JP4332771B2 - Surface coated cemented carbide cutting tool with excellent surface lubricity against chips - Google Patents

Surface coated cemented carbide cutting tool with excellent surface lubricity against chips Download PDF

Info

Publication number
JP4332771B2
JP4332771B2 JP2000243898A JP2000243898A JP4332771B2 JP 4332771 B2 JP4332771 B2 JP 4332771B2 JP 2000243898 A JP2000243898 A JP 2000243898A JP 2000243898 A JP2000243898 A JP 2000243898A JP 4332771 B2 JP4332771 B2 JP 4332771B2
Authority
JP
Japan
Prior art keywords
layer
cutting
coated carbide
carbide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000243898A
Other languages
Japanese (ja)
Other versions
JP2002001602A (en
Inventor
高歳 大鹿
稔晃 植田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000243898A priority Critical patent/JP4332771B2/en
Publication of JP2002001602A publication Critical patent/JP2002001602A/en
Application granted granted Critical
Publication of JP4332771B2 publication Critical patent/JP4332771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、切粉に対する表面潤滑性にすぐれ、したがって特にステンレス鋼や軟鋼などのきわめて粘性が高く、かつ切粉が切刃表面に溶着し易い難削材の高速切削に用いた場合にも、切刃に欠けやチッピング(微小欠け)などの発生なく、すぐれた切削性能を長期に亘って発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトやカッターの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
さらに、従来、一般に、上記の切削工具として、炭化タングステン基超硬合金基体(以下、超硬基体という)の表面に、硬質被覆層として、
0.3〜15μmの平均層厚を有し、かつTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1種の単層または2種以上の複層で構成されたTi化合物層の内層を介して、
0.1〜5μmの平均層厚を有する酸化アルミニウム(以下、Al23で示す)層の外層、
を化学蒸着および/または物理蒸着してなる被覆超硬工具が知られており、この被覆超硬工具が、例えば各種低合金鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
【0004】
また、例えば特開平6−8010号公報や特開平7−328808号公報に記載されるように、前記Ti化合物層を構成するTiCN層を、層自身の靭性向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には1種類の工具できるだけ多くの材種の被削材を切削できる汎用性が求められると共に、切削加工も高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や鋳鉄などの通常の条件での連続切削や断続切削切削に用いた場合には問題はないが、これをきわめて粘性の高いステンレス鋼や軟鋼などの被削材の高速切削に用いた場合には、これら被削材の切粉は、硬質被覆層を構成する外層としてのAl23層に対する親和性が高いために、切刃表面に溶着し易く、この溶着現象は切削加工が高速化すればするほど顕著に現れるようになり、この溶着現象が原因で切刃に欠けやチッピングが発生し、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特にステンレス鋼や軟鋼などの高速切削に用いた場合にも、切刃表面に切粉の溶着し難い被覆超硬工具を開発すべく研究を行った結果、
(a)上記の従来被覆超硬工具において、硬質被覆層の外層を構成するAl23層に代って、
反応ガス組成を、容量%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜67KPa、
とした条件で、0.1〜5μmの平均層厚を有し、かつ、厚さ方向中央部をオージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.9、即ち、
組成式:TiOX
で表わした場合、
X:Tiに対する原子比で1.25〜1.9、
を満足するTi酸化物層を、硬質被覆層の外層として化学蒸着または物理蒸着すると、この結果の被覆超硬工具においては、外層を構成する前記Ti酸化物層が被削材、特にステンレス鋼や軟鋼などの粘性の高い難削材に対してきわめて低い親和性を示し、これは高い発熱を伴う高速切削でも変わらないので、切削に際して前記難削材の切粉が切刃に溶着することがない、すなわち前記Ti酸化物層がすぐれた表面潤滑性を発揮することから、切刃に欠けやチッピングの発生がなくなり、長期に亘ってすぐれた切削性能を発揮するようになること。
【0007】
(b)上記(a)の被覆超硬工具の硬質被覆層の外層を構成するTi酸化物層をX線回折により観察したところ、組成式:TiOXのX値に対応して、Ti23、Ti35、Ti47、およびTi59などのうちの少なくともいずれかに主要ピークが現れる回折パターンを示し、これらの回折結果から前記Ti酸化物層はMagneli相と呼ばれるものからなり、一般的にTin2n-1で表わされるものであること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、硬質被覆層として、
0.3〜15μmの平均層厚を有し、かつTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1種の単層または2種以上の複層で構成されたTi化合物層の内層を介して、
0.1〜5μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:Tiに対する原子比で1.25〜1.9、
を満足するTi酸化物層の外層、
を化学蒸着または物理蒸着してなる、切粉に対する表面潤滑性にすぐれた被覆超硬工具に特徴を有するものである。
【0009】
なお、この発明の被覆超硬工具において、外層を構成するTi酸化物層における酸素(O)のTiに対する原子比(X値)を1.25〜1.9としたのは、その値が1.25未満では所望のすぐれた表面潤滑性を確保することができず、一方その値が1.9を越えると、層中に気孔が形成され易くなり、健全な最表面層の安定的形成が難しくなるという理由によるものである。
また、同じく上記外層の平均層厚を、0.1〜5μmとしたのは、その平均層厚が0.1μm未満では、所望の表面潤滑性を確保することができず、一方この表面潤滑性付与作用は5μmの平均層厚で十分満足に行うことができるという理由にもとづくものである。
さらに、同じく内層を構成するTi化合物層の平均層厚を0.3〜15μmとしたのは、その層厚が0.3μmでは所望のすぐれた耐摩耗性を確保することができず、一方その層厚が15μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由によるものである。
【0010】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも0.5〜4μmの範囲内の所定の平均粒径を有するWC粉末、(Ti,W)C(質量比で、以下同じ、TiC/WC=30/70)粉末、(Ti,W)CN(TiC/TiN/WC=24/20/56)粉末、(Ta,Nb)C(TaC/NbC=90/10)粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で所定形状の圧粉体にプレス成形し、この圧粉体を6Paの真空中、1410℃に1時間保持の条件で真空焼結することによりISO・CNMG120408に規定した形状のスローアウエイチップ用超硬基体として、超硬基体A−1〜A−6をそれぞれ製造した。
【0011】
ついで、これらの超硬基体A−1〜A−6の表面に、0.01Rの曲率で微小ホーニングを施した状態で、通常の化学蒸着装置を用い、表2、3(表2中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組成および目標層厚の内層としてのTi化合物層および外層としてのTi酸化物層からなる硬質被覆層を形成することにより図1(a)に概略斜視図で、同(b)に概略縦断面図で示される形状をもった本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜10をそれぞれ製造した。
また、比較の目的で、表5に示される通り、硬質被覆層の外層として、上記のTi酸化物層に代ってAl23層を形成する以外は同一の条件で従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜10をそれぞれ製造した。
【0012】
つぎに、上記本発明被覆超硬チップ1〜10および従来被覆超硬チップ1〜10について、
被削材:JIS・SUS304の丸棒、
切削速度:280m/min.、
切り込み:1mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件でのステンレス鋼の乾式連続高速切削試験、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1mm、
送り:0.15mm/rev.、
切削時間:3分、
の条件でのステンレス鋼の乾式断続高速切削試験、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での軟鋼の乾式断続高速切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0013】
【表1】

Figure 0004332771
【0014】
【表2】
Figure 0004332771
【0015】
【表3】
Figure 0004332771
【0016】
【表4】
Figure 0004332771
【0017】
【表5】
Figure 0004332771
【0018】
【表6】
Figure 0004332771
【0019】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、同1.8μmのCo粉末、および同1.2μmの炭素(C)粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、エンドミル用超硬基体として、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの超硬基体B−1〜B−8をそれぞれ製造した。
【0020】
ついで、これらの超硬基体B−1〜B−8の表面に、ホーニングを施した状態で、通常の化学蒸着装置を用い、同じく表2、3に示される条件にて、表8に示される組成および目標層厚の内層としてのTi化合物層および外層としてのTi酸化物層からなる硬質被覆層を形成することにより、図2(a)に概略正面図で、同(b)に切刃部の概略横断面図で示される形状を有する本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0021】
また、比較の目的で、表9に示される通り、硬質被覆層の外層として、上記のTi酸化物層に代ってAl23層を形成する以外は同一の条件で従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0022】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
回転数:3200r.p.m.、
溝深さ(切り込み):5mm、
テーブル送り:140mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:4700r.p.m.、
溝深さ(切り込み):5mm、
テーブル送り:700mm/分、
の条件での軟鋼の乾式高速溝切削加工試験、また本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
回転数:1900r.p.m.、
溝深さ(切り込み):8mm、
テーブル送り:110mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:3000r.p.m.、
溝深さ(切り込み):8mm、
テーブル送り:600mm/分、
の条件での軟鋼の乾式高速溝切削加工試験、さらに本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304Sの板材、
回転数:1000r.p.m.、
溝深さ(切り込み):15mm、
テーブル送り:80mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:1500r.p.m.、
溝深さ(切り込み):15mm、
テーブル送り:500mm/分、
の条件での軟鋼の乾式高速溝切削加工試験、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部先端面の直径が使用寿命の目安とされる0.2mm減少するまでの切削溝長を測定した。この測定結果を表8、9にそれぞれ示した。
【0023】
【表7】
Figure 0004332771
【0024】
【表8】
Figure 0004332771
【0025】
【表9】
Figure 0004332771
【0026】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体B−1〜B−3形成用)、13mm(超硬基体B−4〜B−6形成用)、および26mm(超硬基体B−7、B−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、ドリル用超硬基体として、溝形成部の直径×長さがそれぞれ4mm×13mmの超硬基体C−1〜C−3、8mm×22mmの超硬基体C−4〜C−6、および16mm×45mmの超硬基体C−7、C−8をそれぞれ製造した。
【0027】
ついで、これらの超硬基体C−1〜C−8の表面に、ホーニングを施した状態で、通常の化学蒸着装置を用い、同じく表2、3に示される条件にて、表10に示される組成および目標層厚の内層としてのTi化合物層および外層としてのTi酸化物層からなる硬質被覆層を形成することにより、図3(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0028】
また、比較の目的で、表11に示される通り、硬質被覆層の外層として、上記のTi酸化物層に代ってAl23層を形成する以外は同一の条件で従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0029】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
回転数:2000r.p.m.、
送り:0.10mm/rev.、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:4000r.p.m.、
送り:0.20mm/rev.、
の条件での軟鋼の湿式高速穴あけ切削加工試験、また本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
回転数:1200r.p.m.、
送り:0.12mm/rev.、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:2200r.p.m.、
送り:0.25mm/rev.、
の条件での軟鋼の湿式高速穴あけ切削加工試験、さらに本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
回転数:600r.p.m.、
送り:0.20mm/rev.、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、並びに、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
回転数:1500r.p.m.、
送り:0.35mm/rev.、
の条件での軟鋼の湿式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの湿式(水溶性切削油使用)高速穴あけ切削加工試験でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0030】
【表10】
Figure 0004332771
【0031】
【表11】
Figure 0004332771
【0032】
(実施例4)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、同1.8μmのCo粉末、および同1.2μmの炭素(C)粉末を用意し、これら原料粉末をそれぞれ表12に示される配合組成に配合し、湿式ボールミルで72時間混合し、減圧乾燥し、さらにワックスと溶剤を加えて1時間混和した後、押出しプレスにて100MPaの圧力で直径:4.4mmの長尺状成形体とし、これらの長尺状成形体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結することにより、いずれも直径が3.5mmの長尺状焼結素材とし、さらにこれらの長尺状焼結素材から研削加工にて、ミニチュアドリル用超硬基体として、外周刃外径がそれぞれ表12に示される寸法(この場合いずれもシャンク部外径は3.5mm、全長は38mm)を有し、かついずれも図4に示される2枚刃形状をもった超硬基体D−1〜D−8を製造した。
【0033】
ついで、これらの超硬基体D−1〜D−8の表面に、ホーニングを施した状態で、通常の化学蒸着装置を用い、同じく表2、3に示される条件にて、表13に示される組成および目標層厚の内層としてのTi化合物層および外層としてのTi酸化物層からなる硬質被覆層を形成することにより、図4に概略正面図で示される形状を有する本発明表面被覆超硬合金製ミニチュアドリル(以下、本発明被覆超硬ミニチュアドリルと云う)1〜8をそれぞれ製造した。
【0034】
また、比較の目的で、表14に示される通り、硬質被覆層の外層として、上記のTi酸化物層に代ってAl23層を形成する以外は同一の条件で従来表面被覆超硬合金製ミニチュアドリル(以下、従来被覆超硬ミニチュアドリルと云う)1〜8をそれぞれ製造した。
【0035】
この結果得られた各種の被覆超硬ミニチュアドリルについて、厚さ:0.8mmのJIS・SUS304のステンレス鋼板および厚さ:1.5mmのJIS・S15C軟鋼板に表15に示される条件および試験本数:20本にて高速穴あけ加工試験を行い、ミニチュアドリルの外周刃寸法に5%の摩耗が生じるまでの穴あけ加工数を測定すると共に、使用寿命原因を観察した。これらの測定結果を表15にそれぞれ平均値で示した。
【0036】
【表12】
Figure 0004332771
【0037】
【表13】
Figure 0004332771
【0038】
【表14】
Figure 0004332771
【0039】
【表15】
Figure 0004332771
【0040】
なお、この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜10、本発明被覆超硬エンドミル1〜8、本発明被覆超硬ドリル1〜8、および本発明被覆超硬ミニチュアドリル1〜8の外層について、その厚さ方向中央部の酸素含有割合(X値)をオージェ分光分析装置を用いて測定したところ、表3に示される目標値と実質的に同じ値を示した。また、これらの本発明被覆超硬工具、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜10、従来被覆超硬エンドミル1〜8、従来被覆超硬ドリル1〜8、および従来被覆超硬ミニチュアドリル1〜8の硬質被覆層のTi化合物層およびTi酸化物層、さらにAl23層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0041】
【発明の効果】
表1〜15に示される結果から、いずれも外層がTi酸化物層からなる本発明被覆超硬工具としての本発明被覆超硬チップ1〜10、本発明被覆超硬エンドミル1〜8、本発明被覆超硬ドリル1〜8、および本発明被覆超硬ミニチュアドリル1〜8は、ステンレス鋼や軟鋼の切削を高い発熱を伴う高速で行っても、前記Ti酸化物層が高温加熱の切粉との親和性にきわめて低く、切粉が前記Ti酸化物層に溶着することがなく、切刃は常にすぐれた表面潤滑性を維持することから、切刃への切粉溶着が原因の欠けやチッピングが切刃に発生することがなく、すぐれた耐摩耗性を発揮するのに対して、外層がいずれもAl23層からなる従来被覆超硬工具としての従来被覆超硬チップ1〜10、従来被覆超硬エンドミル1〜8、従来被覆超硬ドリル1〜8、および従来被覆超硬ミニチュアドリル1〜8においては、切粉が前記Al23層に溶着し易く、これが原因で硬質被覆層が局部的に剥がし取られることから、切刃に欠けやチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、各種低合金鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に粘性が高く、切粉が切刃表面に溶着し易いステンレス鋼や軟鋼などの高速切削でも切粉に対してすぐれた表面潤滑性を発揮し、汎用性のある切削特性を示すものであるから、切削装置のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】(a)は被覆超硬チップの概略斜視図、(b)は被覆超硬チップの概略縦断面図である。
【図2】(a)は被覆超硬エンドミル概略正面図、(b)は同切刃部の概略横断面図である。
【図3】(a)は被覆超硬ドリルの概略正面図、(b)は同溝形成部の概略横断面図である。
【図4】ミニチュアドリルの概略正面図である。[0001]
BACKGROUND OF THE INVENTION
This invention is excellent in surface lubricity against chips, and therefore, when used for high-speed cutting of difficult-to-cut materials that are extremely viscous, such as stainless steel and mild steel, and the chips are likely to be welded to the surface of the cutting edge. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent cutting performance over a long period of time without occurrence of chipping or chipping (minute chipping) in the cutting edge.
[0002]
[Prior art]
Generally, for cutting tools, a throw-away tip that is used to attach and detachably attach to the tip of a cutting tool or cutter for turning or flattening of various steel and cast iron materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
[0003]
Furthermore, in general, as the above cutting tool, as a hard coating layer on the surface of a tungsten carbide base cemented carbide substrate (hereinafter referred to as a cemented carbide substrate),
An average layer thickness of 0.3 to 15 μm and a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, Through a single layer of a carbon oxide (hereinafter referred to as TiCO) layer and a single layer of a carbonitride oxide (hereinafter referred to as TiCNO) layer or a Ti compound layer composed of two or more layers. And
An outer layer of an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 0.1 to 5 μm,
Coated carbide tools made by chemical vapor deposition and / or physical vapor deposition are known, and it is also known that these coated carbide tools are used for continuous cutting and intermittent cutting of various low alloy steels and cast iron, for example. It has been.
[0004]
Further, as described in, for example, JP-A-6-8010 and JP-A-7-328808, a TiCN layer constituting the Ti compound layer is used for the purpose of improving the toughness of the layer itself. It is also known that a mixed gas containing organic carbonitride is used as a reaction gas and is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. to have a vertically grown crystal structure. .
[0005]
[Problems to be solved by the invention]
In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools can cut as many types of materials as possible. In addition to the need for versatility to cut materials, the cutting process also tends to increase the speed. However, in the conventional coated carbide tools mentioned above, this is applied to continuous cutting and intermittent cutting under normal conditions such as low alloy steel and cast iron. There is no problem when it is used for cutting, but when it is used for high-speed cutting of work materials such as extremely viscous stainless steel and mild steel, the chips of these work materials are hard coating layers. Since it has a high affinity for the Al 2 O 3 layer as the outer layer, it is easy to weld to the surface of the cutting edge, and this welding phenomenon becomes more noticeable as the cutting speed increases. The chip is missing due to Chipping occurs and the reach this result relatively short time service life at present.
[0006]
[Means for Solving the Problems]
Therefore, the present inventors have studied from the above viewpoint to develop a coated carbide tool that is difficult to deposit chips on the surface of the cutting edge, especially when used for high-speed cutting of stainless steel or mild steel. As a result of
(A) In the above conventional coated carbide tool, instead of the Al 2 O 3 layer constituting the outer layer of the hard coating layer,
Reactant gas composition in volume%
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 67 KPa,
And having an average layer thickness of 0.1 to 5 μm, and measuring the central portion in the thickness direction with an Auger spectrometer, the ratio of oxygen to Ti is 1.25 to 1. 9, ie
Composition formula: TiO x ,
In the case of
X: 1.25 to 1.9 in atomic ratio to Ti,
When the Ti oxide layer satisfying the above is chemically vapor-deposited or physically vapor-deposited as the outer layer of the hard coating layer, in the resulting coated carbide tool, the Ti oxide layer constituting the outer layer is the work material, particularly stainless steel or Shows extremely low affinity for difficult-to-cut materials with high viscosity, such as mild steel, and this does not change even during high-speed cutting with high heat generation. That is, since the Ti oxide layer exhibits excellent surface lubricity, chipping and chipping do not occur on the cutting edge, and excellent cutting performance is exhibited over a long period of time.
[0007]
(B) When the Ti oxide layer constituting the outer layer of the hard coating layer of the coated carbide tool (a) was observed by X-ray diffraction, Ti 2 O corresponding to the X value of the composition formula: TiO X 3 shows a diffraction pattern in which a main peak appears in at least one of Ti 3 O 5 , Ti 4 O 7 , Ti 5 O 9, etc., and based on these diffraction results, the Ti oxide layer is called a Magneli phase And generally represented by Ti n O 2n-1 .
The research results shown in (a) and (b) above were obtained.
[0008]
This invention was made based on the above research results, and as a hard coating layer on the surface of the carbide substrate,
Ti compound having an average layer thickness of 0.3 to 15 μm and composed of one single layer or two or more layers of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer Through the inner layer of the layer
Having an average layer thickness of 0.1 to 5 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.25 to 1.9 in atomic ratio to Ti,
An outer layer of a Ti oxide layer satisfying
This is characterized by a coated carbide tool having excellent surface lubricity against chips and formed by chemical vapor deposition or physical vapor deposition.
[0009]
In the coated carbide tool of the present invention, the atomic ratio (X value) of oxygen (O) to Ti in the Ti oxide layer constituting the outer layer was set to 1.25 to 1.9. If the value is less than .25, the desired excellent surface lubricity cannot be ensured. On the other hand, if the value exceeds 1.9, pores are easily formed in the layer, and a stable formation of a sound outermost layer can be achieved. This is because it becomes difficult.
Similarly, the average layer thickness of the outer layer is set to 0.1 to 5 μm. If the average layer thickness is less than 0.1 μm, the desired surface lubricity cannot be ensured. The application action is based on the reason that it can be satisfactorily performed with an average layer thickness of 5 μm.
Furthermore, the reason why the average thickness of the Ti compound layer constituting the inner layer is set to 0.3 to 15 μm is that when the layer thickness is 0.3 μm, the desired excellent wear resistance cannot be ensured, This is because if the layer thickness exceeds 15 μm, chipping and chipping are likely to occur in the cutting edge.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder having a predetermined average particle diameter in the range of 0.5 to 4 μm, (Ti, W) C (mass ratio, hereinafter the same, TiC / WC = 30/70) powder, ( Ti, W) CN (TiC / TiN / WC = 24/20/56) powder, (Ta, Nb) C (TaC / NbC = 90/10) powder, Cr 3 C 2 powder, and Co powder are prepared, These raw material powders are blended in the composition shown in Table 1, wet-mixed for 72 hours by a ball mill, dried, and then pressed into a green compact of a predetermined shape at a pressure of 100 MPa. In particular, by performing vacuum sintering under the condition of holding at 1410 ° C. for 1 hour, cemented carbide substrates A-1 to A-6 were produced as the cemented carbide substrates for the throwaway chip having the shape specified in ISO · CNMG120408.
[0011]
Next, with the surface of these carbide substrates A-1 to A-6 being subjected to micro honing with a curvature of 0.01R, using a normal chemical vapor deposition apparatus, Tables 2 and 3 (l in Table 2) are used. -TiCN indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010, and the other conditions indicate the conditions for forming a normal granular crystal structure. 1A is a schematic perspective view by forming a hard coating layer composed of a Ti compound layer as an inner layer and a Ti oxide layer as an outer layer having the composition and target layer thickness shown in Table 4 The surface-coated cemented carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 10 having the shape shown in the schematic longitudinal sectional view of FIG.
For comparison purposes, as shown in Table 5, conventional surface-coated carbide is used under the same conditions except that an Al 2 O 3 layer is formed instead of the Ti oxide layer as the outer layer of the hard coating layer. Alloy throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 10 were produced.
[0012]
Next, for the present invention coated carbide chips 1-10 and conventional coated carbide chips 1-10,
Work material: JIS / SUS304 round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 1mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Stainless steel dry continuous high-speed cutting test under the conditions of
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 1mm,
Feed: 0.15 mm / rev. ,
Cutting time: 3 minutes
Stainless steel dry interrupted high-speed cutting test under the conditions of
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 1mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
The dry interrupted high-speed cutting test of mild steel under the conditions described above was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
[0013]
[Table 1]
Figure 0004332771
[0014]
[Table 2]
Figure 0004332771
[0015]
[Table 3]
Figure 0004332771
[0016]
[Table 4]
Figure 0004332771
[0017]
[Table 5]
Figure 0004332771
[0018]
[Table 6]
Figure 0004332771
[0019]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, 1.8 μm Co powder, and 1.2 μm carbon ( C) Prepare powders, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then apply various kinds of powders with a predetermined shape at a pressure of 100 MPa. These green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding for 1 hour, sintered under furnace cooling conditions, the diameter is Forming three types of cemented carbide substrate-forming round bar sintered bodies of 8 mm, 13 mm, and 26 mm, and further grinding the above-mentioned three types of round bar sintered bodies with the combinations shown in Table 7, Carbide substrates B-1 to B-8, each having a cutting edge portion diameter × length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, were manufactured as the carbide substrate for the end mill.
[0020]
Next, the surface of these carbide substrates B-1 to B-8 is shown in Table 8 under the conditions shown in Tables 2 and 3 using a normal chemical vapor deposition apparatus in a state where honing is performed. By forming a hard coating layer comprising a Ti compound layer as an inner layer of composition and target layer thickness and a Ti oxide layer as an outer layer, FIG. 2 (a) is a schematic front view, and FIG. The surface-coated cemented carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 having the shapes shown in the schematic cross-sectional views of FIGS.
[0021]
For comparison purposes, as shown in Table 9, conventional surface-coated carbide is used under the same conditions except that an Al 2 O 3 layer is formed instead of the Ti oxide layer as the outer layer of the hard coating layer. Alloy end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 were produced.
[0022]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Rotational speed: 3200 r. p. m. ,
Groove depth (cut): 5 mm,
Table feed: 140 mm / min,
Stainless steel dry high-speed grooving test under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 4700 r. p. m. ,
Groove depth (cut): 5 mm,
Table feed: 700mm / min,
With respect to the dry high speed grooving test of mild steel under the following conditions, and the coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Rotational speed: 1900 r. p. m. ,
Groove depth (cut): 8 mm,
Table feed: 110 mm / min,
Stainless steel dry high-speed grooving test under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 3000 r. p. m. ,
Groove depth (cut): 8 mm,
Table feed: 600 mm / min,
The dry high-speed grooving test of mild steel under the following conditions, and the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304S plate material,
Rotational speed: 1000 r. p. m. ,
Groove depth (cut): 15 mm
Table feed: 80 mm / min,
Stainless steel dry high-speed grooving test under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 1500 r. p. m. ,
Groove depth (cut): 15 mm
Table feed: 500 mm / min,
Dry high-speed grooving test of mild steel under the conditions of
In each of the groove cutting tests, the cutting groove length was measured until the diameter of the tip surface of the cutting edge decreased by 0.2 mm, which is a guide for the service life. The measurement results are shown in Tables 8 and 9, respectively.
[0023]
[Table 7]
Figure 0004332771
[0024]
[Table 8]
Figure 0004332771
[0025]
[Table 9]
Figure 0004332771
[0026]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates B-1 to B-3), 13 mm (for forming carbide substrates B-4 to B-6), and 26 mm (for carbide substrates B-). 7 and B-8)), and from these three types of round bar sintered bodies, the diameter of the groove forming portion x length as a carbide substrate for drilling by grinding. 4 mm × 13 mm carbide substrates C-1 to C-3, 8 mm × 22 mm carbide substrates C-4 to C-6, and 16 mm × 45 mm carbide substrates C-7 and C-8, respectively. Manufactured.
[0027]
Next, the surface of these carbide substrates C-1 to C-8 is shown in Table 10 under the conditions shown in Tables 2 and 3 using a normal chemical vapor deposition apparatus in a state where honing is performed. By forming a hard coating layer comprising a Ti compound layer as an inner layer having a composition and a target layer thickness and a Ti oxide layer as an outer layer, FIG. 3 (a) is a schematic front view, and FIG. The surface-coated cemented carbide drills of the present invention (hereinafter referred to as the present invention coated carbide drills) 1 to 8 having the shapes shown in the schematic cross-sectional views of FIGS.
[0028]
For comparison purposes, as shown in Table 11, conventional surface-coated carbide is used under the same conditions except that an Al 2 O 3 layer is formed instead of the Ti oxide layer as the outer layer of the hard coating layer. Alloy drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 were produced, respectively.
[0029]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Rotational speed: 2000 r. p. m. ,
Feed: 0.10 mm / rev. ,
Wet high-speed drilling test of stainless steel under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 4000 r. p. m. ,
Feed: 0.20 mm / rev. ,
About the wet high speed drilling cutting test of mild steel under the conditions of the present invention, and the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Rotational speed: 1200r. p. m. ,
Feed: 0.12 mm / rev. ,
Wet high-speed drilling test of stainless steel under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 2200 r. p. m. ,
Feed: 0.25 mm / rev. ,
For the wet high-speed drilling test of mild steel under the above conditions, and the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Rotational speed: 600 r. p. m. ,
Feed: 0.20 mm / rev. ,
Wet high-speed drilling test of stainless steel under the conditions of
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Rotational speed: 1500 r. p. m. ,
Feed: 0.35 mm / rev. ,
Wet high-speed drilling test of mild steel under the conditions of
In each wet (using water-soluble cutting oil) high-speed drilling test, the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0030]
[Table 10]
Figure 0004332771
[0031]
[Table 11]
Figure 0004332771
[0032]
(Example 4)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, 1.8 μm Co powder, and 1.2 μm carbon ( C) Prepare powders, mix these raw material powders into the composition shown in Table 12, mix for 72 hours with a wet ball mill, dry under reduced pressure, add wax and solvent, mix for 1 hour, and then press In the pressure range of 100 MPa, a long shaped body having a diameter of 4.4 mm is formed, and the long shaped body is in a range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa. The temperature is raised to a predetermined temperature of After holding, sintering is performed under furnace cooling conditions to produce a long sintered material with a diameter of 3.5 mm. Further, these long sintered materials are ground and cemented with carbide for miniature drills. As the base, the outer diameter of the outer peripheral blade has the dimensions shown in Table 12 (in this case, the outer diameter of the shank is 3.5 mm and the total length is 38 mm), and both have the two-blade shape shown in FIG. Carbide substrates D-1 to D-8 were produced.
[0033]
Next, the surfaces of these carbide substrates D-1 to D-8 are shown in Table 13 under the conditions shown in Tables 2 and 3 using a normal chemical vapor deposition apparatus in a state where honing is performed. The surface-coated cemented carbide of the present invention having the shape shown in the schematic front view of FIG. 4 by forming a hard coating layer comprising a Ti compound layer as an inner layer of composition and target layer thickness and a Ti oxide layer as an outer layer Miniature drills made from 1 to 8 (hereinafter referred to as the present invention coated carbide miniature drills) were produced.
[0034]
For comparison purposes, as shown in Table 14, conventional surface-coated carbide is used under the same conditions except that an Al 2 O 3 layer is formed instead of the Ti oxide layer as the outer layer of the hard coating layer. Alloy miniature drills (hereinafter referred to as conventional coated carbide miniature drills) 1 to 8 were produced.
[0035]
For the various coated carbide miniature drills obtained as a result, the conditions and number of tests shown in Table 15 were applied to a 0.8 mm thick JIS / SUS304 stainless steel plate and a 1.5 mm thick JIS · S15C mild steel plate. : A high-speed drilling test was performed with 20 pieces, and the number of drilling processes until 5% of wear occurred on the outer peripheral edge size of the miniature drill was measured, and the cause of the service life was observed. These measurement results are shown in Table 15 as average values.
[0036]
[Table 12]
Figure 0004332771
[0037]
[Table 13]
Figure 0004332771
[0038]
[Table 14]
Figure 0004332771
[0039]
[Table 15]
Figure 0004332771
[0040]
In addition, this invention coated carbide tip 1-10 as this invention coated carbide tool obtained as a result, this invention coated carbide end mill 1-8, this invention coated carbide drill 1-8, and this invention coated carbide About the outer layer of the hard miniature drills 1-8, when the oxygen content ratio (X value) of the thickness direction center part was measured using the Auger spectroscopic analyzer, the substantially same value as the target value shown in Table 3 was obtained. Indicated. Further, these coated carbide tools of the present invention, as well as conventional coated carbide tips 1 to 10 as conventional coated carbide tools, conventional coated carbide end mills 1 to 8, conventional coated carbide drills 1 to 8, and conventional coated carbide When the thickness of the Ti compound layer and the Ti oxide layer of the hard miniature drill 1 to 8 of the hard miniature drill 1 to 8 and the Al 2 O 3 layer were measured by cross-section using a scanning electron microscope, both were substantially the target layer thickness. The same average layer thickness (average value of 5-point measurement) was shown.
[0041]
【The invention's effect】
From the results shown in Tables 1 to 15, the present invention coated carbide tips 1 to 10, the present coated carbide end mills 1 to 8 as the present invention, and the present invention coated carbide end mills 1 to 8 as the present invention. Even if the coated carbide drills 1 to 8 and the present invention coated carbide miniature drills 1 to 8 perform cutting of stainless steel or mild steel at high speed with high heat generation, the Ti oxide layer is a high-temperature heating chip. Since the cutting edge does not adhere to the Ti oxide layer and the cutting edge always maintains excellent surface lubricity, chipping and chipping caused by the welding of the cutting edge to the cutting edge Does not occur in the cutting edge and exhibits excellent wear resistance, whereas the conventional coated carbide tips 1 to 10 as a conventional coated carbide tool in which the outer layers are all Al 2 O 3 layers, Conventional coated carbide end mills 1-8, conventional coated carbide In Lil 1-8, and conventional coated carbide miniature drills 1-8, easily welded chips within the the Al 2 O 3 layer, since this is hard layer is locally peeled taken due cutting edge It is clear that chipping and chipping occur and the service life is reached in a relatively short time.
As described above, the coated carbide tool of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various low alloy steels and cast iron, but also has a particularly high viscosity, and the chips are welded to the surface of the cutting edge. It exhibits excellent surface lubricity against chips even in high-speed cutting such as stainless steel and mild steel that are easy to perform, and exhibits versatile cutting characteristics. It can cope with energy saving and cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1A is a schematic perspective view of a coated carbide chip, and FIG. 1B is a schematic longitudinal sectional view of the coated carbide chip.
FIG. 2A is a schematic front view of a coated carbide end mill, and FIG. 2B is a schematic cross-sectional view of the cutting edge portion.
3A is a schematic front view of a coated carbide drill, and FIG. 3B is a schematic cross-sectional view of the groove forming portion.
FIG. 4 is a schematic front view of a miniature drill.

Claims (1)

炭化タングステン基超硬合金基体の表面に、硬質被覆層として、
0.3〜15μmの平均層厚を有し、かつTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1種の単層または2種以上の複層で構成されたTi化合物層の内層を介して、
0.1〜5μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:Tiに対する原子比で1.25〜1.9、
を満足するTi酸化物層の外層、
を化学蒸着または物理蒸着してなる、切粉に対する表面潤滑性にすぐれた表面被覆超硬合金製切削工具。
As a hard coating layer on the surface of tungsten carbide base cemented carbide substrate,
It has an average layer thickness of 0.3 to 15 μm, and is a single layer or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer Through the inner layer of the Ti compound layer composed of multiple layers of
Having an average layer thickness of 0.1 to 5 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.25 to 1.9 in atomic ratio to Ti,
An outer layer of a Ti oxide layer satisfying
A surface-coated cemented carbide cutting tool with excellent surface lubricity against chips, formed by chemical vapor deposition or physical vapor deposition.
JP2000243898A 1999-10-22 2000-08-11 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips Expired - Fee Related JP4332771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243898A JP4332771B2 (en) 1999-10-22 2000-08-11 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30043999 1999-10-22
JP2000120602 2000-04-21
JP11-300439 2000-04-21
JP2000-120602 2000-04-21
JP2000243898A JP4332771B2 (en) 1999-10-22 2000-08-11 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Publications (2)

Publication Number Publication Date
JP2002001602A JP2002001602A (en) 2002-01-08
JP4332771B2 true JP4332771B2 (en) 2009-09-16

Family

ID=27338390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243898A Expired - Fee Related JP4332771B2 (en) 1999-10-22 2000-08-11 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Country Status (1)

Country Link
JP (1) JP4332771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021463B (en) * 2009-09-17 2012-06-27 湖南世纪特种合金有限公司 Method for preparing cemented carbide by vacuum extrusion
JP6050183B2 (en) * 2012-05-31 2016-12-21 京セラ株式会社 Cutting tools

Also Published As

Publication number Publication date
JP2002001602A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4281262B2 (en) Cutting tool made of surface-coated cemented carbide with high viscosity and excellent surface lubricity against cutting chips in high-speed cutting of difficult-to-cut materials where cutting chips easily adhere to the cutting edge surface
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4332771B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2003145313A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving excellent abrasion-resistance in high speed cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4019243B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP4232333B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3978722B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2002263910A (en) Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation
JP3978723B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4211508B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of difficult-to-cut materials
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP2002126911A (en) Cutting tool made of surface-covered cemented carbide excellent in surface lubricity against chip
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP4240522B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3573115B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity to chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4332771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees