物の生育状態を活性化することのできる水耕栽培装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の水耕栽培装置は、培養液を収容可能な箱体状の栽培槽と、栽培槽内に収容された培養液を栽培槽内で一定方向に循環させるため栽培槽内に形成された培養液循環経路と、培養液に浸漬した状態で培養液循環経路の一部に配置され培養液の循環方向へ微細気泡を含む培養液を放出する機能を有する微細気泡発生器と、栽培槽内の培養液を吸い込んで微細気泡発生器へ送給する送液ポンプと、大気中の空気を微細気泡発生器の空気導入口へ供給する空気導入路とを備えた水耕栽培装置であって、微細気泡発生器が、中心軸の周りを流体が旋回可能な筒状旋回室と、筒状旋回室の周面の接線方向から筒状旋回室の周面に開設された液体導入口と、筒状旋回室の中心軸方向の一方の隔壁に開設された空気導入口と、筒状旋回室の中心軸方向の他方の隔壁に開設された流体放出口とを有するものであり、空気導入口を、筒状旋回室の中心軸に沿って内側へ突出させて配置するとともに、筒状旋回室の周面と前記空気導入口との間に凹曲面を設けたことを特徴とする。
【0009】
このような構成において、液送ポンプを作動させると、栽培槽内から吸い込まれた培養液が液体導入口を経由して接線方向から筒状空間内へ流入し筒状旋回室内に旋回流が発生し、この旋回流のほぼ中心軸に沿って略円筒状の負圧空洞部が出現する。この負圧空洞部の一方の端部は筒状旋回室の一方の隔壁にある空気導入口付近に位置するとともに、負圧空洞部の他方の端部は筒状旋回室の他方の隔壁にある流体放出口付近に位置する。そして、この負圧空洞部の負圧によって空気導入口付近に負圧が生じ、この負圧に起因する吸引力により空気導入路を経由して吸引された大気中の空気が空気導入口から筒状旋回室内の負圧空洞部内へ流入し、筒状旋回室内に導入された培養液とともに旋回流を形成する。
【0010】
負圧空洞部内へ流入した空気は、筒状旋回室内に発生している旋回流に連行され流体放出口から放出される。このとき、負圧空洞部の流体放出口側の端部において旋回流によってねじ切られて微細気泡となり、旋回流を形成する培養液とともに流体放出口から微細気泡混じりの培養液となって栽培槽中へ放出される。
【0011】
このように微細気泡発生器から微細気泡混じり培養液を放出することにより栽培槽内の培養液中に酸素や窒素などの気体を溶解させることができる。これらの微細気泡混じりの培養液は培養液の循環方向へ放出されるため、酸素などの溶存濃度の高い培養液が栽培槽全体をムラなく循環することとなり、これによって植物の生育状態を活性化することができる。
【0012】
また、微細気泡発生器の筒状旋回室内に出現する負圧空洞部の一方の端部から空気を導入しながら他方の端部の延長方向に向かって微細気泡含有水を放出するので、この負圧空洞部は筒状旋回室の中心軸付近に安定的に存在し続ける。さらに、負圧空洞部の両端もそれぞれ空気導入口付近および流体放出口付近に安定的に位置して壁面などに接触することがないので、微細気泡発生器内にキャビテーション・エロージョンが発生せず、耐久性に優れている。微細気泡発生器は、筒状旋回室に液体導入口、空気導入口および流体放出口を開設した簡素な構造であるため取り扱いは容易であり、培養液中や空気中の異物が詰まりやすい細かな流路もないので、定期的なメンテナンスも不要である。
さらに、微細気泡発生器の空気導入口を、筒状旋回室の中心軸に沿って内側へ突出させて配置するとともに、筒状旋回室の周面と前記空気導入口との間に凹曲面を設けたことにより、筒状旋回室内に形成される負圧空洞部の一方の端部は流体放出口に位置し、他方の端部は筒状旋回室内側に突出した空気導入口に安定的に位置するようになる。このため、負圧空洞部の空気導入口側の端部が不安定に移動して筒状旋回室の隔壁にキャビテーション・エロージョンが生じることがなくなり、耐久性の向上に有効である。
【0013】
ここで、前記微細気泡発生器の液体導入口の開口面積を流体放出口の開口面積より大とすることが望ましい。このような構成とすれば、筒状旋回室内へ送給される培養液の入り口より微細気泡混じりの培養液の出口の方が小さくなるため、液送ポンプによって送給される培養液の圧力によって筒状旋回室内の液圧が高まる。これによって、流体放出口から放出される微細気泡混じりの培養液の流勢が増大するため、栽培槽内に強い循環流を形成することができ、培養液の循環性が向上する。
【0014】
ここで、前記微細気泡発生器の周囲に、前記培養液を循環方向へ誘導するための誘導部材を設けることが望ましい。このような誘導部材を設ければ、流体放出口から放出される微細気泡混じりの培養液の流れが循環方向へ一本化され、この流れに連行される随伴流が微細気泡発生器の下流域に発生するため、栽培槽内における培養液の循環性を向上させることができる。また、前記随伴流が発生することにより、流体放出口から放出される微細気泡混じりの培養液の流速が比較的弱い場合であっても、栽培槽内の循環流を安定的に維持することができる。このため、液送能力が比較的小さい液送ポンプであっても培養液の循環不良が発生せず、消費エネルギの抑制を図ることができる。
【0016】
【発明の実施の形態】
図1は本発明の実施の形態である水耕栽培装置を示す平面図であり、図2は図1におけるA−A線断面図である。
【0017】
図1,図2に示すように、本実施形態の水耕栽培装置1は、培養液2を収容可能な長方形箱体状の栽培槽3と、栽培槽3内に収容された培養液2を栽培槽3内で循環方向4に循環させるため栽培槽3内に区画壁5を設けて形成された培養液循環経路6と、培養液2に浸漬した状態で培養液循環経路6の一部に配置され培養液2の循環方向4へ微細気泡MB混じりの培養液2aを放出する機能を有する微細気泡発生器7と、栽培槽3内の培養液2をホース11を通じて吸い込んで微細気泡発生器7へ送給する電動式の送液ポンプ8と、大気中の空気を微細気泡発生器7の空気導入口22へ供給する空気導入路15とを備えている。ホース11の先端および空気導入路15の先端にはそれぞれ異物の侵入を防止するためのフィルタ11a,15aが取り付けられている。
【0018】
また、微細気泡発生器7の両側には、培養液2を循環方向4へ誘導するための垂直壁体状の誘導部材13が設けられ、培養液循環経路6の上面には栽培用パネル9が着脱可能に配置され、この栽培用パネル9に植物10が定植されている。植物10は、栽培用パネル9の内部やその下側へ根を伸ばして培養液2中の水分や栄養分などを吸収することよって生育する。なお、栽培用パネル9の構造や配置形態などは、図示の内容に限定しないので、植物10の種類やその他の栽培条件などに応じて適宜設定することができる。
【0019】
ここで、図3〜6を参照して、水耕栽培装置1を構成する微細気泡発生器7について説明する。微細気泡発生器7は、中心軸19cの周りを流体が旋回可能な筒状旋回室19と、筒状旋回室19の周面19a接線方向から筒状旋回室19内に培養液2を導入するため筒状旋回室19の周面に開設された液体導入口20と、筒状旋回室19内へ空気を供給するため筒状旋回室19の中心軸19c方向の一方の隔壁21の中心に開設された空気導入口22と、筒状旋回室19から流体を放出するため筒状旋回室19の中心軸19c方向の他方の隔壁23の中心に開設された流体放出口24とを有している。液体導入口20と送液ポンプ8との間には培養液送給管14が配管されている。
【0020】
図1,図2に示す状態において送液ポンプ8を稼働させると、栽培槽3内からホース11を通じて吸い込まれた培養液2が培養液送給管14を経由して液体導入口20から筒状旋回室19内へ流入し、図4に示すように筒状旋回室19内に旋回流Rが発生する。そして、図6に示すように、この旋回流Rのほぼ中心軸に沿って円筒状の負圧空洞部Vが出現し、この負圧空洞部Vの一方は筒状旋回室19の隔壁21にある空気導入口22付近に位置するとともに負圧空洞部Vの他方は筒状旋回室19の隔壁23にある流体放出口24付近に位置し、流体放出口24付近に位置する負圧空洞部Vの端部は括れた状態となる。
【0021】
筒状旋回室19に出現する負圧空洞部Vの負圧によって空気導入口22付近にも負圧が生じるため、この負圧に起因する吸引力により空気導入路15を経由して大気中から吸引された空気が空気導入口22から筒状旋回室19内の負圧空洞部V内へ連続的に流入し、筒状旋回室19内に導入された培養液2とともに旋回流Rを形成する。
【0022】
負圧空洞部V内へ流入した空気は、筒状旋回室19内に発生している旋回流Rに連行され流体放出口24から放出される。このとき、負圧空洞部Vの流体放出口24側の端部において旋回流Rによってねじ切られて微細気泡MBとなり、旋回流Rを形成する水とともに流体放出口24から微細気泡MB混じりの培養液2aとなって流体放出口24から栽培槽3の培養液循環経路6内へ放出される。
【0023】
このように微細気泡発生器7から微細気泡MB混じり培養液2aを放出することにより栽培槽3内に収容されている培養液2中に酸素や窒素などを供給、溶解させることができる。これらの微細気泡MB混じりの培養液2aは培養液2の循環方向4へ放出されるため、酸素などの溶存濃度の高い培養液2aが栽培槽3全体をムラなく循環することとなり、これによって植物10の生育状態を活性化することができる。
【0024】
一方、微細気泡発生器7の内部においては、その筒状旋回室19内に出現する負圧空洞部Vの一方の端部から空気を導入しながら他方の端部の延長方向に向かって微細気泡MB混じりの培養液2aを放出する。このため、この負圧空洞部Vは筒状旋回室19の中心軸19c付近に安定的に存在し続け、その両端もそれぞれ空気導入口22付近および流体放出口24付近に安定的に位置する。したがって、負圧空洞部Vが筒状旋回室19の内壁面などに接触することがないので、微細気泡発生器7内にキャビテーション・エロージョンが発生せず、優れた耐久性を発揮する。
【0025】
また、微細気泡発生器7は、筒状旋回室19に液体導入口20、空気導入口22および流体放出口24を開設した簡素な構造であるため、取り扱いは容易であり、培養液2や空気に伴って流入した異物が詰まりやすい細かな流路もないので、定期的なメンテナンスも不要である。
【0026】
また、図5に示すように、筒状旋回室19の隔壁21に開設された空気導入口22を、筒状旋回室19の中心軸19cに沿って内側へ突出させて配置するとともに、筒状旋回室19の周面19aと空気導入口22との間に滑らかに連続した凹曲面26を設けている。このため、図6に示すように、筒状旋回室19内に形成される負圧空洞部Vの上方の端部から空気が導入され、下方の端部の延長方向に向かって微細気泡MBを含有する培養液2aを放出する。したがって、負圧空洞部Vは筒状旋回室19の中心軸19c付近に安定的に存在し続け、その両端部も流体放出口24付近および空気導入口22付近に安定的に位置する。
【0027】
このように、空気導入口22を筒状旋回室19の内側へ突出させて配置するとともに凹曲面26を設けたことによっても負圧空洞部Vの空気導入口22側の端部が不安定に移動するのを防止するという作用が得られる。このため、筒状旋回室19の隔壁にキャビテーション・エロージョンなどが生じることもなくなり、優れた耐久性を発揮する。
【0028】
また、図3〜図6を見ると分かるように、微細気泡発生器7においては、液体導入口20の開口面積を流体放出口24の開口面積より大としているため、筒状旋回室19内へ送給される培養液2の入り口よりも微細気泡MB混じりの培養液2aの出口の方が小さくなる。したがって、液送ポンプ8によって送給される培養液2の圧力によって筒状旋回室19内の液圧が高まり、流体放出口24から放出される微細気泡MB混じりの培養液2aの流勢が増大するため、栽培槽3内に強い循環流を形成することができ、培養液2の循環性が向上する。
【0029】
さらに、本実施形態では微細気泡発生器7の両側に、培養液2を循環方向4へ誘導するための誘導部材13を設けているため、流体放出口24から放出される微細気泡MB混じりの培養液2aの流れが循環方向4へ一本化される。そして、この流れに連行される随伴流が微細気泡発生器7の下流域に発生するため、栽培槽3内における培養液2の循環性が向上する。また、前記随伴流が発生することにより、流体放出口24から放出される微細気泡MB混じりの培養液2aの流速が比較的弱くても栽培槽3内の循環流を維持することができる。このため、送液ポンプ8の送液能力が比較的小さくも培養液2の循環不良が発生せず、消費エネルギの抑制を図ることができる。
【0030】
なお、本発明の水耕栽培装置は図1〜図6に示す実施の形態に限定するものではないので、栽培槽に収容された培養液を循環させながら植物栽培を行う方式の水耕栽培装置として広く活用することが可能であり、栽培槽の形状・サイズ、培養液循環経路の配置形態、栽培用パネルの設置形態などは栽培条件などに応じて任意に設定することができる。
【0031】
【発明の効果】
本発明により、以下の効果を奏する。
【0032】
(1)箱体状の栽培槽と、栽培槽内に形成された培養液循環経路と、培養液に浸漬状態で培養液循環経路に配置された微細気泡発生器と、栽培槽内の培養液を微細気泡発生器へ送給する送液ポンプと、微細気泡発生器の空気導入口へ空気を供給する空気導入路とを備えた水耕栽培装置において、微細気泡発生器が、中心軸の周りを流体が旋回可能な筒状旋回室と、筒状旋回室の周面の接線方向から筒状旋回室の周面に開設された液体導入口と、筒状旋回室の中心軸方向の一方の隔壁に開設された空気導入口と、筒状旋回室の中心軸方向の他方の隔壁に開設された流体放出口とを有するものであることにより、この微細気泡発生器から微細気泡混じり培養液を放出することで、酸素などの溶存濃度の高い培養液が栽培槽全体をムラなく循環することとなるため、植物の生育状態を活性化することができ、キャビテーション・エロージョンが発生しないので耐久性に優れ、簡素な構造であって異物が詰まりやすい細かな流路もないので、取り扱いは容易で、定期的なメンテナンスも不要である。また、微細気泡発生器の空気導入口を、筒状旋回室の中心軸に沿って内側へ突出させて配置するとともに、筒状旋回室の周面と空気導入口との間に凹曲面を設けたことにより、筒状旋回室内に形成される負圧空洞部の両端部を安定させることができるため、筒状旋回室の隔壁にキャビテーション・エロージョンが生じるのを防止することができ、耐久性の向上に有効である。
【0033】
(2)前記微細気泡発生器の液体導入口の開口面積を流体放出口の開口面積より大とすることにより、流体放出口から放出される微細気泡混じりの培養液の流勢を増大させることができるため、栽培槽内に強い循環流を形成され、培養液の循環性が向上する。
【0034】
(3)前記微細気泡発生器の周囲に、前記培養液を循環方向へ誘導するための誘導部材を設けることにより、流体放出口から放出される微細気泡混じりの培養液の流れが循環方向へ一本化され、この流れに連行される随伴流が下流域に発生するため、栽培槽内の培養液の循環性が向上し、液送能力が比較的小さい液送ポンプで稼働可能となるため、消費エネルギの抑制を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態である水耕栽培装置を示す平面図である。
【図2】 図1におけるA−A線断面図である。
【図3】 図1に示す水耕栽培装置を構成する微細気泡発生器の斜視図である。
【図4】 図3におけるB−B線断面図である。
【図5】 図3に示す微細気泡発生器の筒状旋回室の中心軸を含む平面における断面図である。
【図6】 図3に示す微細気泡発生器における微細気泡含有水の生成状態を模式的に示す説明図である。
【符号の説明】
1 水耕栽培装置
2,2a 培養液
3 栽培槽
4 循環方向
5 区画壁
6 培養液循環経路
7 微細気泡発生器
8 送液ポンプ
9 栽培用パネル
10 植物
11 ホース
11a,15a フィルタ
13 誘導部材
14 培養液送給管
19 筒状旋回室
19a 周面
19c 中心軸
20 液体導入口
21,23 隔壁
22 空気導入口
24 流体放出口
26 凹面部
MB 微細気泡
V 負圧空洞部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydroponic cultivation apparatus for cultivating various plants such as agricultural crops while supplying nutrients through a culture solution accommodated in a cultivation tank.
[0002]
[Prior art]
It is known that the growth state of plants deteriorates when the dissolved oxygen concentration in the culture solution used in the hydroponic cultivation apparatus decreases. Then, the hydroponic cultivation apparatus which can activate the growth state of a plant by supplying a microbubble to a culture solution and raising dissolved oxygen concentration is developed.
[0003]
Such a hydroponic cultivation apparatus has a pressurized liquid and gas introduction part and a cylindrical bubble generation space, and a pressure liquid introduction hole and a gas introduction hole that open into the bubble generation space are provided in the introduction part. A microbubble generating nozzle having a pressurized liquid introduction hole formed on the end face of the introduction part and a gas introduction hole opened on the side face of the introduction part (for example, patent document) 1), or a plurality of inflows into the periphery of a microbubble generator in which a discharge port is provided on the throttle side of a conical container having a substantially funnel shape and a funnel wall having an air suction port in the center is formed on the opposite side. There is a device (for example, refer to Patent Document 2) that supplies fine bubbles into a culture solution using a gas-liquid mixing device in which a tube is formed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-142582 (page 4-5, FIGS. 1 and 4)
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-236762 (page 3-4, FIGS. 1 and 3)
[0005]
[Problems to be solved by the invention]
The microbubble generating nozzle constituting the hydroponics oxygen supply system described in Patent Document 1 has a small inner diameter and has an inflection part and an uneven part as a mechanism for introducing water and air to generate microbubbles. Since a complicated flow path is built in, when it is actually operated, there is a high possibility that troubles such as clogging of foreign substances in the culture solution or dust in the air may occur. In order to avoid such trouble, it is necessary to install a filter and perform regular maintenance, which is troublesome.
[0006]
In the case of the funnel-shaped gas-liquid mixing device constituting the micro-bubble hydroponic cultivation system described in Patent Document 2, the structure is relatively simple and there are few fine channels, so foreign substances in the culture solution are clogged. Unlikely. However, since it has a shape that is difficult to be stably held only by being placed on a horizontal surface or the like, when actually used, various holding members are required, and the structure is likely to be complicated.
[0007]
The problem to be solved by the present invention is to provide a hydroponic cultivation apparatus that is easy to handle, does not require regular maintenance, has excellent durability, and can activate the growth state of plants. is there.
[0008]
[Means for Solving the Problems]
The hydroponic cultivation apparatus of the present invention is formed in a cultivation tank to circulate a box-shaped cultivation tank capable of accommodating a culture solution and a culture solution accommodated in the cultivation tank in a certain direction in the cultivation tank. A culture medium circulation path, a microbubble generator disposed in a part of the culture medium circulation path in a state immersed in the culture medium, and having a function of releasing a culture liquid containing microbubbles in the circulation direction of the culture liquid; A hydroponic cultivation apparatus comprising a liquid feed pump that sucks in the culture medium and feeds it to the fine bubble generator, and an air introduction path that supplies air in the atmosphere to the air inlet of the fine bubble generator, A fine bubble generator includes a cylindrical swirl chamber in which a fluid can swirl around a central axis, a liquid introduction port opened in the peripheral surface of the cylindrical swirl chamber from a tangential direction of the peripheral surface of the cylindrical swirl chamber, and a cylinder An air inlet opening in one partition wall in the central axis direction of the cylindrical swirl chamber and the central axis direction of the cylindrical swirl chamber All SANYO and a rectangular partition wall opened fluid outlet of the air inlet, as well as arranged to protrude inward along the central axis of the cylindrical swirl chamber, and the peripheral surface of the cylindrical swirl chamber A concave curved surface is provided between the air inlet and the air inlet .
[0009]
In such a configuration, when the liquid feed pump is operated, the culture solution sucked from the cultivation tank flows into the cylindrical space from the tangential direction via the liquid inlet, and a swirling flow is generated in the cylindrical swirl chamber. Then, a substantially cylindrical negative pressure cavity appears along substantially the central axis of the swirling flow. One end of this negative pressure cavity is located near the air inlet in one partition of the cylindrical swirl chamber, and the other end of the negative pressure cavity is in the other partition of the cylindrical swirl chamber Located near the fluid outlet. Then, a negative pressure is generated in the vicinity of the air introduction port due to the negative pressure of the negative pressure cavity, and air in the atmosphere sucked through the air introduction path by the suction force caused by the negative pressure is transferred from the air introduction port to the cylinder. It flows into the negative pressure cavity inside the cylindrical swirl chamber and forms a swirl flow with the culture solution introduced into the cylindrical swirl chamber.
[0010]
The air that has flowed into the negative pressure cavity is entrained in the swirling flow generated in the cylindrical swirl chamber and discharged from the fluid discharge port. At this time, the end of the negative pressure cavity on the fluid discharge port side is twisted by the swirling flow to become fine bubbles, and becomes a culture solution mixed with fine bubbles from the fluid discharge port together with the culture solution forming the swirling flow in the cultivation tank. Is released.
[0011]
Thus, gas, such as oxygen and nitrogen, can be dissolved in the culture solution in the cultivation tank by releasing the culture solution mixed with the fine bubbles from the fine bubble generator. Since the culture solution containing these fine bubbles is released in the circulation direction of the culture solution, the culture solution with a high dissolved concentration such as oxygen circulates uniformly throughout the entire cultivation tank, thereby activating the growth state of the plant. can do.
[0012]
Moreover, since air is introduced from one end of the negative pressure cavity that appears in the cylindrical swirl chamber of the fine bubble generator, the water containing fine bubbles is discharged in the extending direction of the other end. The pressure cavity continues to exist stably near the central axis of the cylindrical swirl chamber. Furthermore, since both ends of the negative pressure cavity portion are stably positioned near the air inlet and the fluid outlet, respectively, and do not come into contact with the wall surface or the like, cavitation erosion does not occur in the fine bubble generator, Excellent durability. The microbubble generator has a simple structure with a liquid inlet, air inlet, and fluid outlet in the cylindrical swirl chamber, so it is easy to handle, and it is easy to handle foreign substances in the culture medium and air. Since there is no channel, regular maintenance is not necessary.
Further, the air introduction port of the fine bubble generator is arranged to project inward along the central axis of the cylindrical swirl chamber, and a concave curved surface is formed between the peripheral surface of the cylindrical swirl chamber and the air introduction port. By providing, one end of the negative pressure cavity formed in the cylindrical swirl chamber is positioned at the fluid discharge port, and the other end is stably positioned at the air inlet that protrudes toward the cylindrical swirl chamber. Come to be located. Therefore, the end of the negative pressure cavity on the side of the air inlet port moves in an unstable manner and cavitation erosion does not occur in the partition wall of the cylindrical swirl chamber, which is effective in improving durability.
[0013]
Here, it is desirable that the opening area of the liquid introduction port of the fine bubble generator is larger than the opening area of the fluid discharge port. With such a configuration, since the outlet of the culture liquid mixed with fine bubbles is smaller than the inlet of the culture liquid fed into the cylindrical swirl chamber, the pressure of the culture liquid fed by the liquid feed pump The hydraulic pressure in the cylindrical swirl chamber increases. As a result, the flow rate of the culture solution mixed with fine bubbles released from the fluid discharge port is increased, so that a strong circulation flow can be formed in the cultivation tank, and the circulation property of the culture solution is improved.
[0014]
Here, it is desirable to provide a guiding member for guiding the culture solution in the circulation direction around the fine bubble generator. If such a guiding member is provided, the flow of the culture solution mixed with the fine bubbles discharged from the fluid discharge port is unified in the circulation direction, and the accompanying flow entrained by this flow is the downstream region of the fine bubble generator. Therefore, the circulation of the culture solution in the cultivation tank can be improved. Moreover, even if the flow rate of the culture solution containing fine bubbles discharged from the fluid discharge port is relatively weak due to the occurrence of the accompanying flow, the circulating flow in the cultivation tank can be stably maintained. it can. For this reason, even if it is a liquid feed pump with a comparatively small liquid feed capability, the circulation failure of a culture solution does not generate | occur | produce and it can aim at suppression of energy consumption.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view showing a hydroponic cultivation apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.
[0017]
As shown in FIGS. 1 and 2, the hydroponic cultivation apparatus 1 of the present embodiment includes a rectangular box-shaped cultivation tank 3 that can accommodate a culture solution 2, and a culture solution 2 that is contained in the cultivation tank 3. In order to circulate in the circulation direction 4 in the cultivation tank 3, a culture solution circulation path 6 formed by providing a partition wall 5 in the cultivation tank 3 and a part of the culture solution circulation path 6 in a state immersed in the culture solution 2. The fine bubble generator 7 having a function of releasing the culture liquid 2a mixed with the fine bubbles MB in the circulation direction 4 of the culture liquid 2 and the culture liquid 2 in the cultivation tank 3 is sucked through the hose 11 and the fine bubble generator 7 And an air introduction path 15 for supplying air in the atmosphere to the air introduction port 22 of the fine bubble generator 7. Filters 11 a and 15 a are attached to the tip of the hose 11 and the tip of the air introduction path 15 to prevent entry of foreign matter, respectively.
[0018]
Further, on both sides of the fine bubble generator 7, a vertical wall-shaped guide member 13 for guiding the culture solution 2 in the circulation direction 4 is provided, and a cultivation panel 9 is provided on the upper surface of the culture solution circulation path 6. It arrange | positions so that attachment or detachment is possible, and the plant 10 is planted by this panel 9 for cultivation. The plant 10 grows by extending the root to the inside of the cultivation panel 9 or the lower side thereof and absorbing moisture, nutrients, and the like in the culture solution 2. In addition, since the structure, arrangement | positioning form, etc. of the panel 9 for cultivation are not limited to the content of illustration, it can set suitably according to the kind of plant 10, other cultivation conditions, etc.
[0019]
Here, with reference to FIGS. 3-6, the fine bubble generator 7 which comprises the hydroponic cultivation apparatus 1 is demonstrated. The fine bubble generator 7 introduces the culture solution 2 into the cylindrical swirl chamber 19 from the tangential direction of the cylindrical swirl chamber 19 in which the fluid can swirl around the central axis 19 c and the peripheral surface 19 a of the cylindrical swirl chamber 19. Therefore, the liquid introduction port 20 opened on the peripheral surface of the cylindrical swirl chamber 19 and the center of one partition wall 21 in the direction of the central axis 19c of the cylindrical swirl chamber 19 are provided to supply air into the cylindrical swirl chamber 19. And the fluid discharge port 24 opened at the center of the other partition wall 23 in the direction of the central axis 19c of the cylindrical swirl chamber 19 in order to discharge the fluid from the cylindrical swirl chamber 19. . A culture solution supply pipe 14 is provided between the liquid inlet 20 and the solution supply pump 8.
[0020]
When the liquid feeding pump 8 is operated in the state shown in FIGS. 1 and 2, the culture liquid 2 sucked from the cultivation tank 3 through the hose 11 is tubular from the liquid inlet 20 via the culture liquid feeding pipe 14. It flows into the swirl chamber 19 and a swirl flow R is generated in the cylindrical swirl chamber 19 as shown in FIG. Then, as shown in FIG. 6, a cylindrical negative pressure cavity V appears along substantially the central axis of the swirl flow R, and one of the negative pressure cavities V is formed in the partition wall 21 of the cylindrical swirl chamber 19. The other side of the negative pressure cavity V located near the air inlet 22 is located near the fluid outlet 24 in the partition wall 23 of the cylindrical swirl chamber 19, and the negative pressure cavity V located near the fluid outlet 24. The end of is in a constricted state.
[0021]
A negative pressure is also generated in the vicinity of the air introduction port 22 due to the negative pressure of the negative pressure cavity V appearing in the cylindrical swirl chamber 19, and therefore, from the atmosphere via the air introduction path 15 by the suction force caused by this negative pressure. The sucked air continuously flows from the air introduction port 22 into the negative pressure cavity V in the cylindrical swirl chamber 19 and forms a swirl flow R together with the culture solution 2 introduced into the cylindrical swirl chamber 19. .
[0022]
The air that has flowed into the negative pressure cavity V is entrained in the swirl flow R generated in the cylindrical swirl chamber 19 and discharged from the fluid discharge port 24. At this time, the end of the negative pressure cavity V on the fluid discharge port 24 side is threaded by the swirl flow R to become a fine bubble MB, and the culture solution mixed with the fine bubble MB from the fluid discharge port 24 together with the water forming the swirl flow R. 2a is discharged from the fluid discharge port 24 into the culture medium circulation path 6 of the cultivation tank 3.
[0023]
Thus, oxygen, nitrogen, etc. can be supplied and dissolved in the culture solution 2 accommodated in the cultivation tank 3 by discharging the culture solution 2a mixed with the fine bubble MB from the fine bubble generator 7. Since the culture solution 2a mixed with these fine bubbles MB is released in the circulation direction 4 of the culture solution 2, the culture solution 2a having a high dissolved concentration of oxygen or the like circulates uniformly throughout the cultivation tank 3, and thereby the plant. Ten growth states can be activated.
[0024]
On the other hand, inside the fine bubble generator 7, fine air bubbles are introduced toward the extending direction of the other end while introducing air from one end of the negative pressure cavity V appearing in the cylindrical swirl chamber 19. The culture solution 2a mixed with MB is released. For this reason, this negative pressure cavity V continues to exist stably in the vicinity of the central axis 19c of the cylindrical swirl chamber 19, and both ends thereof are also stably located in the vicinity of the air inlet 22 and the fluid outlet 24, respectively. Therefore, since the negative pressure cavity V does not contact the inner wall surface of the cylindrical swirl chamber 19, cavitation erosion does not occur in the fine bubble generator 7, and excellent durability is exhibited.
[0025]
Further, since the fine bubble generator 7 has a simple structure in which the liquid introduction port 20, the air introduction port 22 and the fluid discharge port 24 are opened in the cylindrical swirl chamber 19, the handling is easy, and the culture solution 2 and air Since there is no fine flow path that is likely to clog the foreign matter that flows along with it, regular maintenance is also unnecessary.
[0026]
Further, as shown in FIG. 5, the air introduction port 22 opened in the partition wall 21 of the cylindrical swirl chamber 19 is disposed so as to protrude inward along the central axis 19 c of the cylindrical swirl chamber 19, and the tubular shape A smoothly curved concave surface 26 is provided between the peripheral surface 19 a of the swirl chamber 19 and the air inlet 22. For this reason, as shown in FIG. 6, air is introduced from the upper end of the negative pressure cavity V formed in the cylindrical swirl chamber 19, and the fine bubbles MB are drawn in the extending direction of the lower end. The contained culture solution 2a is released. Therefore, the negative pressure cavity V continues to exist stably in the vicinity of the central axis 19c of the cylindrical swirl chamber 19, and both end portions thereof are also stably positioned in the vicinity of the fluid discharge port 24 and the air introduction port 22.
[0027]
As described above, the air inlet 22 protrudes inward of the cylindrical swirl chamber 19 and the concave curved surface 26 is provided, so that the end of the negative pressure cavity V on the air inlet 22 side becomes unstable. The effect of preventing the movement is obtained. For this reason, cavitation erosion or the like does not occur in the partition wall of the cylindrical swirl chamber 19 and exhibits excellent durability.
[0028]
As can be seen from FIGS. 3 to 6, in the fine bubble generator 7, the opening area of the liquid introduction port 20 is larger than the opening area of the fluid discharge port 24. The outlet of the culture medium 2a mixed with the fine bubbles MB is smaller than the inlet of the culture medium 2 to be fed. Therefore, the liquid pressure in the cylindrical swirl chamber 19 is increased by the pressure of the culture liquid 2 fed by the liquid feed pump 8, and the flow of the culture liquid 2 a mixed with the fine bubbles MB discharged from the fluid discharge port 24 is increased. Therefore, a strong circulation flow can be formed in the cultivation tank 3, and the circulation property of the culture solution 2 is improved.
[0029]
Furthermore, in this embodiment, since the guide members 13 for guiding the culture solution 2 in the circulation direction 4 are provided on both sides of the microbubble generator 7, the culture containing the microbubbles MB released from the fluid discharge port 24 is provided. The flow of the liquid 2a is unified in the circulation direction 4. And since the accompanying flow entrained with this flow generate | occur | produces in the downstream area of the fine bubble generator 7, the circulation property of the culture solution 2 in the cultivation tank 3 improves. Moreover, by the generation of the accompanying flow, the circulating flow in the cultivation tank 3 can be maintained even if the flow rate of the culture solution 2a mixed with the fine bubbles MB discharged from the fluid discharge port 24 is relatively weak. For this reason, even if the liquid feeding capacity of the liquid feeding pump 8 is relatively small, the circulation failure of the culture solution 2 does not occur, and the consumption energy can be suppressed.
[0030]
In addition, since the hydroponic cultivation apparatus of this invention is not limited to embodiment shown in FIGS. 1-6, the hydroponic cultivation apparatus of the system which cultivates a plant, circulating the culture solution accommodated in the cultivation tank The cultivation tank shape and size, the arrangement form of the culture solution circulation path, the installation form of the cultivation panel, and the like can be arbitrarily set according to cultivation conditions and the like.
[0031]
【The invention's effect】
The present invention has the following effects.
[0032]
(1) A box-shaped cultivation tank, a culture solution circulation path formed in the cultivation tank, a fine bubble generator placed in the culture solution circulation path in a state immersed in the culture solution, and a culture solution in the cultivation tank In a hydroponic cultivation apparatus comprising a liquid feed pump for feeding air to a fine bubble generator and an air introduction path for supplying air to an air inlet of the fine bubble generator, the fine bubble generator is arranged around the central axis. A cylindrical swirl chamber in which the fluid can swirl, a liquid inlet opening in the peripheral surface of the cylindrical swirl chamber from a tangential direction of the peripheral surface of the cylindrical swirl chamber, and one of the central axis directions of the cylindrical swirl chamber By having an air introduction port established in the partition wall and a fluid discharge port established in the other partition wall in the central axis direction of the cylindrical swirl chamber, the culture solution containing fine bubbles can be supplied from the fine bubble generator. By releasing, a culture solution with a high dissolved concentration such as oxygen circulates uniformly throughout the entire cultivation tank. Therefore, the growth of the plant can be activated, and cavitation and erosion do not occur, so it has excellent durability and has a simple structure that does not have a small flow path that easily clogs foreign matter. And regular maintenance is not necessary. In addition, the air introduction port of the fine bubble generator is arranged to protrude inward along the central axis of the cylindrical swirl chamber, and a concave curved surface is provided between the peripheral surface of the cylindrical swirl chamber and the air introduction port. As a result, both end portions of the negative pressure cavity formed in the cylindrical swirl chamber can be stabilized, so that cavitation erosion can be prevented from occurring in the partition wall of the cylindrical swirl chamber, and durability can be improved. It is effective for improvement.
[0033]
(2) By increasing the opening area of the liquid introduction port of the fine bubble generator to be larger than the opening area of the fluid discharge port, it is possible to increase the flow rate of the culture solution mixed with the fine bubbles discharged from the fluid discharge port. Therefore, a strong circulation flow is formed in the cultivation tank, and the circulation property of the culture solution is improved.
[0034]
(3) By providing a guide member for guiding the culture solution in the circulation direction around the fine bubble generator, the flow of the culture solution mixed with the fine bubbles released from the fluid discharge port is uniform in the circulation direction. Since the entrained flow entrained by this flow is generated in the downstream area, the circulation of the culture liquid in the cultivation tank is improved, and the liquid feeding capacity can be operated with a relatively small liquid feeding pump. It is possible to reduce energy consumption.
[Brief description of the drawings]
FIG. 1 is a plan view showing a hydroponic cultivation apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a perspective view of a fine bubble generator constituting the hydroponic cultivation apparatus shown in FIG. 1;
4 is a cross-sectional view taken along line BB in FIG. 3. FIG.
5 is a cross-sectional view in a plane including a central axis of a cylindrical swirl chamber of the fine bubble generator shown in FIG. 3. FIG.
6 is an explanatory view schematically showing a generation state of water containing fine bubbles in the fine bubble generator shown in FIG. 3; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydroponic cultivation apparatus 2, 2a Culture solution 3 Cultivation tank 4 Circulation direction 5 Compartment wall 6 Culture solution circulation path 7 Fine bubble generator 8 Liquid feed pump 9 Cultivation panel 10 Plant 11 Hose 11a, 15a Filter 13 Guide member 14 Culture Liquid feed pipe 19 Cylindrical swirl chamber 19a Circumferential surface 19c Center axis 20 Liquid inlets 21, 23 Partition 22 Air inlet 24 Fluid outlet 26 Concave part MB Micro bubble V Negative pressure cavity part

Claims (3)

培養液を収容可能な箱体状の栽培槽と、前記栽培槽内に収容された培養液を前記栽培槽内で一定方向に循環させるため前記栽培槽内に形成された培養液循環経路と、前記培養液に浸漬した状態で前記培養液循環経路の一部に配置され前記培養液の循環方向へ微細気泡を含む培養液を放出する機能を有する微細気泡発生器と、前記栽培槽内の培養液を吸い込んで前記微細気泡発生器へ送給する送液ポンプと、大気中の空気を前記微細気泡発生器の空気導入口へ供給する空気導入路とを備えた水耕栽培装置であって、
前記微細気泡発生器が、中心軸の周りを流体が旋回可能な筒状旋回室と、前記筒状旋回室の周面の接線方向から前記筒状旋回室の周面に開設された液体導入口と、前記筒状旋回室の中心軸方向の一方の隔壁に開設された空気導入口と、前記筒状旋回室の中心軸方向の他方の隔壁に開設された流体放出口とを有するものであり、
前記空気導入口を、前記筒状旋回室の中心軸に沿って内側へ突出させて配置するとともに、前記筒状旋回室の周面と前記空気導入口との間に凹曲面を設けたことを特徴とする水耕栽培装置。
A box-shaped cultivation tank capable of accommodating a culture solution, and a culture solution circulation path formed in the cultivation tank in order to circulate the culture solution accommodated in the cultivation tank in a certain direction in the cultivation tank; A fine bubble generator disposed in a part of the culture medium circulation path in a state immersed in the culture liquid and having a function of releasing a culture liquid containing fine bubbles in the circulation direction of the culture liquid, and culture in the cultivation tank A hydroponic cultivation apparatus comprising a liquid feed pump for sucking liquid and feeding it to the fine bubble generator, and an air introduction path for supplying air in the atmosphere to an air inlet of the fine bubble generator,
The fine bubble generator includes a cylindrical swirl chamber in which a fluid can swirl around a central axis, and a liquid inlet opening in the peripheral surface of the cylindrical swirl chamber from a tangential direction of the peripheral surface of the cylindrical swirl chamber And an air introduction port opened in one partition wall in the central axis direction of the cylindrical swirl chamber, and a fluid discharge port opened in the other partition wall in the central axis direction of the cylindrical swirl chamber. The
The air introduction port is disposed so as to protrude inward along the central axis of the cylindrical swirl chamber, and a concave curved surface is provided between a peripheral surface of the cylindrical swirl chamber and the air introduction port. A hydroponics device.
前記微細気泡発生器の液体導入口の開口面積を前記流体放出口の開口面積より大とした請求項1記載の水耕栽培装置。  The hydroponic cultivation apparatus according to claim 1, wherein an opening area of the liquid introduction port of the fine bubble generator is larger than an opening area of the fluid discharge port. 前記微細気泡発生器の周囲に、前記培養液を循環方向へ誘導するための誘導部材を設けた請求項1または2記載の水耕栽培装置。  The hydroponic cultivation apparatus of Claim 1 or 2 which provided the guide member for guide | inducing the said culture solution to the circulation direction around the said microbubble generator.
JP2003116137A 2003-04-21 2003-04-21 Hydroponics equipment Expired - Fee Related JP4338427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116137A JP4338427B2 (en) 2003-04-21 2003-04-21 Hydroponics equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116137A JP4338427B2 (en) 2003-04-21 2003-04-21 Hydroponics equipment

Publications (2)

Publication Number Publication Date
JP2004321009A JP2004321009A (en) 2004-11-18
JP4338427B2 true JP4338427B2 (en) 2009-10-07

Family

ID=33496481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116137A Expired - Fee Related JP4338427B2 (en) 2003-04-21 2003-04-21 Hydroponics equipment

Country Status (1)

Country Link
JP (1) JP4338427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060927A (en) * 2010-09-16 2012-03-29 Anlet Co Ltd Hydroponic apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705501B2 (en) * 2006-03-29 2011-06-22 中国電力株式会社 Vertical hydroponics equipment
JP2009034032A (en) * 2007-08-01 2009-02-19 Kyowa Kk Heat island relaxing system
JP5113235B2 (en) * 2010-11-22 2013-01-09 中国電力株式会社 Vertical hydroponics equipment
JP6671007B2 (en) * 2016-03-30 2020-03-25 エーシック株式会社 Hydroponics equipment
KR102675068B1 (en) * 2022-06-13 2024-06-12 지효근 A Dissolution device for generating nano bubbles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060927A (en) * 2010-09-16 2012-03-29 Anlet Co Ltd Hydroponic apparatus

Also Published As

Publication number Publication date
JP2004321009A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US8342737B2 (en) Vibrational mixer
US4735750A (en) Process and device for the dissolution of gas in liquid
KR101407122B1 (en) Microbubble generating apparatus
KR101650028B1 (en) Vortex Generating Nozzle and Non Stagnation water tank including the same
KR100824714B1 (en) Device for generating micro bubble
KR100807189B1 (en) Micro bubble nozzle
EP4011487A1 (en) Method and means for the preparation of solutions from dry chemicals
KR101051367B1 (en) Micro bubble aerator
JP4338427B2 (en) Hydroponics equipment
US7802775B2 (en) Method and apparatus for mixing of two fluids
JP2011183328A (en) Aerator
JP2002059186A (en) Water-jet type fine bubble generator
KR102339246B1 (en) Device and method for generating fine-bubble
KR101960727B1 (en) Membrane module with air duffser and water treatment system useing the same
JP2003245533A (en) Ultrafine air bubble generator
JP6968405B2 (en) Gas-liquid mixing nozzle
JP2006297239A (en) Pressure floatation separation apparatus in waste water treatment, sludge concentration system and pressure floatation separation method
JP4773211B2 (en) Waste liquid treatment equipment
JP2002166151A (en) Minute foam supply method and minute foam supply apparatus
WO2021126334A1 (en) Hydroponic nutrient solution aeration device
JP5235632B2 (en) Aeration device and method
KR102058215B1 (en) Open bottom multiple channel gas delivery device for immersed membranes
JP2002142582A (en) System for feeding oxygen to hydroponic
JP2003205287A (en) Membrane separation type waste water treatment equipment
CN211057098U (en) Ventilating device for fermentation process and bioreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees