JP4337094B2 - Amorphous alloy ribbon for resonators - Google Patents

Amorphous alloy ribbon for resonators Download PDF

Info

Publication number
JP4337094B2
JP4337094B2 JP2004075748A JP2004075748A JP4337094B2 JP 4337094 B2 JP4337094 B2 JP 4337094B2 JP 2004075748 A JP2004075748 A JP 2004075748A JP 2004075748 A JP2004075748 A JP 2004075748A JP 4337094 B2 JP4337094 B2 JP 4337094B2
Authority
JP
Japan
Prior art keywords
ribbon
resonator
amorphous alloy
magnetic field
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004075748A
Other languages
Japanese (ja)
Other versions
JP2005264198A (en
Inventor
大地 東
淳 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004075748A priority Critical patent/JP4337094B2/en
Publication of JP2005264198A publication Critical patent/JP2005264198A/en
Application granted granted Critical
Publication of JP4337094B2 publication Critical patent/JP4337094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、磁歪振動を利用する防犯センサ等のレゾネータとして用いられるレゾネータ用アモルファス合金薄帯に関するものである。   The present invention relates to an amorphous alloy ribbon for a resonator used as a resonator such as a security sensor utilizing magnetostrictive vibration.

スーパーマーケット等で商品の不正な持ち出しの防止等に用いられる防犯センサとして、例えば、磁歪材料を用いた防犯センサがある。この防犯センサについては、例えば特許文献1に提案されている。
特許文献1に記載の方式の防犯センサは、商品等に取り付けるマーカが検出ゲートを通過するときに、前記マーカの通過を発振回路と受信回路とを具備する防犯センサシステムにより検出する仕組みである。
For example, there is a security sensor using a magnetostrictive material as a security sensor used to prevent unauthorized take-out of goods in a supermarket or the like. This crime prevention sensor is proposed in Patent Document 1, for example.
The security sensor of the system described in Patent Document 1 has a mechanism for detecting passage of the marker by a security sensor system including an oscillation circuit and a reception circuit when a marker attached to a product or the like passes through a detection gate.

このマーカは軟磁気特性を有するレゾネータと、このレゾネータと隣接して配置された半硬質の磁気特性を有するバイアス部材から構成されている。一般にレゾネータにはアモルファス合金材料、バイアス部材には結晶材料が用いられていることが多い。このレゾネータとバイアス部材とが隣接した状態でバイアス部材を磁化すると、レゾネータは活性状態となり、すなわちマーカが活性状態となり、逆にバイアス部材を消磁するとレゾネータは不活性状態となり、すなわちマーカが不活性状態となる。仮に商品を不正に持ち出そうとした場合、前記商品に取り付けられたマーカは活性状態にあって、すなわち、レゾネータが活性状態にあって、出入り口に設置された検出ゲートにおいて、活性状態のレゾネータの通過を検出することにより、商品の不正な持ち出しを検出することが可能となる。   This marker is composed of a resonator having a soft magnetic property and a bias member having a semi-hard magnetic property disposed adjacent to the resonator. In general, an amorphous alloy material is often used for the resonator, and a crystal material is often used for the bias member. When the bias member is magnetized in a state where the resonator and the bias member are adjacent to each other, the resonator is activated, that is, the marker is activated. Conversely, when the bias member is demagnetized, the resonator is deactivated, that is, the marker is deactivated. It becomes. If the product is illegally taken out, the marker attached to the product is in an active state, that is, the resonator is in an active state, and the detection gate installed at the entrance / exit passes through the active resonator. By detecting it, it becomes possible to detect unauthorized take-out of a product.

発信器と受信器はゲートの内部に隣接して設置されており、発信器は特定周波数の微弱な交流磁場をある時間毎に繰り返し発信している。また、受信器は発信器の非発振期間毎に動作するように設定されている。活性状態のレゾネータは、発信器から発生する前記特定周波数の微弱な交流磁場を受けて共振するが、このときの共振振幅をレゾネータからの出力信号として検出する。次に、発信器からの発振が休止すると、前記レゾネータの共振による出力信号は指数関数的に減衰して行くが、この減衰特性は、レゾネータに用いる材料、熱処理条件等により決まる特性である。検出ゲート内の受信回路では、発信器の休止期間にレゾネータから発信される出力信号を、時間差をもって検出するが、この時間差により、レゾネータに特有の減衰曲線で有るか否かを判別し、レゾネータの状態を識別できるのである。この方式は、レゾネータ以外の物体から発生される、例えば、減衰特性の異なる出力信号との区別が可能となるため、検出誤動作を抑制することができる点で優れた方式である。   The transmitter and the receiver are installed adjacent to the inside of the gate, and the transmitter repeatedly transmits a weak alternating magnetic field having a specific frequency every certain time. The receiver is set to operate every non-oscillation period of the transmitter. The resonator in the active state resonates by receiving the weak alternating magnetic field of the specific frequency generated from the transmitter, and detects the resonance amplitude at this time as an output signal from the resonator. Next, when the oscillation from the oscillator stops, the output signal due to resonance of the resonator attenuates exponentially. This attenuation characteristic is determined by the material used for the resonator, the heat treatment conditions, and the like. In the receiving circuit in the detection gate, the output signal transmitted from the resonator is detected with a time difference during the idle period of the transmitter. Based on this time difference, it is determined whether or not the attenuation curve is unique to the resonator, and the resonator The state can be identified. This method is an excellent method in that it can be distinguished from an output signal generated from an object other than the resonator, for example, an output signal having different attenuation characteristics, so that a detection malfunction can be suppressed.

上述した諸特性が要求されるレゾネータには、例えば、アモルファス合金薄帯が用いられているが、前記薄帯は、単ロールによる超急冷法に代表される方法により製造された薄帯を、必要な形状に切断して用いられ、また、超急冷法により製造された薄帯の磁気特性向上のために、磁場中で熱処理した後、レゾネータとして用いられることが多い。また、上述したレゾネータの諸特性を満足するためには、少なくとも640A/mまで線形なB−H曲線が必要であることが特許文献2に開示されている。前記B−H曲線を得る方法には、例えば、薄帯の熱処理時に幅方向に磁場を印加しながら熱処理をする磁場中熱処理と薄帯長手方向に張力を印加する張力下熱処理がある。非特許文献1及び非特許文献2によれば、張力下熱処理によって得られる誘導磁気異方性の大きさは、熱処理温度及び熱処理時間、薄帯に印加する張力の大きさ、及び合金組成で制御できることが知られており、一般的には、キュリー温度以上の温度で張力下熱処理を行うと大きな誘導磁気異方性が得られる。   For example, an amorphous alloy ribbon is used for the resonator that requires the above-mentioned various properties. However, the ribbon requires a ribbon manufactured by a method typified by a rapid quenching method using a single roll. It is often used as a resonator after being heat-treated in a magnetic field in order to improve the magnetic properties of the ribbon manufactured by the ultra-quenching method. Further, Patent Document 2 discloses that a linear BH curve up to at least 640 A / m is necessary to satisfy the various characteristics of the resonator described above. Examples of the method for obtaining the BH curve include a heat treatment in a magnetic field in which heat treatment is performed while applying a magnetic field in the width direction during heat treatment of the ribbon, and a heat treatment under tension in which tension is applied in the longitudinal direction of the ribbon. According to Non-Patent Document 1 and Non-Patent Document 2, the magnitude of induced magnetic anisotropy obtained by heat treatment under tension is controlled by the heat treatment temperature and time, the magnitude of tension applied to the ribbon, and the alloy composition. In general, it is known that large induction magnetic anisotropy can be obtained by performing heat treatment under tension at a temperature equal to or higher than the Curie temperature.

従来、レゾネータ用の材料としては、例えば、特許文献3に記載のFe−Co−Ni系アモルファス合金薄帯が用いられることが多い。このFe−Co−Ni系アモルファス合金薄帯は、レゾネータの諸特性、すなわち、活性状態における信号出力の大きさ及び不活性状態に移行するときの減衰特性を向上する方法として、アモルファス合金薄帯面に対して所定の角度を持たせた磁場中で熱処理をすることが開示されている。この熱処理によって,磁区構造を40μm以下または薄帯の板厚の1.5倍以下に微細化して形成することで渦電流損失を低減し、前記レゾネータ特性を向上させている。また特許文献4では、原料コストが安価なFe−Ni系アモルファス合金薄帯を用い、アモルファス合金薄帯長手方向に張力を印加しながら連続熱処理を行う熱処理方法が開示されている。この熱処理方法は、熱処理炉内に磁場を印加するための磁石を必要とせず、熱処理装置を安価に作製することができる点で優れている。
米国特許第4510489号公報 米国特許584134号 米国特許6299702号公報 WO 02/29832公報 Nielsen O V著「Effect of Longitudinal and Torsional Stress Annealing on the Magnetic Anisotropy in Amorphous Ribbon Materials」IEEE Transitions on Magnetics出版 vol.MAG−21,No.5 1985年 Hilzinger H R著「Stress Induced Magnetic Anisotropy in a Non−Magnetostrictive Amorphous Alloy」Proc.4th Int.Conf.on Rapidly Quenched Metals 出版 1981年
Conventionally, as a material for a resonator, for example, an Fe—Co—Ni amorphous alloy ribbon described in Patent Document 3 is often used. This Fe-Co-Ni-based amorphous alloy ribbon is an amorphous alloy ribbon surface as a method of improving various characteristics of the resonator, that is, the magnitude of signal output in the active state and the attenuation characteristic when shifting to the inactive state. It is disclosed that heat treatment is performed in a magnetic field having a predetermined angle with respect to. By this heat treatment, the magnetic domain structure is refined to 40 μm or less or 1.5 times or less the thickness of the ribbon, thereby reducing eddy current loss and improving the resonator characteristics. Patent Document 4 discloses a heat treatment method in which a continuous heat treatment is performed while applying tension in the longitudinal direction of the amorphous alloy ribbon using an Fe—Ni amorphous alloy ribbon having a low raw material cost. This heat treatment method is excellent in that it does not require a magnet for applying a magnetic field in the heat treatment furnace, and a heat treatment apparatus can be produced at low cost.
U.S. Pat. No. 4,510,489 US Patent No. 584134 US Pat. No. 6,299,702 WO 02/29832 publication Nielsen O V, “Effect of Longitudinal and Torsional Stress Annealing on the Magnetic Anisotropic in Amorphous Ribbon Materials. MAG-21, No. 5 1985 Hilzinger HR "Stress Induced Magnetic Anisotropic in a Non-Magneticotropic Amorphous Alloy" Proc. 4th Int. Conf. on Rapidly Quenched Metals Publishing 1981

レゾネータ用アモルファス合金薄帯は、前記薄帯が活性状態にあるときに、防犯センサの発信器から発振される特定周波数の微弱な交流磁場を受けて共振するように製造される。例えば、Fe、Ni、Mo、Bの各元素を主とする組成のアモルファス合金薄帯を超急冷法で製造し、バイアス部材より受ける直流バイアス磁界強度Hの磁場中においてレゾネータとして所定の共振周波数fを得るために、前記薄帯を張力を印加しながら熱処理してなされる。 An amorphous alloy ribbon for a resonator is manufactured so as to resonate by receiving a weak alternating magnetic field having a specific frequency oscillated from a transmitter of a security sensor when the ribbon is in an active state. For example, an amorphous alloy ribbon having a composition mainly composed of each element of Fe, Ni, Mo, and B is manufactured by a rapid quenching method, and a predetermined resonance frequency f is used as a resonator in a magnetic field having a DC bias magnetic field strength H received from a bias member. In order to obtain r , the ribbon is heat-treated while applying tension.

防犯センサのマーカとして機能するためには、例えば、防犯センサのマーカからの信号が他所からの信号やノイズと明確に区別できることが重要で、すなわち、レゾネータからの出力信号がレゾネータ特有の信号であることが重要で、そのためには出力信号強度A及びAが所定値以上であること、また、出力信号の減衰特性Qが所定の範囲であることが必要になる。出力信号強度Aとは活性状態にあるレゾネータからの出力信号値であり、出力信号強度Aとはレゾネータが活性状態から不活性状態へ移行した直後から所定時間経過後のレゾネータからの出力信号値である。また、減衰特性Qとは共振周波数f及び出力信号強度の比A/Aで決まり、レゾネータの出力信号が所定時間に減衰する程度を表す値である。更にまた、他所からの信号やノイズといった外乱に対してレゾネータの応答が変動し難いことが重要で、そのためにはレゾネータの共振周波数fが周囲の磁界変動に対して影響され難いこと、すなわち耐外乱性|df/dH|ができるだけ小さいことが望まれる。 In order to function as a security sensor marker, for example, it is important that the signal from the security sensor marker can be clearly distinguished from signals and noise from other places, that is, the output signal from the resonator is a signal specific to the resonator. For this purpose, the output signal strengths A 0 and A 1 need to be equal to or greater than a predetermined value, and the attenuation characteristic Q of the output signal needs to be within a predetermined range. The output signal strength A 0 is an output signal value from the resonator in the active state, and the output signal strength A 1 is an output signal from the resonator after a predetermined time has passed immediately after the resonator has shifted from the active state to the inactive state. Value. The attenuation characteristic Q is determined by the resonance frequency fr and the output signal intensity ratio A 0 / A 1 and is a value representing the degree to which the output signal of the resonator is attenuated in a predetermined time. Furthermore, it is important that the response of the resonator with respect to disturbance such as signal and noise from elsewhere hardly varies, the resonance frequency f r of the resonator is hardly affected the surrounding magnetic field variations Therefore, ie resistance It is desirable that the disturbance | df r / dH | be as small as possible.

上述のレゾネータとして所定の共振周波数fを得るように製造する場合に問題となるのは、共振周波数fに着目して製造するために、レゾネータ用アモルファス合金薄帯の共振周波数f以外のレゾネータ特性を所定範囲に安定して得られない場合があることである。本発明の目的は、共振周波数fにおけるレゾネータ特性をより向上させることができる安価なレゾネータ用Fe−Ni系アモルファス合金薄帯を提供することである。 The problem when manufacturing so as to obtain a predetermined resonant frequency f r as described above resonators, in order to produce in view of the resonance frequency f r, other than the resonance frequency f r of the resonator for the amorphous alloy ribbon In some cases, the resonator characteristics cannot be stably obtained within a predetermined range. An object of the present invention is to provide an inexpensive Fe-Ni based amorphous alloy ribbon for a resonator which can improve the resonator characteristic in the resonance frequency f r.

本発明者は、出力信号強度、減衰特性、及び耐外乱性の問題を検討し、Fe−Ni系アモルファス合金薄帯の組成と厚さ、前記薄帯が磁気飽和状態にあるときのヤング率、前記ヤング率と前記薄帯の密度との比を最適化することにより、レゾネータに要求される諸特性をより向上できることを見出し本発明に到達した。すなわち、本発明は、原子%で元素Niが30から50%、元素Moが1から6%、元素Bが10から20%、元素Siが0から3%、残部元素Fe及び不可避的不純物からなる組成を有するアモルファス合金薄帯であって、前記薄帯の厚さが23から30μmであり、前記薄帯が磁気飽和状態にあるとき、前記薄帯のヤング率Eが160から170GPa、前記ヤング率Eと前記薄帯の密度ρとの比E/ρが2.05×10−2から2.14×10−2GPa/(kg/m)であることを特徴とするレゾネータ用アモルファス合金薄帯である。前記薄帯の組成において、好ましくは原子%で元素Moが4から6%、かつ元素Bが14から20%である。また、前記薄帯の組成において、好ましくは原子%で元素Niが35から45%、かつ前記薄帯の磁区幅が100から300μmである。 The inventor examined the problems of output signal strength, attenuation characteristics, and disturbance resistance, the composition and thickness of the Fe-Ni amorphous alloy ribbon, the Young's modulus when the ribbon is in a magnetic saturation state, The present inventors have found that various properties required for a resonator can be further improved by optimizing the ratio of the Young's modulus and the density of the ribbon. That is, the present invention is 30 to 50% elemental Ni in an atomic%, 6% elemental Mo from 1 to 20% from 10 elements B, 3% of elemental Si is 0, the balance element Fe and unavoidable impurities an amorphous alloy ribbon having a composition comprising a 30μm thick of the ribbon 23, when the ribbon is in a magnetic saturation state, 170 GPa from the ribbon Young's modulus E H 160, the Resonator characterized in that the ratio E H / ρ between Young's modulus E H and the density ρ of the ribbon is 2.05 × 10 −2 to 2.14 × 10 −2 GPa / (kg / m 3 ) Amorphous alloy ribbon for use. In the composition of the ribbon, the element Mo is preferably 4 to 6% and the element B is 14 to 20% in atomic%. In the composition of the ribbon, the element Ni is preferably 35 to 45% in atomic percent, and the magnetic domain width of the ribbon is 100 to 300 μm.

本発明によれば、出力信号強度、減衰特性、及び耐外乱性を飛躍的に改善することができ、コバルトを含まない安価なレゾネータ用アモルファス合金薄帯の実用化にとって欠くことのできない技術となる。   According to the present invention, output signal strength, attenuation characteristics, and disturbance resistance can be drastically improved, and this is an indispensable technique for practical use of an inexpensive amorphous alloy ribbon for a resonator that does not contain cobalt. .

レゾネータ用アモルファス合金薄帯としては、磁気飽和状態にある前記薄帯のヤング率Eが160から170GPa、前記ヤング率Eと前記薄帯の密度ρとの比E/ρが2.05×10−2から2.14×10−2kg/mであることがよい。ヤング率E及びヤング率Eと薄帯の密度との比E/ρを大きくすることは、レゾネータとしての出力信号強度A及びAをより大きくするために極めて有効である。また、ヤング率Eを170GPaより大きくすること、あるいはヤング率Eと薄帯の密度との比E/ρを2.14×10−2より大きくすることは、レゾネータの耐外乱性|df/dH|が大きくなり特性を劣化させてしまう。更にまた、ヤング率Eを160GPaより小さくすること、あるいはヤング率Eと薄帯の密度との比E/ρを2.05×10−2より小さくすることは、レゾネータとしての所定の出力信号強度A及びAが得られない。 As an amorphous alloy ribbon for a resonator, the Young's modulus E H of the ribbon in a magnetic saturation state is 160 to 170 GPa, and the ratio E H / ρ of the Young's modulus E H and the density ρ of the ribbon is 2.05. × good be from 10-2 is 2.14 × 10 -2 kg / m 3 . Increasing the Young's modulus E H and the ratio E H / ρ of the Young's modulus E H and the density of the ribbon is extremely effective for increasing the output signal strengths A 0 and A 1 as a resonator. Further, increasing the Young's modulus E H to more than 170 GPa or increasing the ratio E H / ρ of the Young's modulus E H to the density of the ribbon to more than 2.14 × 10 −2 is the disturbance resistance of the resonator | df r / dH | becomes large and the characteristics are deteriorated. Furthermore, making the Young's modulus E H smaller than 160 GPa, or reducing the ratio E H / ρ of the Young's modulus E H and the density of the ribbon to less than 2.05 × 10 −2 is a predetermined value as a resonator. Output signal strengths A 0 and A 1 cannot be obtained.

また、レゾネータ用薄帯の厚さは23から30μmであることがよい。薄帯の厚さを23μmより小さくすると出力信号の減衰速度が小さくなり過ぎ、また、薄帯の厚さを30μmより大きくすると出力信号の減衰速度が大きくなり過ぎて、レゾネータとしての減衰特性Qを劣化させてしまう。   The thickness of the resonator ribbon is preferably 23 to 30 μm. If the thickness of the ribbon is made smaller than 23 μm, the attenuation rate of the output signal becomes too small, and if the thickness of the ribbon is made larger than 30 μm, the attenuation rate of the output signal becomes too large, and the attenuation characteristic Q as a resonator is set. It will deteriorate.

レゾネータ用薄帯の組成における各元素に関して以下に説明する。
元素Moの含有量は原子%で1から6%であることがよい。レゾネータとしての出力信号強度A及びAをより大きくするためには、元素Moの含有量を6%以下にすることが有効である。また、元素Moの含有量を1%よりも少なくし過ぎることは、レゾネータの耐外乱性|df/dH|が大きくなり特性を劣化させてしまう。また、元素Bの含有量との関係において、元素Moの含有量はレゾネータの諸特性をより改善できる4から6%であることが好ましい。
Each element in the composition of the resonator ribbon will be described below.
The content of element Mo is preferably 1 to 6% in atomic%. In order to increase the output signal strengths A 0 and A 1 as a resonator, it is effective to make the content of the element Mo 6% or less. In addition, if the content of the element Mo is less than 1%, the disturbance resistance | df r / dH | of the resonator is increased and the characteristics are deteriorated. Further, in relation to the content of the element B, the content of the element Mo is preferably 4 to 6%, which can improve various characteristics of the resonator.

元素B及びSiは、超急冷法によりアモルファス合金薄帯を製造する場合のアモルファス形成能に影響する元素である。アモルファス合金薄帯を形成するためには、元素Bの含有量は原子%で10から20%、元素Siの含有量は原子%で0から3%であることがよい。また、元素Moの含有量との関係において、元素Bの含有量はレゾネータの諸特性をより改善できる14から20%であることが好ましく、含有量を14%以上にすることで出力信号強度A及びAをより大きくでき、含有量を20%以下にすることでよりよい耐外乱性|df/dH|を得ることができるのである。 Elements B and Si are elements that affect the ability to form amorphous when an amorphous alloy ribbon is produced by a rapid quenching method. In order to form an amorphous alloy ribbon, the content of element B is preferably 10 to 20% in atomic%, and the content of element Si is preferably 0 to 3% in atomic%. Further, in relation to the content of the element Mo, the content of the element B is preferably 14 to 20% which can further improve various characteristics of the resonator, and the output signal intensity A can be increased by making the content 14% or more. 0 and A 1 can be made larger, and by making the content 20% or less, better disturbance resistance | df r / dH | can be obtained.

元素Niは、元素Feとの関係において薄帯の磁歪定数に影響する元素であり、レゾネータ用アモルファス合金薄帯としてなすためには、元素Niの含有量を原子%で30から50%であることがよい。また、前記薄帯の磁区幅の大きさとの関係において、元素Niの含有量はレゾネータの諸特性をより改善できる35から45%であることが出力信号強度Aをより大きくできるので好ましい。 The element Ni is an element that affects the magnetostriction constant of the ribbon in relation to the element Fe. In order to form an amorphous alloy ribbon for a resonator, the content of the element Ni should be 30 to 50% in atomic%. Is good. Also, in relation to the size of the magnetic domain width of the ribbon, the content of the element Ni, it is preferable because the output signal strength A 1 can be further increased 45% from 35 be more improved properties of the resonator.

元素Feは、元素Niとの関係において薄帯の磁歪定数に影響する元素であり、レゾネータ用アモルファス合金薄帯としてなすためには、上述した各元素以外の残部を実質的に元素Feで占める必要がある。ただし、薄帯の製造上、所望元素以外の不純物を含有することは不可避である。   The element Fe is an element that affects the magnetostriction constant of the ribbon in relation to the element Ni, and in order to form an amorphous alloy ribbon for a resonator, it is necessary to substantially occupy the remainder other than the above elements with the element Fe There is. However, it is inevitable that impurities other than the desired element are contained in the production of the ribbon.

更に、レゾネータ用アモルファス合金薄帯としては、元素Niの含有量との関係において、前記薄帯の磁区幅を100から300μmとすることが好ましい。レゾネータとしての出力信号の減衰特性Qを好適な値とするためには、磁区幅を300μm以下にすることが好ましく、磁区幅を100μmより小さくし過ぎるとレゾネータとしての出力信号が減衰しにくくなり好ましくない。   Further, as the amorphous alloy ribbon for the resonator, it is preferable that the magnetic domain width of the ribbon is 100 to 300 μm in relation to the content of the element Ni. In order to set the attenuation characteristic Q of the output signal as a resonator to a suitable value, it is preferable to set the magnetic domain width to 300 μm or less. If the magnetic domain width is made smaller than 100 μm, it is difficult to attenuate the output signal as the resonator. Absent.

上述した本発明によれば、例えば、スーパーマーケット等での商品の不正な持ち出しの防止等に用いられる磁歪材料を用いた防犯センサのマーカに採用されるレゾネータ用アモルファス合金薄帯として優れた特性を得ることができる。   According to the above-described present invention, for example, excellent characteristics can be obtained as an amorphous alloy ribbon for a resonator used in a marker of a security sensor using a magnetostrictive material used for preventing unauthorized take-out of goods in a supermarket or the like. be able to.

本発明の実施例及び比較例においては、レゾネータ用アモルファス合金薄帯の共振周波数fの製造目標値を前記発信器の中心周波数に相当する58kHzとし、また、前記薄帯のレゾネータ特性の測定を前記バイアス部材が有する直流バイアス磁界強度に相当する520A/mにおいて実施し、前記薄帯のレゾネータ特性の製造目標値を出力信号特性Aが2.9nWb以上、減衰特性Qが400以上750以下、耐外乱性|df/dH|が9.5Hz・m/A以下とし、レゾネータ用アモルファス合金薄帯を以下の手順で製造した。尚、本実施例は本発明の一例であって、これに限定されるものではない。 In Examples and Comparative Examples of the present invention, a 58kHz corresponding production target value of the resonance frequency f r of the resonator for the amorphous alloy ribbon to the center frequency of the transmitter, also the measurement of the resonator characteristics of the ribbon It is carried out at 520 A / m corresponding to the DC bias magnetic field strength of the bias member, and the production target value of the resonator characteristics of the ribbon is set to an output signal characteristic A 1 of 2.9 nWb or more, an attenuation characteristic Q of 400 to 750, The resistance to disturbance | df r / dH | was 9.5 Hz · m / A or less, and an amorphous alloy ribbon for a resonator was manufactured by the following procedure. In addition, a present Example is an example of this invention, Comprising: It is not limited to this.

単ロールによる超急冷法により表1の各合金番号で示す組成及び板厚でアモルファス合金薄帯を5kgずつ作製し、作製した前記薄帯を幅6mmで長手方向に切断後、切断した前記薄帯の長手方向に表1に示す張力を印加しながら地磁気以外の磁場は作用させずに炉内温度400℃、炉内通過時間6秒で連続熱処理を行った。尚、熱処理における印加張力の決め方は後述する。   5 kg of amorphous alloy ribbons were prepared by super-quenching method using a single roll with the composition and thickness indicated by each alloy number in Table 1, and the ribbons were cut in the longitudinal direction with a width of 6 mm. A continuous heat treatment was performed at a furnace temperature of 400 ° C. and a furnace passage time of 6 seconds without applying a magnetic field other than geomagnetism while applying the tension shown in Table 1 in the longitudinal direction. Note that how to determine the applied tension in the heat treatment will be described later.

上述した工程で作製したレゾネータ用アモルファス合金薄帯から長さ38mm幅6mmの試験片を採取し、前記試験片を2枚1組として薄帯の板厚方向に重ねた状態で直流バイアス磁界中に静置し、静置した前記試験片に作用させる直流バイアス磁界の強度Hを80A/mから40A/m毎に1400A/mまで付加した。前記試験片に直流バイアス磁界強度Hを付加しながら、更に微弱な交流磁場を磁界強度1.4A/mで周波数50kHzから65kHzまで連続的に付加し、前記試験片の共振周波数fを測定した。更にまた、測定した前記共振周波数fと同じ周波数で交流磁場を前記試験片に付加した後、前記交流磁場を遮断し、遮断直後の出力信号強度Aと遮断直後から1ms後の出力信号強度Aを測定した。その後、(1)式により減衰特性Qを算出し、また、上述のように測定した共振周波数fと付加した直流バイアス磁界強度Hとの関係曲線において、直流バイアス磁界強度520A/mにおける前記曲線の傾きから耐外乱性|df/dH|を算出した。
Q=π×f/ln(A/A)×10−3 (1)
A test piece having a length of 38 mm and a width of 6 mm was taken from the amorphous alloy ribbon for the resonator produced in the above-described process, and the test pieces were stacked in the thickness direction of the ribbon as a set of two test pieces in a DC bias magnetic field. The strength H of the direct current bias magnetic field applied to the test piece that was allowed to stand was applied from 80 A / m to 1400 A / m every 40 A / m. While adding a DC bias magnetic field strength H in the specimen, further continuously added from the frequency 50kHz to 65kHz with weak alternating magnetic field the magnetic field intensity 1.4A / m, was measured resonance frequency f r of the test piece . Furthermore, after adding the test piece an alternating magnetic field at the same frequency as the measured the resonance frequency f r, the output signal intensity after 1ms from immediately after the alternating magnetic field is cut off, interrupting the output signal strength A 0 immediately after blocking It was measured a 1. Then, (1) the curve in the attenuation characteristic Q is calculated, also in relation curve between the DC bias magnetic field intensity H obtained by adding the resonance frequency f r as measured in the manner described above, the DC bias magnetic field strength 520A / m by equation Disturbance resistance | df r / dH | was calculated from the slope of.
Q = π × f r / ln (A 0 / A 1 ) × 10 −3 (1)

試験片の共振周波数fを決定する条件のひとつに、薄帯の熱処理における印加張力があり、例えば合金番号6の場合は表1に示すように78MPaとした。前記印加張力は、表2に示すように薄帯への印加張力を幾つか変えて熱処理した後に上述した試験片を採取し、直流バイアス磁界強度が520A/mにおける前記試験片の共振周波数fを測定し、測定した共振周波数fが製造目標値である58kHzとなる印加張力値を選択したのである。尚、表1に示す合金番号6以外の各合金についても同様の決め方で薄帯への印加張力を決定した。 One of the conditions that determine the resonance frequency f r of the test piece, there is applied the tension in the heat treatment of the ribbon, for example, in the case of alloy No. 6 was 78MPa, as shown in Table 1. The applied tension, the specimens described above after heat treatment by changing some of the applied tension to the thin ribbon as shown in Table 2 was collected, the resonance frequency f r of the test piece DC bias magnetic field strength is at 520A / m It was measured, than is measured resonance frequency f r selects the applied tension values serving as a production target value 58 kHz. For each alloy other than alloy number 6 shown in Table 1, the tension applied to the ribbon was determined in the same manner.

本実施例及び比較例では、上述の試験片が磁気飽和状態にある直流バイアス磁界強度1400A/mにおける共振周波数fと長さ38mmの前記試験片の密度ρを用い、(2)式により前記試験片のヤング率E及びヤング率Eと前記試験片の密度ρとの比E/ρを算出した。尚、前記試験片の密度ρは、島津製作所製のガス置換式密度計アキュビック1330により測定した。
=(1/2L)(E/ρ)0.5 (2)
ここで、Lは試験片の長さである。
In the present Examples and Comparative Examples, using density ρ of the test piece of the resonant frequency f r and the length 38mm in the DC bias magnetic field strength 1400A / m which the test piece described above is in the magnetic saturation state, the equation (2) The Young's modulus E H of the test piece and the ratio E H / ρ of the Young's modulus E H and the density ρ of the test piece were calculated. The density ρ of the test piece was measured with a gas displacement density meter Accuvic 1330 manufactured by Shimadzu Corporation.
f r = (1 / 2L) (E H / ρ) 0.5 (2)
Here, L is the length of the test piece.

上述のように測定した結果を製造目標と伴に表3に示すが、共振周波数f、出力信号強度A及びA、減衰特性Q、及び耐外乱性|df/dH|については直流バイアス磁界強度520A/mにおける測定値、またヤング率E及びヤング率E/密度ρについては直流バイアス磁界1400A/mにおける測定値である。また、表3に示す本発明の実施例である合金番号6と比較例である合金番号12について、共振周波数fと付加した直流バイアス磁界強度Hとの関係曲線を図1に、更にまた、直流バイアス磁界強度1400A/mにおけるヤング率Eと耐外乱性|df/dH|との関係を図2に、ヤング率Eと減衰特性Qとの関係を図3に、ヤング率Eと密度ρとの比E/ρと耐外乱性|df/dH|との関係を図4に、前記比E/ρと減衰特性Qとの関係を図5に示す。 The results measured as described above are shown in Table 3 together with the manufacturing target. The resonance frequency f r , the output signal strengths A 0 and A 1 , the attenuation characteristic Q, and the disturbance resistance | df r / dH | The measured values at a bias magnetic field strength of 520 A / m, and the Young's modulus E H and the Young's modulus E H / density ρ are measured values at a DC bias magnetic field of 1400 A / m. Further, with respect to Alloy No. 6 as an example of the present invention shown in Table 3 and Alloy No. 12 as a comparative example, the relationship curve between the resonance frequency fr and the added DC bias magnetic field strength H is shown in FIG. FIG. 2 shows the relationship between Young's modulus E H and disturbance resistance | df r / dH | at a DC bias magnetic field strength of 1400 A / m, FIG. 3 shows the relationship between Young's modulus E H and damping characteristic Q, and Young's modulus E H. FIG. 4 shows the relationship between the ratio E H / ρ and the disturbance resistance | df r / dH |, and FIG. 5 shows the relationship between the ratio E H / ρ and the damping characteristic Q.

表3に示す合金番号1から10は本発明の実施例であり合金番号11から13は比較例である。合金番号11では減衰特性Q及び耐外乱性|df/dH|が、合金番号12では耐外乱性|df/dH|が、合金番号13では出力信号強度Aが、いずれも製造目標値に対して満足しなかったが、本発明の実施例ではすべての製造目標値を満足していた。図1から図5及び表3に示す結果より、良好なレゾネータ特性を得るために本発明者が見出したヤング率E及びヤング率Eと密度ρとの比E/ρが極めて重要であることが明白にできた。また、ヤング率E及びヤング率Eと密度ρとの比E/ρが大きくなると出力信号強度A及びAが大きくなることがわかったが、このとき減衰特性Qが小さくなって、かつ耐外乱性|df/dH|も大きくなってレゾネータ特性が劣化する傾向があることがわかった。 Alloy numbers 1 to 10 shown in Table 3 are examples of the present invention, and alloy numbers 11 to 13 are comparative examples. Alloy No. 11 has damping characteristics Q and disturbance resistance | df r / dH |, Alloy No. 12 has disturbance resistance | df r / dH |, and Alloy No. 13 has an output signal strength A 1 of both production target values. However, in the examples of the present invention, all the production target values were satisfied. From the results shown in FIGS. 1 to 5 and Table 3, the Young's modulus E H and the ratio E H / ρ of the Young's modulus E H and the density ρ found by the inventor in order to obtain good resonator characteristics are extremely important. It was clear that there was. Although it was found that the output signal strength and the ratio E H / [rho of Young modulus E H and Young's modulus E H and density [rho increases A 0 and A 1 is increased, this time the attenuation characteristic Q is decreased In addition, it was found that the resistance to disturbance | df r / dH | also increases and the resonator characteristics tend to deteriorate.

表3に示す合金番号6、4、8はいずれも本発明の実施例であり、前記合金番号の順に元素Mo含有量が原子%で5%、4%、3%と減少しているが、前記元素Mo含有量の減少に伴って出力信号強度A及びAと、耐外乱性|df/dH|は大きくなっており、元素Mo含有量が少なすぎると耐外乱性|df/dH|が増大していくことは明白で、好ましい元素Mo含有量は4%から6%であった。また、合金番号1から4はいずれも本発明の実施例であり、前記合金番号の順に元素Ni含有量が減少しているが、前記元素Ni含有量の減少に伴って出力信号強度A及びAは大きくなっており、好ましい元素Ni含有量は35%から45%であった。 Alloy numbers 6, 4, and 8 shown in Table 3 are all examples of the present invention, and the element Mo content decreases in atomic% to 5%, 4%, and 3% in the order of the alloy numbers. As the element Mo content decreases, the output signal strengths A 0 and A 1 and the disturbance resistance | df r / dH | increase. When the element Mo content is too small, the disturbance resistance | df r / It is clear that dH | increases, and the preferable element Mo content is 4% to 6%. Also, alloy numbers 1 to 4 are all examples of the present invention, and the element Ni content decreases in the order of the alloy number. As the element Ni content decreases, the output signal intensity A 0 and A 1 was increased, and the preferable element Ni content was 35% to 45%.

単ロール法による超急冷法によりアモルファス合金薄帯を作製したとき、元素Bを原子%で10%未満にしたときにはアモルファス合金薄帯が形成できず、元素Bを20%を超えて含有させたとき、また、元素Siを3%を超えて含有させたときは、作製したアモルファス合金薄帯の延性が損なわれて脆くなっており、前記薄帯の切断ができなかった。更に、元素Niを50%超えて含有させたとき、すなわち、元素Fe含有量が元素Ni含有量に対して相対的に少なくなったときには、作製した合金薄帯の磁気特性が劣化した。   When an amorphous alloy ribbon is prepared by a rapid quenching method using a single roll method, when the element B is less than 10% in atomic%, the amorphous alloy ribbon cannot be formed, and the element B is contained in excess of 20%. In addition, when the element Si was contained in an amount exceeding 3%, the ductility of the produced amorphous alloy ribbon was impaired and it became brittle, and the ribbon could not be cut. Furthermore, when the element Ni was contained in an amount exceeding 50%, that is, when the element Fe content was relatively smaller than the element Ni content, the magnetic properties of the produced alloy ribbon deteriorated.

また、合金番号6の組成で表4に示すように薄帯の板厚を変え、上述した手順でアモルファス合金薄帯を作製し、試験片を採取し、直流バイアス磁界強度520A/mにおけるレゾネータ特性を測定した。表4に示すように、薄帯の板厚が厚くなるに伴って、出力信号強度Aは大きくなる傾向が、出力信号強度A及び減衰特性Qは小さくなる傾向が見られ、出力信号強度A及びAはいずれも製造目標値を満足していたが、減衰特性Qは薄帯の板厚が23μmから30μmでなければ製造目標値を満足しないことが明白で、本発明の薄帯の板厚が有効であることがわかった。尚、耐外乱性|df/dH|については薄帯の板厚を変えても大きな変化はなかった。 Further, the thickness of the ribbon was changed as shown in Table 4 with the composition of Alloy No. 6, the amorphous alloy ribbon was produced by the above-described procedure, the specimen was taken, and the resonator characteristics at a DC bias magnetic field strength of 520 A / m Was measured. As shown in Table 4, as the thickness of the ribbon increases, the output signal intensity A 0 tends to increase, but the output signal intensity A 1 and the attenuation characteristic Q tend to decrease. Both A 0 and A 1 satisfied the manufacturing target value, but it is clear that the damping characteristic Q does not satisfy the manufacturing target value unless the thickness of the ribbon is 23 μm to 30 μm. It was found that the plate thickness was effective. The disturbance resistance | df r / dH | did not change greatly even when the thickness of the ribbon was changed.

更にまた、本発明の比較例として、合金番号6の組成で上述した手順でアモルファス合金薄帯を作製するときに、熱処理において上述の特許文献4に示される磁場中熱処理を適用して薄帯を作製し、試験片を採取し、直流バイアス磁界強度520A/mにおけるレゾネータ特性を測定した。尚、前記磁場中熱処理は、アモルファス合金薄帯の長手方向に張力78MPaを印加しながら、かつ磁界強度127kA/mの磁場を前記薄帯面に対して垂直方向から印加し、炉内温度400℃、炉内通過時間6秒で連続熱処理を行った。
図6に、本発明の実施例として、張力を印加し、かつ磁場を印加せずに熱処理を行ったアモルファス合金薄帯の磁区構造の顕微鏡写真を示す。表5に示すように、磁場印加なしで熱処理した場合に比べ磁場印加して熱処理した場合には磁区幅が小さくなり、出力信号強度A及びA、減衰特性Qが大きくなり、耐外乱性|df/dH|は同等であった。レゾネータ特性としてはいずれも製造目標値を満足していたももの、好ましいのは減衰特性Qが製造目標値の中心値により近い磁場印加なしで熱処理した場合、すなわち、本発明の実施例であった。
上述のように本発明を適用した場合、製造コストの掛かる磁場中熱処理を行うことなく好ましいレゾネータ特性を有するレゾネータ用アモルファス合金薄帯が作製できたので、本発明の材のアモルファス合金薄帯に対しては、前記特許文献4で開示される磁区幅の狭幅化を行うメリットは認められない。
Furthermore, as a comparative example of the present invention, when an amorphous alloy ribbon is produced by the above-described procedure with the composition of alloy No. 6, the ribbon is applied by applying the heat treatment in the magnetic field shown in Patent Document 4 described above in the heat treatment. The test piece was prepared, and the resonator characteristics at a DC bias magnetic field strength of 520 A / m were measured. In the heat treatment in the magnetic field, while applying a tension of 78 MPa in the longitudinal direction of the amorphous alloy ribbon, a magnetic field having a magnetic field strength of 127 kA / m is applied from the direction perpendicular to the ribbon surface, and the furnace temperature is 400 ° C. Then, continuous heat treatment was performed with a passage time in the furnace of 6 seconds.
FIG. 6 shows, as an example of the present invention, a photomicrograph of a magnetic domain structure of an amorphous alloy ribbon obtained by heat treatment without applying a magnetic field and applying a tension. As shown in Table 5, the magnetic domain width is smaller when the magnetic field is applied and the heat treatment is performed than when the magnetic field is applied without applying the magnetic field, the output signal strengths A 0 and A 1 , the attenuation characteristics Q are increased, and the disturbance resistance is improved. | Df r / dH | was equivalent. Resonator characteristics that satisfy the production target values are all preferable, and the case where the attenuation characteristic Q is heat-treated without applying a magnetic field closer to the center value of the production target value, that is, an embodiment of the present invention. .
As described above, when the present invention is applied, an amorphous alloy ribbon for a resonator having preferable resonator characteristics can be produced without performing heat treatment in a magnetic field, which requires manufacturing costs. Therefore, the merit of narrowing the magnetic domain width disclosed in Patent Document 4 is not recognized.

本発明の実施例で示したレゾネータ用アモルファス合金薄帯を、例えば、発信器から58kHzを中心周波数とする微弱な交流磁場がある時間毎に繰り返し発信され、マーカのバイアス部材が約520A/mの直流バイアス磁界強度を有している防犯センサのマーカのレゾネータとして実用した場合、出力信号強度Aが2.9nWb以上で、減衰特性Qが400から750の間で、耐外乱性|df/dH|が9.5Hz・m/A以下の優れたレゾネータ特性を示すのである。 The amorphous alloy ribbon for a resonator shown in the embodiment of the present invention is repeatedly transmitted from a transmitter, for example, every weak time with a weak alternating magnetic field having a center frequency of 58 kHz, and the marker bias member is about 520 A / m. When used as a resonator for a marker for a security sensor having a DC bias magnetic field strength, the output signal strength A 1 is 2.9 nWb or more, the attenuation characteristic Q is between 400 and 750, and the disturbance resistance | df r / It exhibits excellent resonator characteristics with dH | of 9.5 Hz · m / A or less.

本発明の実施例及び比較例における薄帯試験片の共振周波数fと直流バイアス磁界強度Hとの関係を示す図である。It is a diagram showing the relationship between the resonance frequency f r and the DC bias magnetic field strength H of the ribbon specimens in Examples and Comparative Examples of the present invention. 直流バイアス磁界強度1400A/mにおける薄帯試験片のヤング率Eと耐外乱性|df/dH|との関係を示す図である。Young's modulus E H and resistance to outer disturbance of ribbon specimen in the DC bias magnetic field strength 1400A / m | is a diagram showing a relationship between | df r / dH. 直流バイアス磁界強度1400A/mにおける薄帯試験片のヤング率Eと減衰特性Qとの関係を示す図である。It is a diagram showing the relationship between the DC bias magnetic field strength 1400A / Young's modulus E H of the ribbon specimen in m and the damping characteristics Q. 直流バイアス磁界強度1400A/mにおける薄帯試験片のヤング率Eと密度ρとの比E/ρと耐外乱性|df/dH|との関係を示す図である。DC bias magnetic field strength 1400A / ratio E H / [rho and resistance to outer disturbance of the Young's modulus E H and density [rho thin strip test piece in m | is a diagram showing a relationship between | df r / dH. 直流バイアス磁界強度1400A/mにおける薄帯試験片のヤング率Eと密度ρとの比E/ρと減衰特性Qとの関係を示す図である。Is a diagram showing the relationship between the DC bias magnetic field strength 1400A / ratio of the Young's modulus E H and density [rho thin strip test piece in m E H / ρ and damping characteristics Q. 本発明の実施例(合金番号6)における薄帯の磁区構造の顕微鏡写真である。It is a microscope picture of the magnetic domain structure of a ribbon in the Example (alloy number 6) of this invention.

符号の説明Explanation of symbols

1.本発明の実施例(合金番号6)、2.比較例(合金番号12)3.直流バイアス磁界強度520A/m 1. 1. Example of the present invention (Alloy No. 6); Comparative Example (Alloy No. 12) 3. DC bias magnetic field strength 520 A / m

Claims (3)

原子%で元素Niが30から50%、元素Moが1から6%、元素Bが10から20%、元素Siが0から3%、残部元素Fe及び不可避的不純物からなる組成を有するアモルファス合金薄帯であって、前記薄帯の厚さが23から30μmであり、前記薄帯が磁気飽和状態にあるとき、前記薄帯のヤング率Eが160から170GPa、前記ヤング率Eと前記薄帯の密度ρとの比E/ρが2.05×10−2から2.14×10−2GPa/(kg/m)であることを特徴とするレゾネータ用アモルファス合金薄帯。 Atomic% elemental Ni is 30 to 50%, 6% from 1 element Mo, 20% from 10 elements B, 3% of elemental Si is 0, amorphous alloy having the balance consisting of elements Fe and unavoidable impurities When the ribbon has a thickness of 23 to 30 μm and the ribbon is in a magnetic saturation state, the ribbon has a Young's modulus E H of 160 to 170 GPa, the Young's modulus E H and the An amorphous alloy ribbon for a resonator, wherein the ratio E H / ρ to the density ρ of the ribbon is 2.05 × 10 −2 to 2.14 × 10 −2 GPa / (kg / m 3 ). 前記薄帯の組成において、原子%で元素Moが4から6%、かつ元素Bが14から20%であることを特徴とする請求項1に記載のレゾネータ用アモルファス合金薄帯。   2. The amorphous alloy ribbon for a resonator according to claim 1, wherein in the composition of the ribbon, the element Mo is 4 to 6% in atomic percent and the element B is 14 to 20%. 前記薄帯の組成において、原子%で元素Niが35から45%、かつ前記薄帯の磁区幅が100から300μmであることを特徴とする請求項1または2に記載のレゾネータ用アモルファス合金薄帯。
3. The amorphous alloy ribbon for a resonator according to claim 1, wherein in the composition of the ribbon, the elemental Ni is 35 to 45% and the magnetic domain width of the ribbon is 100 to 300 μm. .
JP2004075748A 2004-03-17 2004-03-17 Amorphous alloy ribbon for resonators Expired - Fee Related JP4337094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075748A JP4337094B2 (en) 2004-03-17 2004-03-17 Amorphous alloy ribbon for resonators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075748A JP4337094B2 (en) 2004-03-17 2004-03-17 Amorphous alloy ribbon for resonators

Publications (2)

Publication Number Publication Date
JP2005264198A JP2005264198A (en) 2005-09-29
JP4337094B2 true JP4337094B2 (en) 2009-09-30

Family

ID=35089053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075748A Expired - Fee Related JP4337094B2 (en) 2004-03-17 2004-03-17 Amorphous alloy ribbon for resonators

Country Status (1)

Country Link
JP (1) JP4337094B2 (en)

Also Published As

Publication number Publication date
JP2005264198A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1159717B1 (en) Magneto-acoustic marker for electronic article surveillance having reduced size and high signal amplitude
KR100687968B1 (en) A method of annealing amorphous ribbons and marker for electronic article surveillance
US7088247B2 (en) Amorphous alloys for magneto-acoustic markers having reduced, low or zero cobalt content, and associated article surveillance system
US6254695B1 (en) Method employing tension control and lower-cost alloy composition annealing amorphous alloys with shorter annealing time
US6018296A (en) Amorphous magnetostrictive alloy with low cobalt content and method for annealing same
KR19980703801A (en) Metallic Glass Alloys for Mechanical Resonant Marker Monitoring Systems
EP2188792B1 (en) Amorphous alloy compositions for a magnetomechanical resonator and eas marker containing same
JP2001523030A5 (en)
AU2002212625A1 (en) Annealed amorphous alloys for magneto-acoustic markers
JP3955623B2 (en) Metallic glass alloys for monitoring devices with mechanically resonating markers
JP2002510417A (en) Amorphous magnetostrictive alloy and electronic goods monitoring system using this alloy
KR100576075B1 (en) Metallic glass alloys for mechanically resonant marker surveillance systems
JP4337094B2 (en) Amorphous alloy ribbon for resonators
Herzer Magnetoelastic sensors for electronic article surveillance
JP2005179694A (en) Amorphous alloy thin strip for resonator
CA2217722C (en) Metallic glass alloys for mechanically resonant marker surveillance systems
Herzer et al. Magneto-acoustic Marker for Electronic Article Surveillance having Reduced Size and High Signal Amplitude

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees