JP4332976B2 - Cable-stayed bridge cable damping device - Google Patents

Cable-stayed bridge cable damping device Download PDF

Info

Publication number
JP4332976B2
JP4332976B2 JP2000066233A JP2000066233A JP4332976B2 JP 4332976 B2 JP4332976 B2 JP 4332976B2 JP 2000066233 A JP2000066233 A JP 2000066233A JP 2000066233 A JP2000066233 A JP 2000066233A JP 4332976 B2 JP4332976 B2 JP 4332976B2
Authority
JP
Japan
Prior art keywords
cable
stayed bridge
vibration
bridge cable
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000066233A
Other languages
Japanese (ja)
Other versions
JP2001254312A (en
Inventor
敏雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000066233A priority Critical patent/JP4332976B2/en
Publication of JP2001254312A publication Critical patent/JP2001254312A/en
Application granted granted Critical
Publication of JP4332976B2 publication Critical patent/JP4332976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、斜張橋のケーブルに発生する風振動を抑制するのに用いられる斜張橋ケーブルの制振装置に関する。
【0002】
【従来の技術】
斜張橋は、主構造である連続桁を主塔から斜めに張ったケーブルで弾性的に支持する構造であり、吊り橋と同様、主要部材にケーブルを用いている関係上、耐風安定性については十分な確認が必要となる。
【0003】
すなわち、斜張橋ケーブルは、減衰が小さいために風による振動が発生しやすく、特に、並列ケーブルには、ウェイクギャロッピングと呼ばれる振幅の大きな振動が発生しやすいことはよく知られているところである。
【0004】
【発明が解決しようとする課題】
ここで、ウェイクギャロッピングをはじめとした斜張橋ケーブルの振動を抑制すべく、さまざまな制振対策が研究開発されており、その代表的なものとして、粘性体や高減衰ゴムを利用したダンパーがあるが、かかるダンパーでは、振幅が小さい間はともかく、大振幅になればなるほど、またケーブル長が長くなればなるほど減衰力が急激に小さくなるという欠点があり、温度依存性の問題とともに斜張橋ケーブルの制振装置として適用するにはどうしても限界があった。
【0005】
一方、最近では、永久磁石を利用して振動モードを変化させ、そのときに発生する減衰力を利用して斜張橋ケーブルの振動を抑制しようとする研究も行われている。
【0006】
しかしながら、かかる方法では、振幅が小さい間は、制振作用が全く期待できないとともに、永久磁石を用いる関係上、過酷な環境下での耐久性や作動の信頼性についても検討の余地があった。
【0007】
本発明は、上述した事情を考慮してなされたもので、振幅の大小に関わらず十分な制振作用を得ることが可能な斜張橋ケーブルの制振装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明は請求項1に記載したように、伸張方向の強制変形に対し設定最大長さを限度として全長が可変に構成された伸張制限機構を斜張橋ケーブルと該斜張橋ケーブルで引張支持されている桁との間に介在させてなり、前記設定最大長さを、前記斜張橋ケーブルの自励振動の成長が抑制されるように設定した斜張橋ケーブルの制振装置において、前記伸張制限機構を、複数の連結要素がそれらの端部にて回動自在となるように順次連結されてなり、前記複数の連結要素が一直線上に並んだときの長さが前記設定最大長さとなる伸縮機構で構成したものである。
【0010】
また、本発明に係る斜張橋ケーブルの制振装置は、前記連結要素のうち、互いに隣接する連結要素の各連結部位に摩擦面をそれぞれ設けるとともに、該摩擦面を回動方向に摺動自在となるように互いに当接させたものである。
【0011】
本発明に係る斜張橋ケーブルの制振装置においては、斜張橋ケーブルと該斜張橋ケーブルで引張支持されている桁との間に伸張制限機構を介在させる。
【0012】
ここで、伸張制限機構は、伸張方向の強制変形に対し設定最大長さを限度として全長が可変に構成してあるが、かかる設定最大長さについては、斜張橋ケーブルの自励振動の成長が抑制されるように設定する。
【0013】
構造物等の振動においては、強制的な外力が作用しない限り、減衰力によって時間経過とともに振幅が小さくなるのが一般的であるが、構造物がそれに接している流体の流れによって振動する場合には、流体力に加えて振動応答に支配された自励力が付加され、負の流体減衰力による自励振動が発生する。すなわち、振動に伴う自励力がその振動をさらに増長するように作用する循環現象が発生し、曲げ振動においてはギャロッピング、ねじり振動においてはねじれフラッターという形で顕れる。
【0014】
そして、斜張橋ケーブルが風による流体力を受けたとき、該斜張橋ケーブルには、両端を固定端とした振動が発生するとともに自励振動によってその振幅が増大するが、本発明においては、斜張橋ケーブルと桁との間に伸張制限機構を介在させてあって、斜張橋ケーブルの振動が該伸張制限機構の設定最大長さに相当する振幅に達したとき、伸張制限機構の全長が固定され、斜張橋ケーブルは、端部の固定点が該伸張制限機構の取付け箇所にシフトされた状態の振動モードに移行する。そして、かかる振動モードの移行に伴って、斜張橋ケーブルには高次モードの振動が発生し、斜張橋ケーブルの振動エネルギーは、高次振動モードの減衰という形で消費され、かくして、斜張橋ケーブルの振動は、自励振動として成長することなくすみやかに収斂する。なお、振幅が減少した結果、斜張橋ケーブルの振幅が伸張制限機構の設定最大長さに相当する振幅を下回ると、斜張橋ケーブルは、伸張制限機構から拘束されなくなって端部の固定点が再び元の場所にシフトし、以下、上述した作用を繰り返すこととなる。
【0015】
伸張制限機構は、複数の連結要素がそれらの端部にて回動自在となるように順次連結されてなる伸縮機構で構成し、設定最大長さを、各連結要素相互の取合い角度が180度、すなわち各連結要素が一直線上に並んだ状態の長さとする。
【0016】
ここで、伸縮機構の設定最大長さの限度内で斜張橋ケーブルが振動する際、伸縮機構は、その連結要素が相互に回動することによって該ケーブルの振動に追従することとなるが、かかる連結要素のうち、互いに隣接する連結要素の各連結部位に摩擦面をそれぞれ設けるとともに、該摩擦面を回動方向に摺動自在となるように互いに当接させたならば、連結要素の回動動作に伴って摩擦減衰が発生するため、伸張制限機構が作動しない小さな振幅での斜張橋ケーブルの振動に対しても、摩擦減衰の形で振動エネルギーを減衰させることが可能となる。
【0017】
なお、本発明で言うところの斜張橋ケーブルが並列ケーブルに限定されるものではないことは言うまでもない。
【0018】
【発明の実施の形態】
以下、本発明に係る斜張橋ケーブルの制振装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0019】
図1は、本実施形態に係る斜張橋ケーブルの制振装置を示した全体図である。同図でわかるように、本実施形態に係る斜張橋ケーブルの制振装置1は、伸張制限機構である伸縮機構2を斜張橋ケーブル3と該斜張橋ケーブルで引張支持されている桁7との間に介在させてある。
【0020】
ここで、伸縮機構2は、複数の連結要素4a、4bがそれらの端部にて回動自在となるように順次連結して構成するとともに、その下端では桁7の取付部5に、上端では斜張橋ケーブル3の取付部6にそれぞれヒンジ接合してあり、かかる構成においては、連結要素4a、4bが相互に回動することによって全長が可変となるとともに、各連結要素4a、4b相互の取合い角度が180度、すなわち各連結要素4が一直線上に並んだときの長さが設定最大長さとなり、該設定最大長さを超えるような伸張方向の強制変形は拘束されることとなる。
【0021】
かかる設定最大長さは、斜張橋ケーブル3の自励振動の成長が抑制されるように設定しておく。
【0022】
図2は、連結要素4a、4b相互の連結部位を詳細に示したものである。同図でわかるように、連結要素4bの端部には内周面11に摩擦面が形成された中空円筒部12を固着してあるとともに、連結要素4aの端部に設けられたブラケット部13、13間には外周面14に摩擦面が形成された円筒部15を固着してあり、該円筒部の摩擦面と中空円筒部12の摩擦面とが回動方向(図2(a)の矢印方向)に摺動自在となるように円筒部15を中空円筒部12の内部に嵌め込んで互いに当接させてある。
【0023】
中空円筒部12の摩擦面や円筒部15の摩擦面は、所定の摩擦材を貼り付けるようにしてもよいし、中空円筒部12の内周面や円筒部15の外周面に凹凸を形成して構成してもよい。
【0024】
本実施形態に係る斜張橋ケーブルの制振装置1においては、斜張橋ケーブル3が風による流体力を受けたとき、該斜張橋ケーブルには、両端を固定端とした振動が発生するとともに自励振動によってその振幅が増大しようとするが、本実施形態においては、斜張橋ケーブル3と該斜張橋ケーブルで引張支持されている桁7との間に伸張制限機構である伸縮機構2を介在させてある。
【0025】
そのため、斜張橋ケーブル3の振幅が小さい間は、伸縮機構2が斜張橋ケーブル3の動きに追従するように伸縮するが、斜張橋ケーブル3の振動が図3(a)に示すように伸縮機構2の設定最大長さLに相当する振幅に達したとき、伸縮機構2の全長がLに固定され、斜張橋ケーブル3の振動モードは、伸縮機構2が未だ設定最大長さLに達していないときの両端を固定点とした振動モード(図3(b))から、一方の端部の固定点が伸縮機構2の取付け箇所にシフトされた状態の振動モード(図3(c))に移行する。
【0026】
そして、かかる振動モードの移行に伴って、斜張橋ケーブル3には高次モードの振動が発生し、斜張橋ケーブル3の振動エネルギーは、高次振動モードの減衰という形で消費され、かくして、斜張橋ケーブル3の振動は、自励振動として成長することなくすみやかに収斂する。
【0027】
なお、振幅が減少した結果、斜張橋ケーブル3の振幅が伸縮機構2の設定最大長さLに相当する振幅を下回ると、斜張橋ケーブル3は、伸縮機構2から拘束されなくなって端部の固定点が図3(b)に示すように再び元の場所にシフトし、以下、上述した作用を繰り返すこととなる。
【0028】
一方、伸縮機構2の設定最大長さLの限度内で斜張橋ケーブル3が振動する際、伸縮機構2は、その連結要素4a、4bが相互に回動することによって該ケーブルの振動に追従することとなるが、円筒部15の外周面に形成された摩擦面と中空円筒部12の内周面に形成された摩擦面が連結要素4a、4bの回動動作に伴って互いに摺動して摩擦減衰が発生する。
【0029】
したがって、伸縮機構2が作動しない小さな振幅での斜張橋ケーブル3の振動に対しても、摩擦減衰の形で振動エネルギーが減衰する。
【0030】
以上説明したように、本実施形態に係る斜張橋ケーブルの制振装置1によれば、斜張橋ケーブル3と桁7との間に伸張制限機構である伸縮機構2を介在させたので、斜張橋ケーブル3の振動が所定の振幅に達したとき、その振動モードを変化させ、その際に発生する高次モードの振動によって、斜張橋ケーブル3の振動エネルギーを速やかに消費させることが可能となる。
【0031】
そのため、斜張橋ケーブル3を自励振動として成長させることなくすみやかに収斂させることができる。そして、永久磁石を用いた従来の制振装置とは異なり、過酷な環境下でも長期間にわたって確実な作動性と耐久性が期待できる。
【0032】
また、本実施形態に係る斜張橋ケーブルの制振装置1によれば、伸縮機構2の設定最大長さLの限度内で斜張橋ケーブル3が振動する際、連結要素4a、4bの回動動作に伴って円筒部15の外周面に形成された摩擦面と中空円筒部12の内周面に形成された摩擦面が互いに摺動し摩擦減衰が発生する。
【0033】
したがって、伸縮機構2が作動しない小さな振幅での斜張橋ケーブル3の振動に対しても、摩擦減衰の形で振動エネルギーを減衰させることが可能となる。
【0034】
このように、本実施形態に係る斜張橋ケーブルの制振装置1によれば、斜張橋ケーブル3の振幅が小さいときには摩擦減衰により、振幅が大きいときにはかかる摩擦減衰に加えて振動モード変化に伴う減衰により、斜張橋ケーブル3の振動を減衰させることができるため、さまざまな種類や大きさの振動に適応することが可能となる。
【0035】
本実施形態では、伸縮機構2を、複数の連結要素4a、4bがそれらの端部にて回動自在となるように順次連結して構成するとともに、その下端では桁7の取付部5に、上端では斜張橋ケーブル3の取付部6にそれぞれヒンジ接合して構成したが、参考例として、パンタグラフ状に構成したものを図4に示す
【0036】
すなわち、同図に示す伸縮機構21は、互いの中心にてヒンジ接合された複数の連結要素22a、22bがそれらの端部にて回動自在となるように順次連結して構成するとともに、その下端では連結要素23を介して桁7の取付部5に、上端では連結要素23を介して斜張橋ケーブル3の取付部6にそれぞれヒンジ接合してある。
【0037】
なお、かかる構成においてもその作用効果については伸縮機構2と実質的に同一であり、その説明についてはここでは省略する。
【0038】
【発明の効果】
以上述べたように、本発明に係る斜張橋ケーブルの制振装置によれば、斜張橋ケーブルと桁との間に伸張制限機構を介在させたので、斜張橋ケーブルの振動が所定の振幅に達したとき、その振動モードを変化させ、その際に発生する高次モードの振動によって、斜張橋ケーブルの振動エネルギーを速やかに消費させることが可能となる。そのため、斜張橋ケーブルを自励振動として成長させることなくすみやかに収斂させることができる。
【0039】
【図面の簡単な説明】
【図1】本実施形態に係る斜張橋ケーブルの制振装置の全体図。
【図2】本実施形態に係る斜張橋ケーブルの制振装置を構成する伸縮機構の詳細図であり、(a)は該伸縮機構の連結部位の詳細図、(b)はA―A線に沿う断面図。
【図3】本実施形態に係る斜張橋ケーブルの制振装置の作用を示した図。
【図4】参考例に係る斜張橋ケーブルの制振装置の全体図。
【符号の説明】
1 斜張橋ケーブルの制振装置
2 伸縮機構(伸張制限機構)
3 斜張橋ケーブル
4a、4b 連結要素
7 桁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control device for a cable stayed bridge cable used to suppress wind vibration generated in the cable of a cable stayed bridge.
[0002]
[Prior art]
The cable-stayed bridge is a structure that elastically supports the main structure of the continuous girder with a cable that is slanted from the main tower. Like the suspension bridge, the cable is used for the main members. Sufficient confirmation is required.
[0003]
That is, it is well known that the cable stayed bridge cable is likely to generate vibration due to wind because of its small attenuation. In particular, it is well known that the parallel cable tends to generate vibration with a large amplitude called wake galloping.
[0004]
[Problems to be solved by the invention]
Here, various vibration suppression measures have been researched and developed to suppress the vibration of cable-stayed bridge cables, including wake galloping, and typical examples include dampers using viscous materials and high-damping rubber. However, such a damper has the disadvantage that the damping force decreases sharply as the amplitude becomes larger, the longer the cable length and the longer the cable length, as well as the temperature dependence. There was a limit to its application as a cable damping device.
[0005]
On the other hand, recently, studies have been made to change the vibration mode using a permanent magnet and to suppress the vibration of the cable-stayed bridge cable using the damping force generated at that time.
[0006]
However, with such a method, while the amplitude is small, no vibration damping action can be expected, and there is room for studying durability and reliability of operation under harsh environments due to the use of permanent magnets.
[0007]
The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a cable-stayed bridge cable damping device capable of obtaining a sufficient damping action regardless of the magnitude of the amplitude.
[0008]
[Means for Solving the Problems]
To achieve the above object, the present onset Ming as described in claim 1, and stayed bridge cable extension limiting mechanism total length is constructed variably setting maximum length a limit to force the deformation of the extending direction swash become be interposed between the digits are tensile supported by stayed bridge cable-stayed bridge the setting maximum length, the growth of the self-excited vibration of the cable-stayed bridge cable is set to be inhibited In the cable damping device, the extension limiting mechanism is sequentially connected such that the plurality of connecting elements are rotatable at their ends, and the plurality of connecting elements are arranged in a straight line. The length is constituted by an expansion / contraction mechanism having the set maximum length .
[0010]
In the cable-stayed bridge cable damping device according to the present invention, a friction surface is provided at each connection portion of the connection elements adjacent to each other among the connection elements, and the friction surface is slidable in the rotation direction. Are brought into contact with each other.
[0011]
In the cable-stayed bridge cable damping device according to the present invention, an extension limiting mechanism is interposed between the cable-stayed bridge cable and the girder supported by the cable-stayed bridge cable.
[0012]
Here, the extension limiting mechanism is configured so that the total length is variable up to the set maximum length with respect to forced deformation in the extension direction. For such a set maximum length, the self-excited vibration growth of the cable stayed bridge cable Is set to be suppressed.
[0013]
In the vibration of a structure, etc., unless the forced external force is applied, the amplitude generally decreases with time due to the damping force, but when the structure vibrates due to the flow of fluid in contact with it, In addition to fluid force, self-excited force governed by vibration response is added, and self-excited vibration due to negative fluid damping force is generated. That is, a circulation phenomenon occurs such that the self-excited force accompanying the vibration further increases the vibration, and manifests in the form of galloping in bending vibration and torsional flutter in torsional vibration.
[0014]
When the cable stayed bridge cable receives a hydrodynamic force due to wind, the cable stayed at the cable stayed at both ends is fixed and the amplitude is increased by self-excited vibration. When an extension limit mechanism is interposed between the cable stayed bridge cable and the girder and the vibration of the cable stayed bridge cable reaches an amplitude corresponding to the set maximum length of the extension limit mechanism, the extension limit mechanism The full length is fixed, and the cable stayed bridge cable shifts to a vibration mode in a state where the fixing point of the end portion is shifted to the attachment position of the extension restriction mechanism. With the transition of the vibration mode, higher-order mode vibration is generated in the cable-stayed bridge cable, and the vibration energy of the cable-stayed bridge cable is consumed in the form of damping of the higher-order vibration mode. The vibration of the Zhangqiao cable converges quickly without growing as self-excited vibration. Note that if the amplitude of the cable stayed bridge cable falls below the amplitude corresponding to the maximum length set by the extension restriction mechanism as a result of the decrease in the amplitude, the cable stayed bridge cable is not restrained by the extension restriction mechanism and the fixed point at the end. Shifts to the original position again, and the above-described operation is repeated.
[0015]
Stretching limiting mechanism, and made of an elastic mechanism connecting elements multiple, which are sequentially connected so as to be rotatable at their ends, the set maximum length, the tie-angle of each connecting element each other 180 time, i.e. shall be the length of the state in which the respective coupling element arranged in a straight line.
[0016]
Here, when the cable stayed bridge cable vibrates within the limit of the set maximum length of the expansion / contraction mechanism, the expansion / contraction mechanism follows the vibration of the cable as its connecting elements rotate relative to each other. Among such connecting elements, if friction surfaces are provided at respective connecting portions of adjacent connecting elements and the friction surfaces are brought into contact with each other so as to be slidable in the rotation direction, Since frictional damping occurs with the dynamic operation, vibration energy can be attenuated in the form of frictional damping even for vibrations of a cable-stayed bridge cable with a small amplitude at which the extension limiting mechanism does not operate.
[0017]
It goes without saying that the cable-stayed bridge cable referred to in the present invention is not limited to the parallel cable.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a vibration control device for a cable-stayed bridge cable according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0019]
FIG. 1 is an overall view showing a cable-stayed bridge cable damping device according to the present embodiment. As can be seen from the figure, the cable-damping device 1 for the cable-stayed bridge cable according to the present embodiment includes a cable-stayed bridge cable 3 and a girder that is tension-supported by the cable-stayed bridge cable. 7 is interposed.
[0020]
Here, the expansion / contraction mechanism 2 is configured by sequentially connecting a plurality of connecting elements 4a and 4b so that the connecting elements 4a and 4b are rotatable at their end portions, and at the lower end thereof to the attachment portion 5 of the beam 7 and at the upper end thereof. Each of the connecting elements 4a and 4b is hinged to the attachment portion 6 of the cable-stayed bridge cable 3, and in this configuration, the connecting elements 4a and 4b rotate with respect to each other so that the total length is variable. The joint angle is 180 degrees, that is, the length when the connecting elements 4 are aligned is the set maximum length, and the forced deformation in the extension direction exceeding the set maximum length is restricted.
[0021]
The set maximum length is set so that the growth of self-excited vibration of the cable-stayed bridge cable 3 is suppressed.
[0022]
FIG. 2 shows in detail the connecting portions of the connecting elements 4a and 4b. As can be seen in the figure, a hollow cylindrical portion 12 having a friction surface formed on the inner peripheral surface 11 is fixed to the end portion of the connecting element 4b, and a bracket portion 13 provided at the end portion of the connecting element 4a. , 13, a cylindrical portion 15 having a friction surface formed on the outer peripheral surface 14 is fixed, and the friction surface of the cylindrical portion and the friction surface of the hollow cylindrical portion 12 are in the rotational direction (see FIG. 2A). The cylindrical portion 15 is fitted into the hollow cylindrical portion 12 so as to be slidable in the direction of the arrow) and brought into contact with each other.
[0023]
A predetermined friction material may be attached to the friction surface of the hollow cylindrical portion 12 or the friction surface of the cylindrical portion 15, and irregularities are formed on the inner peripheral surface of the hollow cylindrical portion 12 or the outer peripheral surface of the cylindrical portion 15. May be configured.
[0024]
In the cable-stayed bridge cable damping device 1 according to the present embodiment, when the cable-stayed bridge cable 3 receives a fluid force due to wind, the cable-stayed bridge cable generates vibration with both ends fixed. At the same time, the amplitude tends to increase due to self-excited vibration. In the present embodiment, the expansion / contraction mechanism is an expansion limiting mechanism between the cable-stayed bridge cable 3 and the girder 7 that is tension-supported by the cable-stayed bridge cable. 2 is interposed.
[0025]
Therefore, while the cable stayed bridge cable 3 has a small amplitude, the telescopic mechanism 2 expands and contracts so as to follow the movement of the cable stayed bridge cable 3, but the vibration of the cable stayed bridge cable 3 is as shown in FIG. When the amplitude corresponding to the set maximum length L of the expansion / contraction mechanism 2 is reached, the total length of the expansion / contraction mechanism 2 is fixed to L, and the vibration mode of the cable-stayed bridge cable 3 is the maximum length L set by the expansion / contraction mechanism 2 yet. The vibration mode (FIG. 3 (c)) in which the fixed point at one end is shifted to the attachment position of the telescopic mechanism 2 from the vibration mode (FIG. 3 (b)) when both ends are not reached. )).
[0026]
With the transition of the vibration mode, higher-order mode vibration occurs in the cable-stayed bridge cable 3, and the vibration energy of the cable-stayed bridge cable 3 is consumed in the form of attenuation of the higher-order vibration mode, thus The vibration of the cable stayed bridge cable 3 converges immediately without growing as self-excited vibration.
[0027]
If the amplitude of the cable-stayed bridge cable 3 falls below the amplitude corresponding to the set maximum length L of the extension / contraction mechanism 2 as a result of the decrease in the amplitude, the cable-stayed bridge cable 3 is not restrained by the extension / contraction mechanism 2 and ends. The fixed point is shifted again to the original position as shown in FIG. 3B, and the above-described operation is repeated thereafter.
[0028]
On the other hand, when the cable stayed bridge cable 3 vibrates within the limit of the set maximum length L of the expansion / contraction mechanism 2, the expansion / contraction mechanism 2 follows the vibration of the cable as its connecting elements 4a and 4b rotate relative to each other. However, the friction surface formed on the outer peripheral surface of the cylindrical portion 15 and the friction surface formed on the inner peripheral surface of the hollow cylindrical portion 12 slide with each other as the connecting elements 4a and 4b rotate. Frictional damping occurs.
[0029]
Therefore, the vibration energy is attenuated in the form of frictional damping even for the vibration of the cable-stayed bridge cable 3 with a small amplitude at which the telescopic mechanism 2 does not operate.
[0030]
As explained above, according to the vibration control device 1 for a cable stayed bridge cable according to the present embodiment, the expansion / contraction mechanism 2 that is an extension restriction mechanism is interposed between the cable stayed bridge cable 3 and the girder 7, When the vibration of the cable stayed bridge cable 3 reaches a predetermined amplitude, the vibration mode is changed, and the vibration energy of the cable stayed bridge cable 3 can be quickly consumed by the vibration of the higher order mode generated at that time. It becomes possible.
[0031]
Therefore, the cable stayed bridge cable 3 can be quickly converged without growing as self-excited vibration. And unlike the conventional damping device using a permanent magnet, reliable operability and durability can be expected over a long period of time even under harsh environments.
[0032]
Further, according to the cable-stayed bridge cable damping device 1 according to the present embodiment, when the cable-stayed bridge cable 3 vibrates within the limit of the set maximum length L of the telescopic mechanism 2, the rotation of the connecting elements 4a and 4b is performed. With the movement, the friction surface formed on the outer peripheral surface of the cylindrical portion 15 and the friction surface formed on the inner peripheral surface of the hollow cylindrical portion 12 slide with each other to generate friction damping.
[0033]
Therefore, it is possible to attenuate the vibration energy in the form of frictional damping even with respect to the vibration of the cable-stayed bridge cable 3 with a small amplitude at which the telescopic mechanism 2 does not operate.
[0034]
Thus, according to the cable-stayed bridge cable damping device 1 according to the present embodiment, the vibration mode changes in addition to the friction damping when the amplitude of the cable-stayed bridge cable 3 is small and by friction damping when the amplitude is large. Due to the accompanying attenuation, the vibration of the cable-stayed bridge cable 3 can be attenuated, so that it is possible to adapt to various types and sizes of vibration.
[0035]
In the present embodiment, the expansion / contraction mechanism 2 is configured by sequentially connecting the plurality of connecting elements 4a and 4b so as to be rotatable at their end portions, and at the lower end thereof, the attachment portion 5 of the girder 7 is connected. At the upper end, the cable is connected to the mounting portion 6 of the cable-stayed bridge cable 3 by hinges. As a reference example, a pantograph-like structure is shown in FIG .
[0036]
That is, the expansion / contraction mechanism 21 shown in the figure is constructed by sequentially connecting a plurality of connecting elements 22a and 22b hinged at each center so that the connecting elements 22a and 22b are rotatable at their ends. The lower end is hinged to the mounting portion 5 of the girder 7 via the connecting element 23, and the upper end is hinged to the mounting portion 6 of the cable-stayed bridge cable 3 via the connecting element 23.
[0037]
Even in such a configuration, the function and effect are substantially the same as those of the telescopic mechanism 2, and the description thereof is omitted here.
[0038]
【The invention's effect】
As described above, according to the cable-stayed bridge cable damping device according to the present invention, the extension restriction mechanism is interposed between the cable-stayed bridge cable and the girder. When the amplitude is reached, the vibration mode is changed, and the vibration energy of the cable stayed bridge cable can be quickly consumed by the vibration of the higher order mode generated at that time. Therefore, the cable stayed bridge cable can be quickly converged without growing as self-excited vibration.
[0039]
[Brief description of the drawings]
FIG. 1 is an overall view of a vibration control device for a cable-stayed bridge cable according to the present embodiment.
FIG. 2 is a detailed view of a telescopic mechanism constituting the vibration damping device for a cable-stayed bridge cable according to the present embodiment, (a) is a detailed view of a connecting portion of the telescopic mechanism, and (b) is a line AA. FIG.
FIG. 3 is a diagram showing the operation of the cable-stayed bridge cable vibration damping device according to the present embodiment.
FIG. 4 is an overall view of a vibration control device for a cable-stayed bridge cable according to a reference example .
[Explanation of symbols]
1 Damping device for cable-stayed bridge cable 2 Expansion / contraction mechanism (extension restriction mechanism)
3 Cable-stayed bridge cables 4a, 4b Connecting elements 7 digits

Claims (2)

伸張方向の強制変形に対し設定最大長さを限度として全長が可変に構成された伸張制限機構を斜張橋ケーブルと該斜張橋ケーブルで引張支持されている桁との間に介在させてなり、前記設定最大長さを、前記斜張橋ケーブルの自励振動の成長が抑制されるように設定した斜張橋ケーブルの制振装置において、
前記伸張制限機構を、複数の連結要素がそれらの端部にて回動自在となるように順次連結されてなり、前記複数の連結要素が一直線上に並んだときの長さが前記設定最大長さとなる伸縮機構で構成したことを特徴とする斜張橋ケーブルの制振装置。
An extension limiting mechanism, which is configured to be variable in total length up to the maximum set length for forced deformation in the extension direction, is interposed between the cable stayed bridge cable and the girder supported by the cable stayed bridge cable. In the vibration control device for the cable stayed bridge cable, the set maximum length is set so that the growth of self-excited vibration of the cable stayed bridge cable is suppressed .
The extension limiting mechanism is sequentially connected such that a plurality of connecting elements are rotatable at their ends, and the length when the plurality of connecting elements are aligned is the set maximum length. A cable-damping device for a cable-stayed bridge cable, characterized by comprising an extension mechanism .
前記連結要素のうち、互いに隣接する連結要素の各連結部位に摩擦面をそれぞれ設けるとともに、該摩擦面を回動方向に摺動自在となるように互いに当接させた請求項記載の斜張橋ケーブルの制振装置。Wherein one of the coupling elements, the friction surfaces provided with the respective connecting portions of the connecting element adjacent to each other, cable-stayed of claim 1, wherein the manner is in contact with each other for sliding the friction surface in the rotational direction Damping device for bridge cable.
JP2000066233A 2000-03-10 2000-03-10 Cable-stayed bridge cable damping device Expired - Fee Related JP4332976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066233A JP4332976B2 (en) 2000-03-10 2000-03-10 Cable-stayed bridge cable damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066233A JP4332976B2 (en) 2000-03-10 2000-03-10 Cable-stayed bridge cable damping device

Publications (2)

Publication Number Publication Date
JP2001254312A JP2001254312A (en) 2001-09-21
JP4332976B2 true JP4332976B2 (en) 2009-09-16

Family

ID=18585619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066233A Expired - Fee Related JP4332976B2 (en) 2000-03-10 2000-03-10 Cable-stayed bridge cable damping device

Country Status (1)

Country Link
JP (1) JP4332976B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626189B2 (en) * 2003-06-03 2011-02-02 株式会社大林組 Seismic reinforcement structure and structure provided with this seismic reinforcement structure
FR2862073B1 (en) * 2003-11-12 2007-11-23 Freyssinet Int Stup DEVICE FOR DAMPING THE VIBRATION OF A HAUBANS TAB OF A CONSTRUCTION WORK AND METHOD OF DAMPING THE SAME
JP4719620B2 (en) * 2005-09-30 2011-07-06 ショーボンド建設株式会社 STRESS RELAXING CONNECTION STRUCTURE, quakeproof shock absorber using the same, and its mounting plate
KR100770433B1 (en) * 2006-05-18 2007-10-26 세종대학교산학협력단 Damping device for suppressing vibration of stay cable
KR101007015B1 (en) * 2008-05-28 2011-01-12 주식회사 휴먼브릿지 The distance maintain apparatus of the sidewalk suspension bridge
CH709002A1 (en) 2013-12-18 2015-06-30 Vsl Lnternat Ag Apparatus and method for friction damping.
CN107151974A (en) * 2017-06-01 2017-09-12 中铁大桥勘测设计院集团有限公司 Stopping means and the cable-stayed bridge containing stopping means
CN110374010B (en) * 2019-07-22 2021-09-03 中铁大桥局集团有限公司 Construction device for temporary vibration reduction of stay cable and use method thereof

Also Published As

Publication number Publication date
JP2001254312A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
KR19980033066A (en) Self-adjusting vibration damping device
JP4332976B2 (en) Cable-stayed bridge cable damping device
JP4852552B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
JP6175195B2 (en) Apparatus and method for friction damping
JP4545920B2 (en) Seismic isolation system for bridges
JP2615397B2 (en) Variable damper device for bridges
CN115917181B (en) Passive damper and damper system
JP2019508622A (en) Wind generator with elastic ball / pendulum bearing
JP3319369B2 (en) Cable staying device for cable stayed cable
JP2003227540A (en) Vibration isolating device
US4854559A (en) Suspension arm for the tub of a laundry washing machine
JP2020197239A (en) Damper and seat suspension mechanism
JP2003055909A (en) Damping bridge
JPH0251638A (en) Torsional vibration damper
JP2001115414A (en) Vibration damper for parallel cable
JPH0666344A (en) Cable vibration control device
JPH1129906A (en) Vibration control method of suspension bridge girder, and the suspension bridge
KR100448786B1 (en) variable inertia type torsional vibration damper
JP3644510B2 (en) High viscosity damper
KR20090020763A (en) Complex damper to reduce armhole of construction
JPH04237707A (en) Cable vibration damping device
JP4337393B2 (en) Vibration control method
CN117702604A (en) Stay cable lever mass damper
JPH04171337A (en) Vibration suppressing device for floor
JPH10325263A (en) Vibration control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees