JP4332800B2 - Electrical equipment operating state and abnormal deterioration diagnosis method - Google Patents

Electrical equipment operating state and abnormal deterioration diagnosis method Download PDF

Info

Publication number
JP4332800B2
JP4332800B2 JP2004305694A JP2004305694A JP4332800B2 JP 4332800 B2 JP4332800 B2 JP 4332800B2 JP 2004305694 A JP2004305694 A JP 2004305694A JP 2004305694 A JP2004305694 A JP 2004305694A JP 4332800 B2 JP4332800 B2 JP 4332800B2
Authority
JP
Japan
Prior art keywords
principal component
electrical equipment
operating state
load
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004305694A
Other languages
Japanese (ja)
Other versions
JP2006118928A (en
Inventor
博 高
Original Assignee
エイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイテック株式会社 filed Critical エイテック株式会社
Priority to JP2004305694A priority Critical patent/JP4332800B2/en
Publication of JP2006118928A publication Critical patent/JP2006118928A/en
Application granted granted Critical
Publication of JP4332800B2 publication Critical patent/JP4332800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

本発明は、電気設備診断に係る技術分野に属し、電動機やインバータを対象と
した電気設備の稼動状態並びに異常劣化診断法に関するものである。
The present invention belongs to a technical field related to electrical equipment diagnosis, and relates to an operating state and abnormal deterioration diagnosis method for electrical equipment for an electric motor and an inverter.

最近の電気機器設備は生産を連続化したり、集約して高生産性を追及し、さらに高性能で広範囲の自動化システムと共に、インバータ等の省エネ機器も導入し、信頼性の高い設備、装置にするマスプロ化があらゆる産業界に求められている。このようなマスプロ設備は一般的に連続操業を原則にしており、電気機器設備の故障(休止)はプロセス全体の休止につながることが多く、ひとたび故障が発生すると、生産障害に加え、需要家からの信頼低下や場合によっては災害の発生等、休止損失は計り知れないものとなり、致命的な問題になることが推測される。   Recent electrical equipment facilities are continuously produced or aggregated to pursue high productivity, and energy efficient equipment such as inverters are introduced along with high-performance and wide-ranging automation systems to make highly reliable equipment and devices. Mass production is required in every industry. In general, such mass production equipment is based on the principle of continuous operation. Failure of electrical equipment equipment (suspension) often leads to the suspension of the entire process. Loss of outage, such as a decline in reliability and, in some cases, the occurrence of disasters, is immeasurable, and is estimated to be a fatal problem.

また、新製品の設備機器(機械)を企業が購入し検収(竣工検査)する場合にあっては、検収基準もしくは規格に統一されたものがなく、現状では設備機器(機械)が仕様通り動作することをもって検収上げとしている。しかし、最近の自動機器(機械)類は、多くの装置をインターフェースケーブルにより接続した組合せシステム構成としているため、各装置間の整合性(マッチング)が取れていない場合もあり、後になってトラブルが何度も発生し、火災事故に至ったケースもあり問題になっている。   In addition, when a company purchases and inspects (completion inspection) new equipment equipment (machines), there is no standardized acceptance standard or standard, and currently equipment equipment (machines) operate as specified. By doing this, we are going to raise the acceptance. However, recent automatic equipment (machines) has a combined system configuration in which many devices are connected by interface cables, so there may be cases where consistency between the devices is not achieved. It has occurred many times and has become a problem in some cases leading to fire accidents.

さらに、人の乗る運搬、輸送設備として、例えば鉄道車両やエレベータ等は法令で定期点検が義務づけられているが、電動機設備やインバータについては、温度上昇や異音の発生有無を確認する程度で安全面での問題を残している。   Furthermore, for example, railway vehicles and elevators, which are transported and transported by people, are required to be regularly inspected by law, but for motor equipment and inverters, it is safe enough to check for temperature rises and abnormal noise. There is a problem with the aspect.

ところで、電気設備の稼動状態の診断とは、従来は設備の異常や劣化診断として取り扱われていた。これらについては、既に発明者が出願した特許(特許3561882号、特願2000−386603、特願2001−358718、特願2003−030807、特願2003−036362)にて述べているので記述を省略する。   By the way, the diagnosis of the operating state of the electric equipment has been conventionally treated as an abnormality or deterioration diagnosis of the equipment. These are already described in patents filed by the inventor (Japanese Patent No. 3561882, Japanese Patent Application No. 2000-386603, Japanese Patent Application No. 2001-358718, Japanese Patent Application No. 2003-030807, Japanese Patent Application No. 2003-036362), and thus description thereof is omitted. .

電気設備の稼動状態とは、ここでは電動機に入力される電力と、負荷に供給される電力(動力)とが整合(マッチング)している状態か否かを表わすものとし、以下電力バランスと記す。すなわち、電力バランスがとれた状態とは一般的には次のような状態を言う。
(1)電動機の容量が負荷に適合し、過負荷状態等が起こりにくい。
(2)電動機効率が比較的高い。
(3)負荷系統の損失が少なく設備全体として見た場合、突発事故が比較的発生しにくい。
Here, the operating state of the electric equipment represents whether or not the electric power input to the motor and the electric power (power) supplied to the load are matched (hereinafter referred to as power balance). . That is, the state in which power is balanced generally refers to the following state.
(1) The capacity of the motor is suitable for the load, and overload conditions are unlikely to occur.
(2) The motor efficiency is relatively high.
(3) Sudden accidents are less likely to occur when the entire system is viewed with little loss in the load system.

次に、本技術分野に属する主成分分析法について述べる。   Next, principal component analysis methods belonging to this technical field will be described.

主成分分析法は本発明での電気設備の稼動状態診断のように、判定基準が初めから明確に与えられていないような外的基準がない場合で、多次元事象の特性値間の関連性を分析するには最も適している。この主成分分析法は多変量解析に属するもので数多くの文献があるが、その概要を説明すると次の通りである。   Principal component analysis is a method for determining the relationship between characteristic values of multi-dimensional events when there is no external criterion that is not given a clear criterion from the beginning, as in the operation status diagnosis of electrical equipment in the present invention. It is most suitable for analyzing. This principal component analysis method belongs to multivariate analysis, and there are many literatures. The outline of the method is as follows.

主成分分析は、相関関係にあるいくつかの要因を合成(圧縮)して、いくつかの成分にしその特性を求める方法である。主成分分析では、重回帰分析や判別分析のように目的変量は与えられていない。いま説明変量を高調波成分、または電動機の劣化部位とする。ここで、説明変量がP個あるとして、分散共分散行列をAとすると   Principal component analysis is a method of combining (compressing) several correlated factors into several components and obtaining their characteristics. In principal component analysis, objective variables are not given as in multiple regression analysis and discriminant analysis. Now, let the explanatory variable be a harmonic component or a degraded part of the motor. Here, assuming that there are P explanatory variables and the variance-covariance matrix is A,

Figure 0004332800
Figure 0004332800

この時、AX=λX(λ:定数)の固有方程式を解いて固有値λを得る。Xはλに属する固有ベクトルである。固有値λをλ≧λ≧・・・≧λ≧λとすると、固有値の大きい方から順に、第1主成分、第2主成分・・・第P主成分となるので、各λに属する固有ベクトルを求めると、各主成分の係数を得ることが出来る。すなわち、次式より固有値λを得る。 At this time, the eigenvalue λ is obtained by solving the eigen equation of AX = λX (λ: constant). X is an eigenvector belonging to λ. If the eigenvalue λ is λ 1 ≧ λ 2 ≧... Λλ P ≧ λ 0 , the first principal component, the second principal component,. When the eigenvector belonging to is obtained, the coefficient of each principal component can be obtained. That is, the eigenvalue λ i is obtained from the following equation.

Figure 0004332800
Figure 0004332800

最大の固有値λから第1主成分が得られるので、λに属する固有ベクトルaを求めて第1主成分Z(第1主成分得点)が次のように求められる。 Since the first principal component is obtained from the maximum eigenvalue λ 1 , the first principal component Z 1 (first principal component score) is obtained as follows by obtaining the eigenvector a i belonging to λ 1 .

Figure 0004332800
ここで、x、・・・・・xは説明変量である。
Figure 0004332800
Here, x 1 ,..., X P are explanatory variables.

同様にして、2番目に大きい固有値λから第2主成分Zが、λに属する固有ベクトルaを求めることにより(3)式と同じように求まる。以下、同様にして第P主成分まで求めることが出来る。なお、新しく求められた主成分は、説明変量を合成して得られるものであるため、その主成分が何を意味する変量であるか定める必要がある。例えば、第1主成分が第7次高調波、もしくはカップリング異常と定める。 Similarly, from the second largest eigenvalue λ 2 , the second principal component Z 2 is obtained in the same manner as the equation (3) by obtaining the eigenvector a j belonging to λ 2 . Hereinafter, the P-th principal component can be similarly determined. Since the newly obtained principal component is obtained by synthesizing the explanatory variables, it is necessary to determine what the principal component is a variable. For example, the first main component is defined as the seventh harmonic or coupling abnormality.

一般にP個の変量があると、主成分もP個求めることが出来る。しかし、主成分分析は、P個の変量データを圧縮して分析する方法であるから、主成分をP個求める必要はない。そこで、第1主成分から順に第2主成分・・・第P主成分とそれぞれの主成分がもとのデータをどれ位説明しているのかを示す尺度として寄与率がある。固有値が大きいほど、主成分得点の分散も大きく、もとのデータを説明する力が大きい(情報量が多い)ので重要である。   In general, if there are P variables, P principal components can be obtained. However, since the principal component analysis is a method of analyzing by compressing P variable data, it is not necessary to obtain P principal components. Therefore, in order from the first principal component, there is a contribution ratio as a measure indicating how much the second principal component... Pth principal component and each principal component explain the original data. The greater the eigenvalue, the greater the variance of the principal component scores, and the greater the ability to explain the original data (the greater the amount of information), the more important.

いま、第P主成分まであり、その固有値をそれぞれλとすると、寄与率はそれぞれの固有値λを固有値の合計Σλで割ったものである。また、寄与率を第1主成分から順に累積していったものを累積寄与率と呼ぶが、一般には累積寄与率が60%以上になるまでの主成分が採用されている。しかし、本発明の電気設備の稼動状態並びに異常劣化診断法では、診断確度を高めるため、累積寄与率を90%以上としている。 Now, up to the P-th principal component, and each eigenvalue is λ i , the contribution rate is obtained by dividing each eigenvalue λ i by the total eigenvalue Σλ i . The cumulative contribution rate from the first principal component is referred to as the cumulative contribution rate. Generally, the principal components until the cumulative contribution rate reaches 60% or more are employed. However, in the operating state of the electrical equipment and the abnormal deterioration diagnosis method of the present invention, the cumulative contribution rate is set to 90% or more in order to increase the diagnosis accuracy.

ところで、前述の電力バランスは負荷モードと深く関係するが、この負荷モードについては後述する。
特許3561882号 特願2000−386603 特願2001−358718 特願2003−030807 特願2003−036362
By the way, the power balance described above is closely related to the load mode, which will be described later.
Japanese Patent No. 3561882 Japanese Patent Application 2000-386603 Japanese Patent Application 2001-358718 Japanese Patent Application No. 2003-030807 Japanese Patent Application No. 2003-036362

電気設備の電動機やインバータの高効率運転や突発事故を防ぐことは、電気設備の省エネ化、さらに設備の長期にわたる円滑な運転と信頼性の確保の上で極めて重要な課題となっている。   Preventing high-efficiency operation and sudden accidents of electric motors and inverters in electrical facilities is an extremely important issue in terms of saving energy in electrical facilities and ensuring long-term smooth operation and reliability of facilities.

しかし、電気設備の稼動状態を上記のような観点から診断するには、通常は負荷変動の監視によって行うが、負荷変動の監視では電気設備機器の異常や劣化を含めた診断は出来なかった。   However, in order to diagnose the operating state of the electric equipment from the above viewpoint, it is usually performed by monitoring the load fluctuation. However, the monitoring of the load fluctuation has not been able to diagnose the abnormality or deterioration of the electric equipment.

本研究に係る電動機及びインバータを対象とした電気設備の稼動状態並びに異常劣化診断法は前述の問題を解決するため次のようにしている。   In order to solve the above-mentioned problem, the operation state and abnormal deterioration diagnosis method of the electric equipment for the electric motor and inverter related to this research are as follows.

電気設備を構成する電動機やインバータに流れる電流高調波の各次数の高調波含有率を、あらかじめ定められた次数までの電流高調波の総合歪み率で除した特定の指数値と、前記電流高調波の選択した主成分の寄与率とを演算して、前記電動機やインバータの稼動状態並びに異常劣化の診断を可能にする。   A specific exponent value obtained by dividing the harmonic content of each order of the current harmonics flowing through the electric motor and inverter constituting the electrical equipment by the total distortion factor of the current harmonics up to a predetermined order, and the current harmonics The contribution ratio of the selected principal component is calculated to enable diagnosis of the operating state and abnormal deterioration of the electric motor and the inverter.

本発明の電気設備の稼動状態並びに異常劣化診断法は、電動機及びインバータに流れる電流高調波を測定するものであり次のような効果を有する。
(1)電力バランスより見て電動機と負荷の整合状態が分かるので、インバータを含め機器のトラブル防止が可能となる。
(2)負荷側各部位の異常劣化の判別が容易にできる。
(3)電気設備の突発事故を防ぐことができる。
The operating state and abnormal deterioration diagnosis method of the electrical equipment according to the present invention measures current harmonics flowing through the motor and the inverter, and has the following effects.
(1) Since the matching state of the motor and the load can be seen from the power balance, troubles of equipment including the inverter can be prevented.
(2) The abnormal deterioration of each part on the load side can be easily determined.
(3) Sudden accidents of electrical equipment can be prevented.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は電動機の電力の流れを示す図である。一次入力は電動機の固定子側一次巻線への電力であり、損失としては鉄損と銅損がある。二次入力は回転子側二次巻線への電力で、二次銅損と機械出力から成り、実際の軸出力は機械損を減算したものとなる。   FIG. 1 is a diagram showing the flow of electric power of an electric motor. The primary input is power to the stator side primary winding of the motor, and there are iron loss and copper loss as losses. The secondary input is the power to the rotor side secondary winding, and consists of secondary copper loss and mechanical output, and the actual shaft output is obtained by subtracting mechanical loss.

図2は負荷側の電力の流れを示す図である。図1の軸出力、すなわち負荷へ伝達される動力が図2の機械入力である。この機械入力が負荷側へ伝達される時、カップリング損失が伴う。   FIG. 2 is a diagram showing the flow of power on the load side. The shaft output of FIG. 1, that is, the power transmitted to the load is the machine input of FIG. When this machine input is transmitted to the load side, there is a coupling loss.

また、ポンプやファン等が負荷の場合、管内異常(異物付着等)、軸受けや回転軸異常、又歯車やベルトにより負荷に動力を伝える場合は歯車・ベルト系異常が考えられる。従って、有効動力はこれら異常(損失)を機械入力から減算したものとなる。この機械入力と有効動力から、電力バランス、すなわち電動機と負荷との整合性、いわゆる稼動状態を知り得ることを発明者は見出した。この稼動状態をここでは負荷モードと呼ぶ。 Further, when the pump or fan is a load, abnormalities in the pipe (foreign matter adhesion, etc.), bearings or rotating shafts are abnormal, and when power is transmitted to the load by a gear or belt, a gear / belt system abnormality is considered. Therefore, the effective power is obtained by subtracting these abnormalities (losses) from the machine input. The inventor has found that the power balance, that is, the consistency between the motor and the load, that is, the so-called operating state can be known from the machine input and the effective power. This operating state is referred to herein as a load mode.

負荷モードは表1のように三つのパターンに分類できる。   The load modes can be classified into three patterns as shown in Table 1.

Figure 0004332800
ここで、診断数値(カップリング数値)については後述する。
Figure 0004332800
Here, the diagnostic value (coupling value) will be described later.

表2は電動機負荷部の異常・劣化部位と特定高調波成分の関係を示したもので、発明者が既に出願した特許(特願2003−036362)にて記した。   Table 2 shows the relationship between the abnormality / deterioration part of the motor load section and the specific harmonic component, and is described in a patent already filed by the inventor (Japanese Patent Application No. 2003-036362).

Figure 0004332800
Figure 0004332800

表1の各負荷モードの特徴を述べると次の通りである。   The characteristics of each load mode in Table 1 are as follows.

(1)高位モード
このモードは一般的に負荷率が高い状態、すなわち高負荷もしくは過負荷モードであり、注意しなければならない。特にインバータ駆動の場合は電力素子に悪影響を及ぼし、電力素子の破壊にもつながる。
(1) High mode This mode is generally a high load factor, that is, a high load or overload mode, which must be noted. In particular, in the case of inverter driving, the power element is adversely affected, leading to destruction of the power element.

しかし、数値的に安定した高位モードは電動機効率の高い運転状態であるため数値管理を厳しく行っておれば問題はほとんどない。定常的な高位モードの数値としては0.10〜0.16の範囲が望ましい(例えばACサーボモータは正常時この範囲である)。   However, since the numerically stable high-order mode is an operation state with high motor efficiency, there is almost no problem if numerical management is strictly performed. The numerical value of the steady high-order mode is preferably in the range of 0.10 to 0.16 (for example, this range is normal for an AC servo motor).

ここでポンプ系を例にとって、高位モードの異常判別を図3にて説明する。図3(a)及び図3(b)の( )内は診断数値の一例である。   Here, taking the pump system as an example, abnormality determination in the high-order mode will be described with reference to FIG. The numbers in parentheses in FIGS. 3A and 3B are examples of diagnostic values.

いま、図3(a)が正常な(例えば診断数値1.21)、いわゆる設計値に近い状態であったとする。その後、図3(b)のように診断数値が徐々に増加すれば(例えば1.45)、配管の肉厚がキャビテーションや腐食等により減少したと考えられる。但し、この場合バルブ開度やポンプ回転数等は一定とした場合である。   Now, suppose that FIG. 3A is normal (for example, a diagnostic value of 1.21) and is in a state close to a so-called design value. Thereafter, if the diagnostic value gradually increases as shown in FIG. 3B (eg, 1.45), it is considered that the thickness of the pipe has decreased due to cavitation, corrosion, or the like. However, in this case, the valve opening, the pump rotation speed, etc. are constant.

また図3の(a)と(b)が逆、すなわち正常時が(b)で(a)のように数値が変化したときは配管のつまり、異物付着等により流体の流れが抑制された状態である。   Also, when (a) and (b) in FIG. 3 are reversed, that is, when the numerical value changes as shown in (a) when (b) is normal, the flow of the fluid is suppressed due to the piping, that is, foreign matter adhesion etc. It is.

ところで、高位モードでは軸受部に異常・劣化が出やすく、また振動等も比較的発生しにくいモードである。   By the way, in the high-order mode, the bearing portion is likely to be abnormal and deteriorated, and vibration is relatively less likely to occur.

(2)安定モード
このモードは電力バランスがとれたモードである。しかし、安定モードであっても安全とは言えず、機器の異常・劣化は起こり得る。特に負荷状態が一定であるにもかかわらず安定モードから高位モードへ変化した時は上述の高位モードの場合と同様、系統に異常・劣化が生じている可能性が高いので注意が必要である。
(2) Stable mode This mode is a power balanced mode. However, even in the stable mode, it cannot be said that it is safe, and abnormality / deterioration of the device may occur. In particular, when the load mode is constant but the mode is changed from the stable mode to the high mode, the system is likely to be abnormal or deteriorated as in the case of the high mode described above.

(3)低位モード
このモードは一般的には電動機の負荷率が低い状態、すなわち軽負荷時に発生するが、負荷異常もしくは電動機損失が増大した場合にも起こる。すなわち電力バランスが崩れている状態であり電力ロスも大きいと言える。低位モードは電動機と負荷との整合性がとれていないため効率の低い運転状態である。もちろん、負荷特性上起こり得るものも多い。例えばコンプレッサーや真空ポンプのようにアンロード運転を行うものがこれにあたる。しかし、常時低位モードにある機器は振動(熱振動や流体振動)が出やすく、巻線過熱を伴い電動機各部位の劣化を早めるので対策を講じなければならない。
(3) Low mode This mode generally occurs when the load factor of the motor is low, that is, at a light load, but also occurs when a load abnormality or motor loss increases. That is, it can be said that the power balance is broken and the power loss is large. The low-order mode is a low-efficiency operation state because consistency between the electric motor and the load is not achieved. Of course, there are many things that can occur due to load characteristics. For example, an unloading operation such as a compressor or a vacuum pump corresponds to this. However, equipment that is always in the low-level mode is prone to vibration (thermal vibration and fluid vibration), and it is necessary to take countermeasures because it accelerates the deterioration of each part of the motor accompanying winding overheating.

その対策の一例としてポンプ、ファン系においては、インバータの設置(この場合バルブは全開にする)また設置されている機器においては周波数を下げる等が有効である。   As an example of the countermeasure, it is effective to install an inverter (in this case, the valve is fully opened) in the pump and fan systems, and to reduce the frequency in the installed equipment.

以上各モードについて述べたが、ここで注意すべきことはモードの変化である。負荷特性上必然的に起こり得るものもあるが、繰返しのモード変化は負荷変動を伴う場合がほとんどで、機器に各種のストレスを与え劣化を進展させるので、診断数値による傾向管理が一層重要になる。   Each mode has been described above, but what should be noted here is the change of the mode. Some of the load characteristics may inevitably occur, but repeated mode changes are often accompanied by load fluctuations, and various stresses are applied to the equipment to cause deterioration. Therefore, trend management based on diagnostic values becomes more important. .

ここで、負荷モードと負荷側各部位の劣化について重要な事項について述べる。すなわち、負荷モードのタイプにかかわらず、負荷側診断項目(軸受損傷・異物付着、回転軸異常・バルブ磨耗、歯車・ベルト系損傷)の診断数値が負荷モード数値(カップリング・軸アンバランスの数値)の約10%増になっている場合は、その診断項目の部位に異常・劣化が生じている可能性が高い。従って、各診断項目の数値が負荷モード数値より低い場合は運転上ほとんど支障がない。   Here, important matters regarding the load mode and the deterioration of each part on the load side will be described. In other words, regardless of the load mode type, the diagnostic value of the load side diagnostic item (bearing damage / foreign matter adhesion, rotating shaft abnormality / valve wear, gear / belt system damage) is the load mode numerical value (coupling / shaft unbalance numerical value). ) Of about 10%, there is a high possibility that abnormality / deterioration has occurred at the site of the diagnostic item. Therefore, when the numerical value of each diagnostic item is lower than the load mode numerical value, there is almost no trouble in operation.

本発明の実施例として、総合歪み率は第40次高調波までを対象とすれば、電気設備の稼動状態や異常劣化部位の診断には充分である。そこで負荷側各部位の診断数値は表2をもとに次のように求まる。
但し、I=第K次高調波含有率/第40次までの総合歪み率
(K=6〜10)
As an example of the present invention, if the total distortion rate is targeted up to the 40th harmonic, it is sufficient for diagnosis of the operating state of the electrical equipment and the abnormally deteriorated part. Therefore, the diagnostic value of each part on the load side is obtained as follows based on Table 2.
However, I K = Kth harmonic content / total distortion ratio up to 40th order (K = 6 to 10)

(1)カップリング、軸アンバランス(負荷モード) (1) Coupling, shaft unbalance (load mode)

Figure 0004332800
Figure 0004332800

(2)軸受損傷、異物付着 (2) Bearing damage, foreign matter adhesion

Figure 0004332800
Figure 0004332800








(3)回転軸異常、バルブ磨耗 (3) Rotating shaft abnormality, valve wear

Figure 0004332800
Figure 0004332800

(4)歯車、ベルト系損傷 (4) Gear and belt damage

Figure 0004332800
Figure 0004332800

あらゆる産業用動力設備を構成する電動機やインバータによって駆動される次のような機械に利用可能である。
(1)産業用設備機械
例えば、ファン、ブロア、工作機械、冷蔵・冷凍庫、コンベア、食品機械、プラスチック成形機、繊維機械、製紙機械等
(2)運輸・輸送機械
例えば、鉄道車両、エレベータ、エスカレータ等
(3)その他動力機械
例えば、農業用機械、自動倉庫、荷役機械等
It can be used for the following machines driven by electric motors and inverters constituting all industrial power equipment.
(1) Industrial equipment machinery For example, fans, blowers, machine tools, refrigeration / freezers, conveyors, food machinery, plastic molding machines, textile machinery, papermaking machinery, etc. (2) Transportation / transport machinery eg rail vehicles, elevators, escalators (3) Other power machines For example, agricultural machines, automatic warehouses, cargo handling machines, etc.

電動機の電力の流れを示した説明図である。It is explanatory drawing which showed the flow of the electric power of an electric motor. 負荷側の電力の流れを示した説明図である。It is explanatory drawing which showed the flow of the electric power by the side of a load. 高位モードの異常判別を示した説明図である。It is explanatory drawing which showed abnormality determination of the high mode.

Claims (3)

電気設備を構成する電動機やインバータに流れる電流
高調波の各次数の高調波含有率を、あらかじめ定められた次数までの電流高調波の総合歪み率で除した特定の指数値と、前記電流高調波の選択した主成分の寄与率、該選択した主成分の寄与率は多次元事象の関連性を分析する主成分分析法より得られるものであって、前記特定の指数値と前記選択した主成分の寄与率とを演算して、前記電動機やインバータの異常劣化判定を行う診断方法において、前記電動機の出力電力と負荷が必要とする入力電力の整合性を、前記特定の指数値と、該特定の指数値に対応する前記電流高調波の主成分の寄与率を乗じて求められる複数個の数値、該複数個の数値を加算して得られるモード数値、該モード数値と、別に定めた既定の数値領域とを比較して判定することを特徴とする電気設備の稼動状態並びに異常劣化診断法。
Current that flows in the motor and inverter that make up the electrical equipment
A specific index value obtained by dividing the harmonic content of each harmonic order by the total distortion factor of the current harmonics up to a predetermined order, and the contribution ratio of the selected main component of the current harmonics, the selection The principal component contribution rate is obtained from a principal component analysis method for analyzing the relevance of a multidimensional event, and calculates the specific index value and the contribution rate of the selected principal component to calculate the electric motor. In the diagnostic method for determining the abnormal deterioration of the inverter or the inverter, the consistency between the output power of the motor and the input power required by the load is determined by the specific exponent value and the current harmonic corresponding to the specific exponent value. A plurality of numerical values obtained by multiplying the contribution ratio of the principal component, a mode numerical value obtained by adding the plurality of numerical values, and determining by comparing the mode numerical value and a predetermined numerical value area determined separately. Operating state of electrical equipment Normal deterioration diagnosis method.
特定の指数値が第6次、第7次、第8次、第9次及び第10次高調波より得られることを特徴とする請求項1記載の電気設備の稼動状態並びに異常劣化診断法。 2. The operating state and abnormal deterioration diagnosis method for electrical equipment according to claim 1, wherein the specific index value is obtained from the sixth, seventh, eighth, ninth and tenth harmonics. 既定の数値領域が0.1以上、もしくは0.1未満で0.06以上、もしくは0.06未満であることを特徴とする請求項1記載の電気設備の稼動状態並びに異常劣化診断法。 2. The operating state and abnormal deterioration diagnosis method for electrical equipment according to claim 1, wherein the predetermined numerical range is 0.1 or more, or less than 0.1 and 0.06 or more, or less than 0.06.
JP2004305694A 2004-10-20 2004-10-20 Electrical equipment operating state and abnormal deterioration diagnosis method Expired - Fee Related JP4332800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305694A JP4332800B2 (en) 2004-10-20 2004-10-20 Electrical equipment operating state and abnormal deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305694A JP4332800B2 (en) 2004-10-20 2004-10-20 Electrical equipment operating state and abnormal deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JP2006118928A JP2006118928A (en) 2006-05-11
JP4332800B2 true JP4332800B2 (en) 2009-09-16

Family

ID=36536957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305694A Expired - Fee Related JP4332800B2 (en) 2004-10-20 2004-10-20 Electrical equipment operating state and abnormal deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP4332800B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688126B (en) * 2017-06-30 2023-08-15 国网浙江省电力公司 Multi-dimensional correlation analysis method and system for power grid equipment data
CN111856170A (en) * 2019-04-24 2020-10-30 中矿龙科能源科技(北京)股份有限公司 Transformer fault diagnosis system based on harmonic method
KR20220045451A (en) 2020-10-05 2022-04-12 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing state of battery

Also Published As

Publication number Publication date
JP2006118928A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US20210341901A1 (en) Induction motor condition monitoring using machine learning
Ahonen Monitoring of centrifugal pump operation by a frequency converter
JP3661155B2 (en) Harmonic diagnosis method for electrical equipment
US20130218484A1 (en) System and method for monitoring rotating and reciprocating machinery
JP4332800B2 (en) Electrical equipment operating state and abnormal deterioration diagnosis method
Patil et al. Failure modes and effects analysis (FMEA) of computerized numerical control (CNC) turning center
CN116517857A (en) High-speed turbine vacuum pump running state monitoring system
KR101873045B1 (en) Pumps operation scheduling method and computer readable medium recorded program for energy optimal saving based on condition monitoring system
Ciani et al. Condition-based maintenance for Oil&Gas system basing on failure modes and effects analysis
Kovalchuk et al. Diagnosis of electric submersible centrifugal pump
CN110083962B (en) Method and system for predicting operation life of main shaft of centrifugal pump
Goel et al. A methodology for selection of condition monitoring techniques for rotating machinery
CN115600700A (en) Cooling tower energy efficiency diagnosis method based on big data analysis
CN115470946A (en) Equipment maintenance method and device, electronic equipment and storage medium
JP2003028076A (en) Pump abnormality diagnostic device
CN111247344B (en) Method and device for maintaining a pumping system in operation
Discenzo et al. Next generation pump systems enable new opportunities for asset management and economic optimization
Ahonen et al. Pump operation monitoring applying frequency converter
Groenewald et al. An Autoregressive Fault Model for Condition Monitoring of Electrical Machines in Deep-level Mines
O'Kane Intelligent motors moving to the forefront of predictive maintenance
Gopikuttan et al. Maintenance Initiation Prediction Incorporating Vibrations and System Availability
Matías et al. Torsional vibration analysis applied for centrifugal pump condition monitoring
Larit et al. Implementing FMEA for Multi-Stage Centrifugal Compressor in ASU “AQS”
CN114819206A (en) Thermal power plant rotary auxiliary machine optimization maintenance method and system
Strankowski et al. Faults and fault detection methods in electric drives

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4332800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees