JP4332415B2 - Method for producing (meth) acrylic acid copolymer - Google Patents

Method for producing (meth) acrylic acid copolymer Download PDF

Info

Publication number
JP4332415B2
JP4332415B2 JP2003411622A JP2003411622A JP4332415B2 JP 4332415 B2 JP4332415 B2 JP 4332415B2 JP 2003411622 A JP2003411622 A JP 2003411622A JP 2003411622 A JP2003411622 A JP 2003411622A JP 4332415 B2 JP4332415 B2 JP 4332415B2
Authority
JP
Japan
Prior art keywords
meth
copolymer
acrylic acid
monomer
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003411622A
Other languages
Japanese (ja)
Other versions
JP2004217899A (en
JP2004217899A5 (en
Inventor
広二 福原
真人 中野
隆志 藤澤
繁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003411622A priority Critical patent/JP4332415B2/en
Publication of JP2004217899A publication Critical patent/JP2004217899A/en
Publication of JP2004217899A5 publication Critical patent/JP2004217899A5/en
Application granted granted Critical
Publication of JP4332415B2 publication Critical patent/JP4332415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Detergent Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、例えば、水処理剤、スケール防止剤、腐蝕防止剤、掘削用添加剤、土壌処理剤、分散剤、洗剤ビルダー等に好適に用いられる、(メタ)アクリル酸系共重合体の製造方法に関する。 The present invention is a production of a (meth) acrylic acid copolymer that is suitably used for, for example, water treatment agents, scale inhibitors, corrosion inhibitors, drilling additives, soil treatment agents, dispersants, detergent builders, etc. about the mETHODS.

従来から、(メタ)アクリル酸系(共)重合体等の水溶性重合体のうち、低分子量のものは、その優れたキレート能や分散能を利用して、無機顔料や金属イオン等の分散剤やスケール防止剤、腐蝕防止剤、あるいは洗剤ビルダー等に好適に用いられている。
(メタ)アクリル酸系(共)重合体の構造中にリン原子を導入することにより、分散能、スケール防止能、腐蝕防止能を向上させることが、これまでにいくつか報告されている。
(メタ)アクリル酸を次亜リン酸の存在下で重合させて得られた(メタ)アクリル酸系重合体からなる耐熱性スケール防止剤が報告されている(例えば、特許文献1参照)。
Conventionally, among water-soluble polymers such as (meth) acrylic acid (co) polymers, those having a low molecular weight can be used to disperse inorganic pigments, metal ions, etc. by utilizing their excellent chelating ability and dispersing ability. It is preferably used for agents, scale inhibitors, corrosion inhibitors, or detergent builders.
Several reports have been made so far of improving dispersibility, scale prevention ability, and corrosion prevention ability by introducing phosphorus atoms into the structure of (meth) acrylic acid (co) polymers.
A heat-resistant scale inhibitor made of a (meth) acrylic acid polymer obtained by polymerizing (meth) acrylic acid in the presence of hypophosphorous acid has been reported (for example, see Patent Document 1).

(メタ)アクリル酸等の不飽和カルボン酸系単量体とスルホン酸基および/または水酸基含有不飽和単量体とを含む単量体混合物を次亜リン酸(塩)の存在下で重合させて得られた(メタ)アクリル酸系共重合体を必須に含む腐蝕防止剤が報告されている(例えば、特許文献2参照)。
(メタ)アクリル酸等の不飽和カルボン酸系単量体を、次亜リン酸(塩)を逐次導入して重合させることにより、金属の腐食抑制剤を製造する方法が報告されている(例えば、特許文献3参照)。
(メタ)アクリル酸系水溶性単量体、重合開始剤、次亜リン酸(塩)を水性媒体中に逐次導入して重合し、無機顔料分散能、スケール防止能、腐蝕防止能に優れた(メタ)アクリル酸系水溶性重合体を製造する方法が報告されている(例えば、特許文献4参照)。
特開昭61−293599号公報 特開昭62−214186号公報 特開平3−163191号公報 特開平6−263803号公報
A monomer mixture containing an unsaturated carboxylic acid monomer such as (meth) acrylic acid and a sulfonic acid group and / or a hydroxyl group-containing unsaturated monomer is polymerized in the presence of hypophosphorous acid (salt). A corrosion inhibitor that essentially contains the (meth) acrylic acid-based copolymer obtained in this manner has been reported (see, for example, Patent Document 2).
A method for producing a metal corrosion inhibitor by polymerizing unsaturated carboxylic acid monomers such as (meth) acrylic acid by sequentially introducing hypophosphorous acid (salt) has been reported (for example, And Patent Document 3).
(Meth) acrylic acid-based water-soluble monomer, polymerization initiator, hypophosphorous acid (salt) are introduced into an aqueous medium in succession for polymerization, and have excellent inorganic pigment dispersibility, scale prevention ability, and corrosion prevention ability A method for producing a (meth) acrylic acid-based water-soluble polymer has been reported (for example, see Patent Document 4).
JP 61-293599 A JP-A-62-214186 JP-A-3-163191 JP-A-6-263803

上述の通り、これまでに報告されているリン含有(メタ)アクリル酸系(共)重合体は、分散能、スケール防止能、腐蝕防止能に優れるため、分散剤、スケール防止剤、腐蝕防止剤には好ましく適用することができた。
ところが、これら従来のリン含有(メタ)アクリル酸系(共)重合体は、重要なビルダー性能の1つであるカルシウムイオン捕捉能が十分に発現されず、高性能の洗剤ビルダーとして用いることができないという問題があった。
また、分散剤、スケール防止剤、腐蝕防止剤、洗剤ビルダー等に用いるための(共)重合体には、ゲル化しにくい性質(耐ゲル化能)を有することが要求されるが、従来のリン含有(メタ)アクリル酸系(共)重合体は耐ゲル化能が低く、例えば、高硬度で水中イオン濃度が非常に高い水系(例えば、海水中など)においては極めてゲル化し易い状況であった。
As described above, the phosphorus-containing (meth) acrylic acid-based (co) polymers reported so far are excellent in dispersion ability, scale prevention ability, and corrosion prevention ability. Can be preferably applied.
However, these conventional phosphorus-containing (meth) acrylic acid-based (co) polymers do not sufficiently exhibit calcium ion scavenging ability, which is one of important builder performances, and cannot be used as a high-performance detergent builder. There was a problem.
In addition, (co) polymers for use in dispersants, scale inhibitors, corrosion inhibitors, detergent builders, etc. are required to have a property that prevents gelation (gelation resistance). The (meth) acrylic acid-based (co) polymer has low gelation resistance, and for example, it is very easy to gel in an aqueous system (for example, in seawater) having high hardness and a very high ion concentration in water. .

従って、本発明の課題は、良好なキレート能および分散能を有するとともに、カルシウムイオン捕捉能および耐ゲル化能が共に両立して優れ、また、塩濃度の高い水系においてもこれら各種性能の低下が抑制される、(メタ)アクリル酸系共重合体の製造方法を提供することにある。 Therefore, the problem of the present invention is that both the chelating ability and the dispersing ability are excellent, the calcium ion scavenging ability and the gelation ability are both excellent, and these various performances are reduced even in an aqueous system having a high salt concentration. is suppressed, it is to provide a manufacturing how the (meth) acrylic acid copolymer.

本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、(メタ)アクリル酸系単量体由来の構成単位と特定構造の(メタ)アリルエーテル系単量体由来の構成単位とを有し、主鎖中にリン原子を有する、低分子量の(メタ)アクリル酸系共重合体において、(メタ)アクリル酸系単量体由来の構成単位と特定構造の(メタ)アリルエーテル系単量体由来の構成単位とが特定の割合で存在していて、且つ、当該共重合体と結合していないリン化合物の含有量が所定割合以下の場合に限り、上記課題が全て解決できることを見出し、本発明の完成に至った。
すなわち、本発明にかかる(メタ)アクリル酸系共重合体の製造方法は、下記一般式(1)で示す(メタ)アクリル酸系単量体(A)と下記一般式(2)で示す(メタ)アリルエーテル系単量体(B1)とを含む単量体成分、次亜リン酸(塩)の共存下、重合開始剤を用いて、共重合反応させることによって、前記(メタ)アクリル酸系単量体(A)由来の構成単位(a)と前記(メタ)アリルエーテル系単量体(B1)由来の構成単位(b1)を有し、前記構成単位(a)と前記構成単位(b1)の相互割合が構成単位(a)80〜96モル%、構成単位(b1)4〜20モル%であって、重量平均分子量が500〜4000の範囲にあり、共重合体に結合しているリン原子の重量P1と共重合体に結合していないリン原子の重量P2とが0.9≦P1/(P1+P2)≦1.0の関係を満たし、耐ゲル化能が0.02以下であって、カルシウムイオン捕捉能が150mgCaCO /g以上である、主鎖中にリン原子を有する(メタ)アクリル酸系共重合体を製造する方法において、重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くする、ことを特徴とする
The present inventor has intensively studied to solve the above problems. As a result, it has a structural unit derived from a (meth) acrylic acid monomer and a structural unit derived from a (meth) allyl ether monomer having a specific structure, and has a low molecular weight having a phosphorus atom in the main chain. In the (meth) acrylic acid copolymer, the structural unit derived from the (meth) acrylic acid monomer and the structural unit derived from the (meth) allyl ether monomer having a specific structure are present in a specific ratio. In addition, the present inventors have found that all the above problems can be solved only when the content of the phosphorus compound not bonded to the copolymer is equal to or less than a predetermined ratio, and the present invention has been completed.
That is, the manufacturing method of the present invention (meth) acrylic acid copolymer are shown in shown below following general formula (1) (meth) acrylic acid monomer (A) and the following general formula (2) (meth) allyl ether monomer a monomer component including a (B1), the presence of hypophosphorous acid (salt), using a polymerization initiator, by the copolymerization reaction, the (meth) The structural unit (a) derived from the acrylic acid monomer (A) and the structural unit (b1) derived from the (meth) allyl ether monomer (B1), the structural unit (a) and the structural unit The mutual proportion of the unit (b1) is 80 to 96 mol% of the structural unit (a), 4 to 20 mol% of the structural unit (b1), the weight average molecular weight is in the range of 500 to 4000, and is bonded to the copolymer. The weight P1 of the phosphorus atoms that are attached and the weight P2 of the phosphorus atoms that are not bonded to the copolymer Meets 0.9 ≦ P1 / (P1 + P2 ) ≦ 1.0 in relation to a the gelation resistance ability 0.02 or less, and the calcium ion trapping ability 150mgCaCO 3 / g or more, the phosphorus atom in the backbone a process for the preparation of that (meth) acrylic acid copolymer having a, the supply start timing of hypophosphorous acid (salt) into the polymerization system, faster than the supply start timing of the polymerization initiator, the Characterize

(式中、Rは、水素原子またはメチル基を表し、Xは、水素原子、金属原子、アンモニウム基または有機アミン基を表す。) (In the formula, R 1 represents a hydrogen atom or a methyl group, and X represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group.)

(式中、Rは、水素原子またはメチル基を表し、YおよびZは、それぞれ独立に水酸基またはスルホン酸基(但し、1価金属塩、2価金属塩、アンモニウム塩、もしくは有機アミン基の塩になっていてもよい)を表す。但し、Y、Zの少なくとも一方はスルホン酸基である。 (Wherein R 2 represents a hydrogen atom or a methyl group, and Y and Z each independently represent a hydroxyl group or a sulfonic acid group (provided that the monovalent metal salt, divalent metal salt, ammonium salt, or organic amine group) represents an even or) they become salt. However, Y, at least one of Z is an acid group.)

本発明によって、良好なキレート能および分散能を有するとともに、カルシウムイオン捕捉能および耐ゲル化能が共に両立して優れ、また、塩濃度の高い水系においてもこれら各種性能の低下が抑制される、(メタ)アクリル酸系共重合体の製造方法を提供することができる。 According to the present invention, it has both excellent chelating ability and dispersibility, and both calcium ion scavenging ability and gelation resistance are both excellent, and also the reduction of these various performances is suppressed even in an aqueous system with a high salt concentration. (meth) it is possible to provide a manufacturing how acrylic acid copolymer.

以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
〔(メタ)アクリル酸系共重合体〕
本発明の製造方法によって得られる(メタ)アクリル酸系共重合体(以下、「本発明の(メタ)アクリル酸系共重合体」と言うことがある。)は、前記一般式(1)で示す(メタ)アクリル酸系単量体(A)由来の構成単位(a)と前記一般式(2)で示す(メタ)アリルエーテル系単量体(B1)由来の構成単位(b1)を有する共重合体であり、かつ、主鎖中にリン原子を有する(メタ)アクリル酸系共重合体である。
Hereinafter, the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention.
[(Meth) acrylic acid copolymer]
The (meth) acrylic acid copolymer (hereinafter sometimes referred to as “the (meth) acrylic acid copolymer of the present invention” ) obtained by the production method of the present invention is represented by the general formula (1). The structural unit (a) derived from the (meth) acrylic acid monomer (A) shown and the structural unit (b1) derived from the (meth) allyl ether monomer (B1) shown in the general formula (2) It is a (meth) acrylic acid copolymer which is a copolymer and has a phosphorus atom in the main chain.

(メタ)アクリル酸系単量体(A)は前記一般式(1)で示されるものであるが、一般式(1)中、Xの例である金属原子の具体例としては、例えば、リチウム、ナトリウム、カリウム等が挙げられ、有機アミン基の具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。(メタ)アクリル酸系単量体(A)の具体例としては、例えば、アクリル酸、メタクリル酸、およびこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等)が挙げられ、これらの中でも特に、アクリル酸、アクリル酸ナトリウムが好ましい。これらは、1種のみを用いてもよいし、2種以上を併用してもよい。   The (meth) acrylic acid monomer (A) is represented by the general formula (1). Specific examples of the metal atom as an example of X in the general formula (1) include, for example, lithium. Sodium, potassium and the like, and specific examples of the organic amine group include monoethanolamine, diethanolamine, triethanolamine and the like. Specific examples of the (meth) acrylic acid monomer (A) include acrylic acid, methacrylic acid, and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.). Among these, In particular, acrylic acid and sodium acrylate are preferable. These may use only 1 type and may use 2 or more types together.

(メタ)アリルエーテル系単量体(B1)を示す一般式(2)中、YおよびZの例であるスルホン酸基のうち、金属塩の具体例としては、例えば、ナトリウム、カリウム、リチウム等の塩が挙げられ、有機アミン基の塩の具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。(メタ)アリルエーテル系単量体(B1)の具体例としては、例えば、3−(メタ)アリルオキシ−2−ヒドロキシ−1−プロパンスルホン酸およびその塩、3−(メタ)アリルオキシ−1−ヒドロキシ−2−プロパンスルホン酸およびその塩、等が挙げられ、これらの中でも特に、3−アリルオキシ−2−ヒドロキシ−1−プロパンスルホン酸ナトリウムが好ましい。これらは、1種のみを用いてもよいし、2種以上を併用してもよい。   In the general formula (2) showing the (meth) allyl ether monomer (B1), among the sulfonic acid groups which are examples of Y and Z, specific examples of the metal salt include, for example, sodium, potassium, lithium and the like Specific examples of the organic amine group salt include monoethanolamine, diethanolamine, triethanolamine, and the like. Specific examples of the (meth) allyl ether monomer (B1) include, for example, 3- (meth) allyloxy-2-hydroxy-1-propanesulfonic acid and salts thereof, 3- (meth) allyloxy-1-hydroxy 2-Propanesulfonic acid and its salt, and the like. Among these, sodium 3-allyloxy-2-hydroxy-1-propanesulfonate is particularly preferable. These may use only 1 type and may use 2 or more types together.

本発明の(メタ)アクリル酸系共重合体においては、(メタ)アクリル酸系単量体(A)由来の構成単位(a)と(メタ)アリルエーテル系単量体(B1)由来の構成単位(b1)との相互割合が、前記構成単位(a)80〜96モル%、前記構成単位(b1)4〜20モル%であることが重要である。好ましくは、構成単位(a)85〜96モル%、構成単位(b1)4〜15モル%、より好ましくは、構成単位(a)87〜96モル%、構成単位(b1)4〜13モル%、さらに好ましくは、構成単位(a)90〜96モル%、構成単位(b1)4〜10モル%、特に好ましくは、構成単位(a)90〜95モル%、構成単位(b1)5〜10モル%である。前記構成単位(a)が96モル%よりも多く、前記構成単位(b1)が4モル%よりも少ないと、耐ゲル化能が低くなり、例えばカルシウムイオン等の硬度成分が多い水系においてスケール防止剤等として用いた場合に、ポリマーがゲル化して沈殿しやすく、その性能を発揮できなくなる。一方、前記構成単位(a)が80モル%よりも少なく、前記構成単位(b1)が20モル%よりも多いと、キレート能や分散能が低下するので、分散剤等としての本来の性能が発揮し得なくなる。特に、カルシウムイオン捕捉能に代表されるビルダー性能が著しく低下してしまう。   In the (meth) acrylic acid copolymer of the present invention, the constitutional unit (a) derived from the (meth) acrylic acid monomer (A) and the constitution derived from the (meth) allyl ether monomer (B1). It is important that the mutual ratio with the unit (b1) is 80 to 96 mol% of the structural unit (a) and 4 to 20 mol% of the structural unit (b1). Preferably, the structural unit (a) is 85 to 96 mol%, the structural unit (b1) is 4 to 15 mol%, more preferably the structural unit (a) is 87 to 96 mol%, and the structural unit (b1) is 4 to 13 mol%. More preferably, the structural unit (a) is 90 to 96 mol%, the structural unit (b1) is 4 to 10 mol%, and particularly preferably, the structural unit (a) is 90 to 95 mol%, and the structural unit (b1) is 5 to 10%. Mol%. When the structural unit (a) is more than 96 mol% and the structural unit (b1) is less than 4 mol%, the gelation resistance is lowered, and for example, scale is prevented in an aqueous system having a high hardness component such as calcium ions. When used as an agent or the like, the polymer is easily gelled and precipitated, and its performance cannot be exhibited. On the other hand, if the structural unit (a) is less than 80 mol% and the structural unit (b1) is more than 20 mol%, the chelating ability and the dispersibility are lowered. Cannot be demonstrated. In particular, the builder performance represented by the ability to capture calcium ions is significantly reduced.

本発明の(メタ)アクリル酸系共重合体は、少なくとも前記構成単位(a)と前記構成単位(b1)とを前記の比率で有していればよく、これらのほかに、前記(メタ)アリルエーテル系単量体(B1)以外の単量体(B2)由来の構成単位(b2)を含んでいてもよい。
本発明の効果を十分に発現させるためには、構成単位(b2)の含有割合は、共重合体の全構成単位中、0〜20モル%であることが好ましく、より好ましくは0〜10モル%、さらに好ましくは0〜7モル%、特に好ましくは0〜5モル%である。すなわち、本発明の効果を十分に発現させるためには、共重合体の全構成単位中における前記構成単位(a)と前記構成単位(b1)の含有割合の合計が、80〜100モル%であることが好ましく、より好ましくは90〜100モル%、さらに好ましくは93〜100モル%、特に好ましくは95〜100モル%である。
The (meth) acrylic acid-based copolymer of the present invention only needs to have at least the structural unit (a) and the structural unit (b1) in the above ratio, and in addition to the above (meth) The structural unit (b2) derived from the monomer (B2) other than the allyl ether monomer (B1) may be included.
In order to fully express the effect of the present invention, the content ratio of the structural unit (b2) is preferably 0 to 20 mol%, more preferably 0 to 10 mol in all the structural units of the copolymer. %, More preferably 0 to 7 mol%, particularly preferably 0 to 5 mol%. That is, in order to fully express the effect of the present invention, the total content of the structural unit (a) and the structural unit (b1) in all the structural units of the copolymer is 80 to 100 mol%. Preferably, it is 90 to 100 mol%, more preferably 93 to 100 mol%, particularly preferably 95 to 100 mol%.

単量体(B2)としては、例えば、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、スチレンスルホン酸、2−スルホエチル(メタ)アクリレート、2−メチル−1,3−ブタジエン−1−スルホン酸等のスルホン酸系単量体、およびそれらの塩;N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニル−N−メチルホルムアミド、N−ビニル−N−メチルアセトアミド、N−ビニルオキサゾリドン等のN−ビニル単量体;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド等のアミド系単量体;イタコン酸、フマル酸、マレイン酸等の不飽和ジカルボン酸;3−アリルオキシ−1,2−ジヒドロキシプロパンにエチレンオキサイドを1〜200モル付加させた化合物(3−アリルオキシ−1,2−ジ(ポリ)オキシエチレンエーテルプロパン等)、(メタ)アリルアルコール、(メタ)アリルアルコールにエチレンオキサイドを1〜100モル付加させた化合物等のアリルエーテル系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヒドロキシエチル等の(メタ)アクリル酸エステル系単量体;イソプレノール、イソプレノールにエチレンオキサイドを1〜100モル付加させた化合物等のイソプレン系単量体;等が挙げられる。これらは、1種のみを用いてもよいし、2種以上を併用してもよい。   Examples of the monomer (B2) include 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) allyl sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, 2-sulfoethyl (meth) acrylate, 2- Sulfonic acid monomers such as methyl-1,3-butadiene-1-sulfonic acid, and salts thereof; N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylformamide, N-vinyl monomers such as N-vinyl-N-methylacetamide and N-vinyloxazolidone; amide monomers such as (meth) acrylamide, N, N-dimethylacrylamide and N-isopropylacrylamide; itaconic acid and fumar Unsaturated dicarboxylic acids such as acid and maleic acid; 3-allyloxy-1,2-dihydroxy A compound obtained by adding 1 to 200 mol of ethylene oxide to propane (such as 3-allyloxy-1,2-di (poly) oxyethylene ether propane), (meth) allyl alcohol, (meth) allyl alcohol with 1 to 1 ethylene oxide 100 mole added allyl ether monomers such as compounds; (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate Ester monomers; isoprene monomers such as isoprenol and compounds obtained by adding 1 to 100 moles of ethylene oxide to isoprenol; These may use only 1 type and may use 2 or more types together.

本発明の(メタ)アクリル酸系共重合体は、重量平均分子量が500〜4000の範囲にあることが重要である。好ましくは800〜3500であり、より好ましくは1000〜3000である。重量平均分子量が500未満であるとキレート能が低くなり、一方4000を越えると溶解性が低下する可能性があるので、いずれの場合も、例えば、水処理剤、スケール防止剤、掘削用添加剤、分散剤、洗剤ビルダー等の用途において所望の性能を発揮し得なくなる。
本発明の(メタ)アクリル酸系共重合体は、共重合体と結合しているリン原子の重量P1、共重合体と結合していないリン原子の重量P2とが、0.9≦P1/(P1+P2)≦1.0の関係を満たしていることが重要である。P1/(P1+P2)が0.9よりも小さいと、耐ゲル化能が低下してしまう。
It is important that the (meth) acrylic acid copolymer of the present invention has a weight average molecular weight in the range of 500 to 4000. Preferably it is 800-3500, More preferably, it is 1000-3000. If the weight average molecular weight is less than 500, the chelating ability is lowered, while if it exceeds 4000, the solubility may be lowered. In any case, for example, water treatment agent, scale inhibitor, drilling additive The desired performance cannot be exhibited in applications such as dispersants and detergent builders.
In the (meth) acrylic acid copolymer of the present invention, the weight P1 of phosphorus atoms bonded to the copolymer and the weight P2 of phosphorus atoms not bonded to the copolymer are 0.9 ≦ P1 / It is important that the relationship of (P1 + P2) ≦ 1.0 is satisfied. If P1 / (P1 + P2) is smaller than 0.9, the gelation resistance is reduced.

本発明の(メタ)アクリル酸系共重合体は、主鎖中にリン原子を有すること、(メタ)アクリル酸系単量体(A)由来の構成単位(a)と特定構造の(メタ)アリルエーテル系単量体(B1)由来の構成単位(b1)とが上述の特定の割合で存在していること、重量平均分子量が500〜4000という低分子量の共重合体であること、共重合体と結合しているリン原子の重量P1、共重合体と結合していないリン原子の重量P2とが、0.9≦P1/(P1+P2)≦1.0の関係を満たしていること、という特徴を兼ね備えていることによって、これらの特徴の相乗効果(例えば、主鎖中のリン原子と構成単位(b1)が有する官能基(水酸基やスルホン酸基)との間における相互作用など)により、良好なキレート能および分散能を有するとともに、カルシウムイオン捕捉能および耐ゲル化能が共に両立して優れるという従来には見られなかった効果を発現でき、また、塩濃度の高い水系においてもこれら各種性能の低下が抑制されるという効果をも発現できる。   The (meth) acrylic acid copolymer of the present invention has a phosphorus atom in the main chain, the structural unit (a) derived from the (meth) acrylic acid monomer (A) and (meth) having a specific structure. The structural unit (b1) derived from the allyl ether monomer (B1) is present in the above-mentioned specific proportion, is a low molecular weight copolymer having a weight average molecular weight of 500 to 4000, The weight P1 of the phosphorus atom bonded to the coalescence and the weight P2 of the phosphorus atom not bonded to the copolymer satisfy the relationship of 0.9 ≦ P1 / (P1 + P2) ≦ 1.0. By combining the characteristics, synergistic effects of these characteristics (for example, interaction between the phosphorus atom in the main chain and the functional group (hydroxyl group or sulfonic acid group) of the structural unit (b1), etc.) Good chelating and dispersibility In addition, the calcium ion scavenging ability and the gel-proofing ability are both excellent and can exhibit an effect that has not been seen in the past, and the reduction of these various performances is suppressed even in an aqueous system with a high salt concentration. An effect can also be expressed.

本発明の(メタ)アクリル酸系共重合体は、耐ゲル化能が0.02以下であることを特徴とする。耐ゲル化能は、好ましくは0.015以下、より好ましくは0.01以下、さらに好ましくは0.008以下である。耐ゲル化能は、ゲル化しにくい性質を表すパラメータであり、ゲル化しにくいほどその値は小さい。
本発明の(メタ)アクリル酸系共重合体は、カルシウムイオン捕捉能が150mgCaCO/g以上であることを特徴とする。カルシウムイオン捕捉能は、好ましくは160mgCaCO/g以上、より好ましくは170mgCaCO/g以上である。カルシウムイオン捕捉能は、ビルダーとしての性能を表すパラメータであり、ビルダー性能が高いほどその値は大きい。
The (meth) acrylic acid copolymer of the present invention is characterized by having a gelation resistance of 0.02 or less. The gelation resistance is preferably 0.015 or less, more preferably 0.01 or less, and still more preferably 0.008 or less. The gelation resistance is a parameter that indicates the property of being difficult to gel, and the value thereof is so small that gelation is difficult.
The (meth) acrylic acid copolymer of the present invention is characterized by having a calcium ion scavenging ability of 150 mgCaCO 3 / g or more. The calcium ion scavenging ability is preferably 160 mgCaCO 3 / g or more, more preferably 170 mgCaCO 3 / g or more. The calcium ion scavenging ability is a parameter representing the performance as a builder. The higher the builder performance, the larger the value.

〔(メタ)アクリル酸系共重合体の製造方法〕
本発明の(メタ)アクリル酸系共重合体は、どのような方法で製造しても構わないが、好ましくは、前記一般式(1)で示す(メタ)アクリル酸系単量体(A)と前記一般式(2)で示す(メタ)アリルエーテル系単量体(B1)とを含む単量体成分、次亜リン酸(塩)、重合開始剤を用いて、共重合反応させることによって、主鎖中にリン原子を有する(メタ)アクリル酸系共重合体を製造する。
全単量体成分中の(メタ)アクリル酸系単量体(A)と(メタ)アリルエーテル系単量体(B1)との相互割合は、前記単量体(A)80〜96モル%、前記単量体(B1)4〜20モル%であることが必要である。好ましくは、単量体(A)85〜96モル%、単量体(B1)4〜15モル%、より好ましくは、単量体(A)87〜96モル%、単量体(B1)4〜13モル%、さらに好ましくは、単量体(A)90〜96モル%、単量体(B1)4〜10モル%、特に好ましくは、単量体(A)90〜95モル%、単量体(B1)5〜10モル%である。前記単量体(A)が96モル%よりも多く、前記単量体(B1)が4モル%よりも少ないと、耐ゲル化能が低くなり、例えばカルシウムイオン等の硬度成分が多い水系においてスケール防止剤等として用いた場合に、ポリマーがゲル化して沈殿しやすく、その性能を発揮できなくなる。一方、前記単量体(A)が80モル%よりも少なく、前記単量体(B1)が20モル%よりも多いと、キレート能や分散能が低下するので、例えば分散剤等としての本来の性能が発揮し得なくなる。特に、カルシウムイオン捕捉能に代表されるビルダー性能が著しく低下してしまう。
[Method for producing (meth) acrylic acid copolymer]
The (meth) acrylic acid copolymer of the present invention may be produced by any method, but preferably the (meth) acrylic acid monomer (A) represented by the general formula (1). And a monomer component containing the (meth) allyl ether monomer (B1) represented by the general formula (2), hypophosphorous acid (salt), and a polymerization initiator, A (meth) acrylic acid copolymer having a phosphorus atom in the main chain is produced.
The mutual proportion of the (meth) acrylic acid monomer (A) and the (meth) allyl ether monomer (B1) in all monomer components is 80 to 96 mol% of the monomer (A). The monomer (B1) needs to be 4 to 20 mol%. Preferably, monomer (A) 85-96 mol%, monomer (B1) 4-15 mol%, more preferably monomer (A) 87-96 mol%, monomer (B1) 4 To 13 mol%, more preferably 90 to 96 mol% of monomer (A), 4 to 10 mol% of monomer (B1), particularly preferably 90 to 95 mol% of monomer (A), It is 5-10 mol% of a monomer (B1). When the amount of the monomer (A) is more than 96 mol% and the amount of the monomer (B1) is less than 4 mol%, the gelation resistance is lowered, for example, in an aqueous system having a large amount of hardness components such as calcium ions. When used as a scale inhibitor or the like, the polymer is easily gelled and precipitated, and its performance cannot be exhibited. On the other hand, when the amount of the monomer (A) is less than 80 mol% and the amount of the monomer (B1) is more than 20 mol%, the chelating ability and the dispersibility are lowered. The performance of can not be demonstrated. In particular, the builder performance represented by the ability to capture calcium ions is significantly reduced.

前記単量体成分は、少なくとも前記単量体(A)と前記単量体(B1)とを前記の比率で有していればよく、これらのほかに、前記(メタ)アリルエーテル系単量体(B1)以外の単量体(B2)を含んでいてもよい。
本発明の効果を十分に発現させる(メタ)アクリル酸系共重合体を得るためには、単量体(B2)の含有割合は、全単量体成分中、0〜20モル%であることが好ましく、より好ましくは0〜10モル%、さらに好ましくは0〜7モル%、特に好ましくは0〜5モル%である。すなわち、本発明の効果を十分に発現させる(メタ)アクリル酸系共重合体を得るためには、全単量体成分中における前記単量体(A)と前記単量体(B1)の含有割合の合計が、80〜100モル%であることが好ましく、より好ましくは90〜100モル%、さらに好ましくは93〜100モル%、特に好ましくは95〜100モル%である。
The monomer component only needs to have at least the monomer (A) and the monomer (B1) in the above ratio. In addition to these, the (meth) allyl ether-based monomer Monomer (B2) other than body (B1) may be included.
In order to obtain a (meth) acrylic acid copolymer that sufficiently exhibits the effects of the present invention, the content ratio of the monomer (B2) is 0 to 20 mol% in all monomer components. More preferably, it is 0-10 mol%, More preferably, it is 0-7 mol%, Especially preferably, it is 0-5 mol%. That is, in order to obtain a (meth) acrylic acid-based copolymer that sufficiently exhibits the effects of the present invention, the content of the monomer (A) and the monomer (B1) in all monomer components The total ratio is preferably 80 to 100 mol%, more preferably 90 to 100 mol%, still more preferably 93 to 100 mol%, and particularly preferably 95 to 100 mol%.

単量体(B2)の具体例は、前述した通りである。
本発明の(メタ)アクリル酸系共重合体を製造するためには、共重合の際に次亜リン酸(塩)を用いることが必要である。
次亜リン酸(塩)の使用量は、全単量体成分に対して1〜20モル%とすることが好ましい。より好ましくは2〜15モル%、さらに好ましくは5〜10モル%である。次亜リン酸(塩)の使用量が、全単量体成分に対して1モル%未満であると、主鎖中にリン原子を有する共重合体が少なくなり、20モル%を越えると、残存する次亜リン酸(塩)が増加するばかりではなく、経済的にも不利となる。また、残存する次亜リン酸(塩)が多いと、得られる共重合体の耐ゲル化能が低下するおそれがある。
Specific examples of the monomer (B2) are as described above.
In order to produce the (meth) acrylic acid copolymer of the present invention, it is necessary to use hypophosphorous acid (salt) during the copolymerization.
It is preferable that the usage-amount of hypophosphorous acid (salt) shall be 1-20 mol% with respect to all the monomer components. More preferably, it is 2-15 mol%, More preferably, it is 5-10 mol%. When the amount of hypophosphorous acid (salt) used is less than 1 mol% with respect to the total monomer components, the number of copolymers having phosphorus atoms in the main chain decreases, and when the amount exceeds 20 mol%, Not only does the remaining hypophosphorous acid (salt) increase, it is also economically disadvantageous. Moreover, when there is much remaining hypophosphorous acid (salt), there exists a possibility that the gelatinization ability of the copolymer obtained may fall.

残存する次亜リン酸(塩)の量は、重合反応後の全内容物に対して、1重量%以下が好ましく、より好ましくは0.5重量%以下、さらに好ましくは0.3重量%以下である。また、重合反応後の全内容物に対する、(メタ)アクリル酸系共重合体の量は、10〜70重量%の範囲内が好ましく、より好ましくは20〜60重量%の範囲内、さらに好ましくは30〜50重量%の範囲内である。
重合系内への次亜リン酸(塩)の供給方法は特に限定されないが、好ましくは、単量体成分が共重合反応する際に当該重合系内に次亜リン酸(塩)が共存するように供給する方法であり、より好ましくは、重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くする。
The amount of remaining hypophosphorous acid (salt) is preferably 1% by weight or less, more preferably 0.5% by weight or less, still more preferably 0.3% by weight or less, based on the entire content after the polymerization reaction. It is. Further, the amount of the (meth) acrylic acid copolymer with respect to the entire content after the polymerization reaction is preferably in the range of 10 to 70% by weight, more preferably in the range of 20 to 60% by weight, and still more preferably. It is in the range of 30 to 50% by weight.
The method for supplying hypophosphorous acid (salt) into the polymerization system is not particularly limited, but preferably, hypophosphorous acid (salt) coexists in the polymerization system when the monomer component undergoes a copolymerization reaction. More preferably, the supply start time of hypophosphorous acid (salt) into the polymerization system is made earlier than the supply start time of the polymerization initiator.

重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くすることによって、(メタ)アクリル酸系共重合体の主鎖中にリン原子を効率的に導入することができるとともに、低分子量の共重合体を容易に得ることができる。次亜リン酸(塩)の一部を初期仕込みにすると、所定の温度まで昇温させる間に不必要な熱が加わることで次亜リン酸(塩)が分解する恐れがあり、また、重合系内への次亜リン酸(塩)の供給が、開始剤の供給と同時、若しくは後になると高分子量の共重合体が生成し易くなる。
重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くする場合、次亜リン酸(塩)、単量体成分、重合開始剤は、それぞれ所定の滴下時間をかけて、別々に連続滴下または分割投入することが好ましい。滴下時間は、適宜設定すればよいが、好ましくは30〜480分、さらに好ましくは45〜300分とするのがよい。滴下時間が長すぎると、生産性が低下する傾向があり、一方、滴下時間が短すぎると、共重合体主鎖中へのリン原子の導入が効果的に行えなくなるので、いずれも好ましくない。また、前述の各成分の滴下に際しては、滴下速度は特に限定されるものではなく、例えば、滴下開始から終了まで一定速度であってもよいし、必要に応じて時間の経過に伴い滴下速度を変化させてもよい。
By making the start of hypophosphorous acid (salt) supply into the polymerization system earlier than the start of supply of the polymerization initiator, phosphorus atoms can be efficiently incorporated into the main chain of the (meth) acrylic acid copolymer. And a low molecular weight copolymer can be easily obtained. If a part of hypophosphorous acid (salt) is initially charged, there is a possibility that hypophosphorous acid (salt) may be decomposed by applying unnecessary heat while the temperature is raised to a predetermined temperature. When the supply of hypophosphorous acid (salt) into the system is simultaneous with or after the supply of the initiator, a high molecular weight copolymer is likely to be formed.
When the supply start time of hypophosphorous acid (salt) into the polymerization system is made earlier than the supply start time of the polymerization initiator, the hypophosphorous acid (salt), the monomer component, and the polymerization initiator are respectively predetermined. It is preferable that continuous dripping or divided | segmented addition is carried out separately over the dripping time of this. The dropping time may be set as appropriate, but is preferably 30 to 480 minutes, and more preferably 45 to 300 minutes. If the dropping time is too long, the productivity tends to decrease. On the other hand, if the dropping time is too short, the introduction of phosphorus atoms into the copolymer main chain cannot be effectively performed. In addition, when dropping each of the components described above, the dropping speed is not particularly limited. For example, the dropping speed may be a constant speed from the start to the end of the dropping, or the dropping speed may be increased as time passes. It may be changed.

上記の知見に基づき、本発明にかかる(メタ)アクリル酸系共重合体の製造方法は、前記一般式(1)で示す(メタ)アクリル酸系単量体(A)を含む単量体成分、次亜リン酸(塩)、重合開始剤を用いて、共重合反応させることによって、主鎖中にリン原子を有する(メタ)アクリル酸系共重合体を製造する方法において、重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くする、ことを特徴とする。さらに、単量体成分中に前記一般式(2)で示す(メタ)アリルエーテル系単量体(B1)がさらに含まれることが好ましい。
前記共重合体の製造に際しては、通常使用されている重合開始剤を用いることができる。具体的には、例えば、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス〔2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド〕等のアゾ化合物;過酸化水素、tert−ブチルヒドロパーオキシド等の過酸化物;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;等が挙げられ、これらの1種のみ用いても良いし、2種以上を併用しても良い。重合開始剤は、全単量体成分に対し0.001〜10重量%用いることが好ましい。本発明においては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩を用いることが、重合率向上、残存モノマー量低減の点から好ましい。
Based on the above findings, the method for producing a (meth) acrylic acid copolymer according to the present invention is a monomer component containing the (meth) acrylic acid monomer (A) represented by the general formula (1). In a method for producing a (meth) acrylic acid copolymer having a phosphorus atom in the main chain by carrying out a copolymerization reaction using hypophosphorous acid (salt) and a polymerization initiator, The supply start time of the hypophosphorous acid (salt) is made earlier than the supply start time of the polymerization initiator. Furthermore, it is preferable that the monomer component further contains a (meth) allyl ether monomer (B1) represented by the general formula (2).
In the production of the copolymer, a commonly used polymerization initiator can be used. Specifically, for example, azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] Peroxides such as hydrogen peroxide and tert-butyl hydroperoxide; persulfates such as sodium persulfate, potassium persulfate, ammonium persulfate; and the like. More than one species may be used in combination. The polymerization initiator is preferably used in an amount of 0.001 to 10% by weight based on the total monomer components. In the present invention, it is preferable to use a persulfate such as sodium persulfate, potassium persulfate, or ammonium persulfate from the viewpoint of improving the polymerization rate and reducing the amount of residual monomers.

前記単量体成分を共重合させる際の共重合方法としては、公知の共重合方法、例えば、バルク重合、溶液重合、懸濁重合、乳化重合等を用いることができ、特に限定されない。前記共重合の際の反応温度は、特に限定されないが、好ましくは50〜150℃、より好ましくは70〜120℃であり、最も好ましくは用いる溶媒の還流温度とするのがよい。反応温度が50℃未満であると、共重合反応性が低下し、未反応モノマーが増加する等の傾向があり、一方、150℃を越えると、副反応が多くなり、反応制御が困難になる等の傾向があり、好ましくない。なお、前記共重合反応は、窒素、アルゴン等の不活性ガス雰囲気下で行ってもよいし、大気下で行ってもよい。   As a copolymerization method for copolymerizing the monomer components, a known copolymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like can be used and is not particularly limited. Although the reaction temperature in the case of the said copolymerization is not specifically limited, Preferably it is 50-150 degreeC, More preferably, it is 70-120 degreeC, It is good to set it as the reflux temperature of the solvent to be used most preferably. If the reaction temperature is less than 50 ° C, the copolymerization reactivity tends to decrease and the number of unreacted monomers tends to increase. On the other hand, if the reaction temperature exceeds 150 ° C, side reactions increase and the reaction control becomes difficult. Etc., which is not preferable. The copolymerization reaction may be performed in an inert gas atmosphere such as nitrogen or argon, or in the air.

前記共重合反応の際の溶媒としては、特に限定されないが、例えば、水や、イソプロピルアルコール等の炭素数1〜4のアルコールの中から選ばれたものが好ましく、これらは単独溶媒であっても混合溶媒であってもよい。最も好ましくは、有機溶媒を含まない水である。
〔用途〕
本発明の(メタ)アクリル酸系共重合体は、良好なキレート能および分散能を有するとともに、カルシウムイオン捕捉能および耐ゲル化能が共に両立して優れ、また、塩濃度の高い水系においてもこれら各種性能の低下が抑制されるので、例えば、冷却水系、ボイラー水系、地熱水系、オイルフィード水系、集塵水系、製紙水系、鉱物の精錬水系等におけるスケール防止剤;有機・無機顔料、土・鉱物等の無機物等の分散剤;洗剤用等のビルダー;繊維処理剤;等の用途において好適に使用することができる。
The solvent for the copolymerization reaction is not particularly limited, but is preferably selected from, for example, water and alcohols having 1 to 4 carbon atoms such as isopropyl alcohol. A mixed solvent may be used. Most preferred is water that does not contain an organic solvent.
[Use]
The (meth) acrylic acid copolymer of the present invention has both excellent chelating ability and dispersing ability, and is excellent in both calcium ion scavenging ability and gelation resistance, and also in an aqueous system having a high salt concentration. Since these deteriorations in performance are suppressed, for example, scale inhibitors in cooling water systems, boiler water systems, geothermal water systems, oil feed water systems, dust collection water systems, papermaking water systems, mineral refining water systems, etc .; organic / inorganic pigments, soil / It can be suitably used in applications such as dispersants such as minerals such as minerals, builders for detergents, fiber treatment agents, and the like.

以下、実施例及び比較例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。また、実施例及び比較例に記載の「%」は、「重量%」を示している。以下の実施例、比較例で得られた重合体の重量平均分子量(Mw)、31P−NMR、耐ゲル化能、カルシウムイオン捕捉能は以下の方法により評価した。
[1]重量平均分子量(Mw)測定
以下の条件で、GPC(ゲルパーミエーションクロマトグラフィー)により測定した。
GPC装置:Shodex SYSTEM−21(検出器;RI、UV(220nm))
カラム:Shodex Asahipak GF−710 HQ
Shodex Asahipak GF−310 HQ
(この順で接続)
溶離液:酢酸ナトリウム3水和物(試薬特級)27.22gに純水を加えて全量2000gとした水溶液に、アセトニトリル670g(試薬特級)を添加した溶液
流速:0.5ml/min
温度:40℃
検量線作成:ポリアクリル酸標準サンプル(創和科学品)
[2]31P−NMR測定
NMR装置:Varian 400MHz NMR
重溶媒:重水
温度:50℃
積算回数:25000回以上
[3]耐ゲル化能
500mlトールビーカーに、脱イオン水、ほう酸−ほう酸ナトリウムpH緩衝液、共重合体の1%水溶液、塩化カルシウム溶液、塩化マグネシウム溶液の順に所定量加え、pH8.5、共重合体100mg固形分/L、カルシウム硬度200mgCaCO/L、マグネシウム硬度1000mgMgCO/Lの試験液500mlを調製した。このトールビーカーをポリ塩化ビニリデンフィルムでシールして、90℃の恒温水槽内に1時間静置した。そして、共重合体とカルシウムイオンが結合して生成するゲルによって生じる試験液の濁りを、UV波長380nm、50mmの石英セルで吸光度を測定することにより検出し、得られた吸光度値によって耐ゲル化能を評価した。値が小さいほど耐ゲル化能が優れることを示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these. Further, “%” described in Examples and Comparative Examples represents “% by weight”. The weight average molecular weight (Mw), 31 P-NMR, gelation resistance, and calcium ion scavenging ability of the polymers obtained in the following examples and comparative examples were evaluated by the following methods.
[1] Weight average molecular weight (Mw) measurement It measured by GPC (gel permeation chromatography) on the following conditions.
GPC apparatus: Shodex SYSTEM-21 (detector; RI, UV (220 nm))
Column: Shodex Asahipak GF-710 HQ
Shodex Asahipak GF-310 HQ
(Connect in this order)
Eluent: Sodium acetate trihydrate (special reagent grade) 27.22 g of pure water added to a total volume of 2,000 g to a solution of 670 g of acetonitrile (special reagent grade) solution flow rate: 0.5 ml / min
Temperature: 40 ° C
Calibration curve creation: Polyacrylic acid standard sample (Soka Scientific)
[2] 31 P-NMR measurement NMR apparatus: Varian 400 MHz NMR
Heavy solvent: Heavy water Temperature: 50 ° C
Accumulation count: 25,000 times or more [3] Gelation resistance Add predetermined amount to 500 ml tall beaker in the order of deionized water, boric acid-sodium borate pH buffer, 1% aqueous solution of copolymer, calcium chloride solution, magnesium chloride solution. , pH 8.5, the copolymer 100mg solids / L, calcium hardness 200mgCaCO 3 / L, the test solution 500ml of magnesium hardness 1000mgMgCO 3 / L was prepared. This tall beaker was sealed with a polyvinylidene chloride film and left in a constant temperature water bath at 90 ° C. for 1 hour. Then, the turbidity of the test solution caused by the gel formed by combining the copolymer and calcium ions is detected by measuring the absorbance with a quartz cell having a UV wavelength of 380 nm and 50 mm, and the gelation resistance is obtained based on the obtained absorbance value. Noh was evaluated. A smaller value indicates better gel resistance.

[4]カルシウムイオン捕捉能
容量100ccのビーカーに、0.001mol/Lの塩化カルシウム水溶液50gを採取し、共重合体を固形分換算で10mg添加した。次に、この水溶液のpHを希水酸化ナトリウムで9〜11に調整した。その後、撹拌下、カルシウムイオン電極安定剤として、4mol/Lの塩化カリウム水溶液1mlを添加した。
イオンアナライザー(EA920型,オリオン社製)及びカルシウムイオン電極(93−20型,オリオン社製)を用いて、遊離のカルシウムイオンを測定し、共重合体1g当たり、炭酸カルシウム換算で何mgのカルシウムイオンがキレートされたか(キレート能の1種であるカルシウムイオン捕捉能)を計算で求めた。カルシウムイオン捕捉能の単位は「mgCaCO/g」である。
[4] Calcium ion capturing ability 50 g of 0.001 mol / L calcium chloride aqueous solution was collected in a 100 cc beaker, and 10 mg of the copolymer was added in terms of solid content. Next, the pH of this aqueous solution was adjusted to 9-11 with dilute sodium hydroxide. Then, 1 ml of 4 mol / L potassium chloride aqueous solution was added as a calcium ion electrode stabilizer under stirring.
Using an ion analyzer (EA920 type, manufactured by Orion) and a calcium ion electrode (93-20 type, manufactured by Orion), free calcium ions were measured, and how many milligrams of calcium in terms of calcium carbonate per 1 g of copolymer. Whether ions were chelated (calcium ion capturing ability, which is one type of chelating ability) was calculated. The unit of calcium ion scavenging ability is “mgCaCO 3 / g”.

〔実施例1〕
撹拌機、還流冷却管、温度計を備えた容量3LのSUS製セパラブルフラスコに、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%アクリル酸(以下AAと略す)水溶液35.4g、37%アクリル酸ナトリウム(以下SAと略す)水溶液709g、25%3−アリロキシ−2−ヒドロキシ−1−プロパンスルホン酸ナトリウム(以下HAPSと略す)水溶液275g、45%次亜リン酸ナトリウム(以下SHPと略す)水溶液31.2g、15%過硫酸ナトリウム(以下NaPSと略す)水溶液46.8g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを70分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(1)の水溶液を得た。
[Example 1]
A SUS separable flask having a capacity of 3 L equipped with a stirrer, a reflux condenser, and a thermometer was charged with 573 g of pure water in advance and heated to the boiling point with stirring. Next, under stirring, in a system refluxed at the boiling point, 35.4 g of an 80% acrylic acid (hereinafter abbreviated as AA) aqueous solution, 709 g of a 37% aqueous sodium acrylate (abbreviated as SA hereinafter) aqueous solution, 25% 3-allyloxy-2- 275 g of aqueous solution of sodium hydroxy-1-propanesulfonate (hereinafter abbreviated as HAPS), 31.2 g of 45% aqueous sodium hypophosphite (hereinafter abbreviated as SHP), 46.8 g of aqueous solution of 15% sodium persulfate (hereinafter abbreviated as NaPS) Were dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 70 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the dropwise additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (1) was obtained.

得られた共重合体水溶液を分析したところ、共重合体(1)の重量平均分子量は2,500であり、この共重合体水溶液を50℃で減圧乾燥して水を留去した後、重水を溶媒として31P−NMRを測定したところ、共重合体主鎖中に導入されたリン原子に由来するリンのピークが30ppmから50ppmに見られた。また残存の次亜リン酸ナトリウム及び、次亜リン酸ナトリウムから生成した亜リン酸ナトリウムのリンのピークが、それぞれ11ppmと7ppm付近にあり、これらのピーク強度を比較することより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.96であった。 When the obtained aqueous copolymer solution was analyzed, the copolymer (1) had a weight average molecular weight of 2,500. The aqueous copolymer solution was dried at 50 ° C. under reduced pressure to distill off the water. When 31 P-NMR was measured using as a solvent, a phosphorus peak derived from a phosphorus atom introduced into the copolymer main chain was observed at 30 to 50 ppm. The remaining sodium hypophosphite and the sodium phosphite peaks produced from sodium hypophosphite are in the vicinity of 11 ppm and 7 ppm, respectively. By comparing these peak intensities, the copolymer and The value of P1 / (P1 + P2) was 0.96, where P1 was the weight of the phosphorus atom bonded and P2 was the weight of the phosphorus atom not bonded to the copolymer.

共重合体(1)についての各種物性を測定した結果を表1にまとめた。
〔実施例2〕
実施例1と同じ反応容器に、純水569gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、45%SHP水溶液42.8gの滴下を開始し、5分後に80%AA水溶液35.4g、37%SA水溶液709g、25%HAPS水溶液275g、15%NaPS水溶液46.8g、を同時にそれぞれ別々に滴下開始した。滴下時間は、45%SHPを120分間、80%AAを120分間、37%SAを120分間、25%HAPSを70分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(2)の水溶液を得た。
The results of measuring various physical properties of the copolymer (1) are summarized in Table 1.
[Example 2]
In the same reaction vessel as in Example 1, 569 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Then, dropwise addition of 42.8 g of 45% SHP aqueous solution to the boiling point reflux system was started under stirring, and after 5 minutes, 35.4 g of 80% AA aqueous solution, 709 g of 37% SA aqueous solution, 275 g of 25% HAPS aqueous solution, 15 46.8 g of% NaPS aqueous solution was simultaneously started dropwise. The dropping time was 120% for 45% SHP, 120 minutes for 80% AA, 120 minutes for 37% SA, 70 minutes for 25% HAPS, and 140 minutes for 15% NaPS. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (2) was obtained.

得られた共重合体(2)の重量平均分子量は2,200であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.94であった。
共重合体(2)についての各種物性を測定した結果を表1にまとめた。
〔実施例3〕
実施例1と同じ反応容器に、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%AA水溶液35.4g、37%SA水溶液709g、25%HAPS水溶液117g、45%SHP水溶液31.2g、15%NaPS水溶液46.8g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを90分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(3)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (2) is 2,200. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) when the weight of atoms was P2 was 0.94.
The results of measuring various physical properties of the copolymer (2) are summarized in Table 1.
Example 3
In the same reaction vessel as in Example 1, 573 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Next, under stirring, 35.4 g of 80% AA aqueous solution, 709 g of 37% SA aqueous solution, 117 g of 25% HAPS aqueous solution, 31.2 g of 45% SHP aqueous solution, and 46.8 g of 15% NaPS aqueous solution were introduced into the system at the boiling point reflux state. Each was dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 90 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (3) was obtained.

得られた共重合体(3)の重量平均分子量は3,840であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.98であった。
共重合体(3)についての各種物性を測定した結果を表1にまとめた。
〔実施例4〕
実施例1と同じ反応容器に、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%AA水溶液17.7g、37%SA水溶液355g、25%HAPS水溶液247g、45%SHP水溶液18.7g、15%NaPS水溶液28.1g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを90分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(4)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (3) is 3,840. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) when the weight of atoms was P2 was 0.98.
The results of measuring various physical properties of the copolymer (3) are summarized in Table 1.
Example 4
In the same reaction vessel as in Example 1, 573 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Next, under stirring, 17.7 g of 80% AA aqueous solution, 355 g of 37% SA aqueous solution, 247 g of 25% HAPS aqueous solution, 18.7 g of 45% SHP aqueous solution, 28.1 g of 15% NaPS aqueous solution were introduced into the system at the boiling point reflux state. Each was dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 90 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (4) was obtained.

得られた共重合体(4)の重量平均分子量は2,880であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.96であった。
共重合体(4)についての各種物性を測定した結果を表1にまとめた。
〔実施例5〕
実施例1と同じ反応容器に、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%AA水溶液35.4g、37%SA水溶液709g、25%HAPS水溶液275g、2−ヒドロキシエチルアクリレート(以下HEAと略す)28.3g、45%SHP水溶液31.2g、15%NaPS水溶液46.8g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを90分間、HEAを120分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(5)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (4) is 2,880. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) was 0.96 when the weight of atoms was P2.
The results of measuring various physical properties of the copolymer (4) are summarized in Table 1.
Example 5
In the same reaction vessel as in Example 1, 573 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Then, under stirring, in the system at the boiling point reflux state, 35.4 g of 80% AA aqueous solution, 709 g of 37% SA aqueous solution, 275 g of 25% HAPS aqueous solution, 28.3 g of 2-hydroxyethyl acrylate (hereinafter abbreviated as HEA), 45% 31.2 g of SHP aqueous solution and 46.8 g of 15% NaPS aqueous solution were dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 90 minutes, HEA for 120 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (5) was obtained.

得られた共重合体(5)の重量平均分子量は2,780であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.91であった。
共重合体(5)についての各種物性を測定した結果を表1にまとめた。
〔比較例1〕
実施例1と同じ反応容器に、純水479gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、45%SHP水溶液36.7gの滴下を開始し、5分後に80%AA水溶液12.1g、37%SA水溶液705g、25%HAPS水溶液78.8g、15%NaPS水溶液40.0g、を同時にそれぞれ別々に滴下開始した。滴下時間は、45%SHPを120分間、80%AAを120分間、37%SAを120分間、25%HAPSを110分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(c1)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (5) is 2,780. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) was 0.91 when the weight of atoms was P2.
The results of measuring various physical properties of the copolymer (5) are summarized in Table 1.
[Comparative Example 1]
In the same reaction vessel as in Example 1, 479 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Next, 36.7 g of 45% SHP aqueous solution was started to be dropped into the system at the boiling point reflux state with stirring, and after 5 minutes 12.1 g of 80% AA aqueous solution, 705 g of 37% SA aqueous solution, and 78.8 g of 25% HAPS aqueous solution. And 40.0 g of 15% NaPS aqueous solution were simultaneously started dropwise. The dropping time was 120% for 45% SHP, 120 minutes for 80% AA, 120 minutes for 37% SA, 110 minutes for 25% HAPS, and 140 minutes for 15% NaPS. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (c1) was obtained.

得られた共重合体(c1)の重量平均分子量は2,800であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.95であった。
共重合体(c1)についての各種物性を測定した結果を表1にまとめた。
[比較例2]
実施例1と同じ反応容器に、純水484gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、45%SHP水溶液36.7gの滴下を開始し、5分後に80%AA水溶液37.2g、37%SA水溶液489g、25%HAPS水溶液576g、15%NaPS水溶液40.0g、を同時にそれぞれ別々に滴下開始した。滴下時間は、45%SHPを120分間、80%AAを120分間、37%SAを120分間、25%HAPSを70分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(c2)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (c1) is 2,800. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) was 0.95 when the weight of atoms was P2.
The results of measuring various physical properties of the copolymer (c1) are summarized in Table 1.
[Comparative Example 2]
In the same reaction vessel as in Example 1, 484 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Then, dropwise addition of 36.7 g of 45% SHP aqueous solution to the boiling point reflux system with stirring was started, and after 5 minutes, 37.2 g of 80% AA aqueous solution, 489 g of 37% SA aqueous solution, 576 g of 25% HAPS aqueous solution, 15 40.0 g of a% NaPS aqueous solution was simultaneously started dropwise. The dropping time was 120% for 45% SHP, 120 minutes for 80% AA, 120 minutes for 37% SA, 70 minutes for 25% HAPS, and 140 minutes for 15% NaPS. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (c2) was obtained.

得られた共重合体(c2)の重量平均分子量は3,900であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.92であった。
共重合体(c2)についての各種物性を測定した結果を表1にまとめた。
〔比較例3〕
実施例1と同じ反応容器に、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%AA水溶液35.4g、37%SA水溶液709g、25%HAPS水溶液275g、45%SHP水溶液81.1g、15%NaPS水溶液46.8g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを90分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(c3)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (c2) is 3,900. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, and the phosphorus not bonded to the copolymer is phosphorus. The value of P1 / (P1 + P2) when the atomic weight was P2 was 0.92.
The results of measuring various physical properties of the copolymer (c2) are summarized in Table 1.
[Comparative Example 3]
In the same reaction vessel as in Example 1, 573 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Next, under stirring, 35.4 g of 80% AA aqueous solution, 709 g of 37% SA aqueous solution, 275 g of 25% HAPS aqueous solution, 81.1 g of 45% SHP aqueous solution, 46.8 g of 15% NaPS aqueous solution were introduced into the system at the boiling point reflux state. Each was dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 90 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the additions, the boiling point reflux state was maintained for an additional 30 minutes to complete the polymerization, and an aqueous solution of copolymer (c3) was obtained.

得られた共重合体(c3)の重量平均分子量は1,090であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.82であった。
共重合体(c3)についての各種物性を測定した結果を表1にまとめた。
〔比較例4〕
実施例1と同じ反応容器に、純水573gを予め仕込み、攪拌下、沸点まで昇温した。次いで、撹拌下、沸点還流状態の系中に、80%AA水溶液35.4g、37%SA水溶液709g、25%HAPS水溶液14.8g、45%SHP水溶液42.8g、15%NaPS水溶液46.8g、をそれぞれ別々に滴下した。滴下時間は、80%AAを120分間、37%SAを120分間、25%HAPSを90分間、45%SHPを120分間、15%NaPSを140分間とした。全ての滴下終了後、さらに30分間にわたって沸点還流状態を維持して重合を完結させ、共重合体(c4)の水溶液を得た。
The weight average molecular weight of the obtained copolymer (c3) is 1,090. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, and the phosphorus not bonded to the copolymer is phosphorus. The value of P1 / (P1 + P2) when the atomic weight was P2 was 0.82.
The results of measuring various physical properties of the copolymer (c3) are summarized in Table 1.
[Comparative Example 4]
In the same reaction vessel as in Example 1, 573 g of pure water was charged in advance, and the temperature was raised to the boiling point with stirring. Next, 35.4 g of 80% AA aqueous solution, 709 g of 37% SA aqueous solution, 14.8 g of 25% HAPS aqueous solution, 42.8 g of 45% SHP aqueous solution, 46.8 g of 15% NaPS aqueous solution were introduced into the system under boiling reflux state with stirring. Were dropped separately. The dropping time was 80% AA for 120 minutes, 37% SA for 120 minutes, 25% HAPS for 90 minutes, 45% SHP for 120 minutes, and 15% NaPS for 140 minutes. After completion of all the additions, the boiling point reflux state was maintained for 30 minutes to complete the polymerization, and an aqueous solution of a copolymer (c4) was obtained.

得られた共重合体(c4)の重量平均分子量は3,800であり、31P−NMRより、共重合体と結合しているリン原子の重量をP1、共重合体と結合していないリン原子の重量をP2としたときの、P1/(P1+P2)の値は0.92であった。
共重合体(c4)についての各種物性を測定した結果を表1にまとめた。

表1に、実施例1〜5及び比較例1〜4によって得られた共重合体の性状をまとめた。また、実施例1で得られた共重合体及び、次亜リン酸ナトリウムの31P−MNRチャートを、それぞれ図1及び、図2に示す。
The weight average molecular weight of the obtained copolymer (c4) is 3,800. From 31 P-NMR, the weight of the phosphorus atom bonded to the copolymer is P1, and the phosphorus not bonded to the copolymer is The value of P1 / (P1 + P2) when the atomic weight was P2 was 0.92.
The results of measuring various physical properties of the copolymer (c4) are summarized in Table 1.

Table 1 summarizes the properties of the copolymers obtained in Examples 1 to 5 and Comparative Examples 1 to 4. Moreover, the copolymer obtained in Example 1 and the 31 P-MNR chart of sodium hypophosphite are shown in FIGS. 1 and 2, respectively.

本発明の(メタ)アクリル酸系共重合体は、良好なキレート能および分散能を有するとともに、カルシウムイオン捕捉能および耐ゲル化能が共に両立して優れ、また、塩濃度の高い水系においてもこれら各種性能の低下が抑制されるので、例えば、冷却水系、ボイラー水系、地熱水系、オイルフィード水系、集塵水系、製紙水系、鉱物の精錬水系等におけるスケール防止剤;有機・無機顔料、土・鉱物等の無機物等の分散剤;洗剤用等のビルダー;繊維処理剤;等の用途において好適に使用することができる。   The (meth) acrylic acid copolymer of the present invention has both excellent chelating ability and dispersing ability, and is excellent in both calcium ion scavenging ability and gelation resistance, and also in an aqueous system having a high salt concentration. Since these deteriorations in performance are suppressed, for example, scale inhibitors in cooling water systems, boiler water systems, geothermal water systems, oil feed water systems, dust collection water systems, papermaking water systems, mineral refining water systems, etc .; organic / inorganic pigments, soil / It can be suitably used in applications such as dispersants such as minerals such as minerals, builders for detergents, fiber treatment agents, and the like.

実施例1で得られた共重合体の31P−NMRチャートである。3 is a 31 P-NMR chart of the copolymer obtained in Example 1. FIG. 次亜リン酸ナトリウムの31P−NMRチャートである。It is a 31 P-NMR chart of sodium hypophosphite.

Claims (1)

下記一般式(1)で示す(メタ)アクリル酸系単量体(A)と下記一般式(2)で示す(メタ)アリルエーテル系単量体(B1)とを含む単量体成分、次亜リン酸(塩)の共存下、重合開始剤を用いて、共重合反応させることによって、
前記(メタ)アクリル酸系単量体(A)由来の構成単位(a)と前記(メタ)アリルエーテル系単量体(B1)由来の構成単位(b1)を有し、前記構成単位(a)と前記構成単位(b1)の相互割合が構成単位(a)80〜96モル%、構成単位(b1)4〜20モル%であって、重量平均分子量が500〜4000の範囲にあり、
共重合体に結合しているリン原子の重量P1と共重合体に結合していないリン原子の重量P2とが0.9≦P1/(P1+P2)≦1.0の関係を満たし、
耐ゲル化能が0.02以下であって、カルシウムイオン捕捉能が150mgCaCO /g以上である、
主鎖中にリン原子を有する(メタ)アクリル酸系共重合体を製造する方法において、
重合系内への次亜リン酸(塩)の供給開始時期を、重合開始剤の供給開始時期より早くする、
ことを特徴とする、(メタ)アクリル酸系共重合体の製造方法。

(式中、Rは、水素原子またはメチル基を表し、Xは、水素原子、金属原子、アンモニウム基または有機アミン基を表す。)

(式中、Rは、水素原子またはメチル基を表し、YおよびZは、それぞれ独立に水酸基またはスルホン酸基(但し、1価金属塩、2価金属塩、アンモニウム塩、もしくは有機アミン基の塩になっていてもよい)を表す。但し、Y、Zの少なくとも一方はスルホン酸基である。)
Represented by the following general formula (1) (meth) monomer component containing a shown by acrylic acid monomer (A) and the following formula (2) (meth) allyl ether monomer (B1), By carrying out a copolymerization reaction using a polymerization initiator in the presence of hypophosphorous acid (salt),
The structural unit (a) derived from the (meth) acrylic acid monomer (A) and the structural unit (b1) derived from the (meth) allyl ether monomer (B1), and the structural unit (a ) And the structural unit (b1) are structural units (a) 80 to 96 mol%, structural units (b1) 4 to 20 mol%, and the weight average molecular weight is in the range of 500 to 4000,
The weight P1 of phosphorus atoms bonded to the copolymer and the weight P2 of phosphorus atoms not bonded to the copolymer satisfy the relationship of 0.9 ≦ P1 / (P1 + P2) ≦ 1.0,
Gelling resistance is 0.02 or less, and calcium ion scavenging ability is 150 mgCaCO 3 / g or more.
A method of manufacturing a main chain that have a phosphorus atom in the (meth) acrylic acid copolymer,
The supply start time of hypophosphorous acid (salt) into the polymerization system is made earlier than the supply start time of the polymerization initiator.
A method for producing a (meth) acrylic acid copolymer, characterized in that

(In the formula, R 1 represents a hydrogen atom or a methyl group, and X represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group.)

(Wherein R 2 represents a hydrogen atom or a methyl group, and Y and Z each independently represent a hydroxyl group or a sulfonic acid group (provided that the monovalent metal salt, divalent metal salt, ammonium salt, or organic amine group) (It may be a salt), provided that at least one of Y and Z is a sulfonic acid group.)
JP2003411622A 2002-12-25 2003-12-10 Method for producing (meth) acrylic acid copolymer Expired - Fee Related JP4332415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411622A JP4332415B2 (en) 2002-12-25 2003-12-10 Method for producing (meth) acrylic acid copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002374417 2002-12-25
JP2003411622A JP4332415B2 (en) 2002-12-25 2003-12-10 Method for producing (meth) acrylic acid copolymer

Publications (3)

Publication Number Publication Date
JP2004217899A JP2004217899A (en) 2004-08-05
JP2004217899A5 JP2004217899A5 (en) 2006-12-07
JP4332415B2 true JP4332415B2 (en) 2009-09-16

Family

ID=32911071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411622A Expired - Fee Related JP4332415B2 (en) 2002-12-25 2003-12-10 Method for producing (meth) acrylic acid copolymer

Country Status (1)

Country Link
JP (1) JP4332415B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093821B1 (en) 2009-08-13 2011-12-19 한국화학연구원 Polymer preparation and polymer composition for sequestering calcium ion
RU2629953C2 (en) 2010-12-17 2017-09-05 Басф Се Stable polyacrylic acids, their manufacturing and their application
MX2013008974A (en) 2011-02-04 2013-11-01 Basf Se Low-molecular-weight polyacrylic acids containing phosphorus and use thereof as dispersants.
BR112013018785B1 (en) 2011-02-04 2021-03-02 Basf Se aqueous solution of acrylic acid polymers, acrylic acid polymers, process to produce aqueous solutions, and, use of aqueous solution
JP5656702B2 (en) * 2011-03-11 2015-01-21 株式会社日本触媒 (Meth) acrylic acid copolymer and method for producing the same
JP5856894B2 (en) * 2012-03-30 2016-02-10 栗田工業株式会社 Cooling water treatment method
WO2015045883A1 (en) * 2013-09-24 2015-04-02 株式会社日本触媒 (meth)acrylic acid copolymer and method for producing same
JP6364299B2 (en) * 2014-09-26 2018-07-25 株式会社日本触媒 Scale inhibitor for geothermal power generation
WO2017051640A1 (en) * 2015-09-24 2017-03-30 株式会社日本触媒 Barium-sulfate scale deposition inhibitor, method for inhibiting barium-sulfate scale deposition, and barium-sulfate scale deposition inhibitor composition
EP3763786A4 (en) * 2018-03-08 2021-12-01 Nippon Shokubai Co., Ltd. (meth)acrylic acid copolymer-containing composition and method for producing (meth)acrylic acid copolymer
CN116462792B (en) * 2023-06-19 2023-09-01 广州纳诺新材料技术有限公司 Lithium battery carbon-coated foil conductive slurry, modified acrylic composite resin emulsion and preparation method thereof

Also Published As

Publication number Publication date
JP2004217899A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
EP0969024B1 (en) Detergent builder, production process therefor, and poly(meth)acrylic acid (or salt) polymer and use thereof
JP4332415B2 (en) Method for producing (meth) acrylic acid copolymer
JP3399874B2 (en) Detergent builder, method for producing the same, poly (meth) acrylic acid (salt) polymer and use
JP2008534694A (en) (Meth) acrylic acid copolymer, its production method and its use
JP3650724B2 (en) (Meth) acrylic acid copolymer and method for producing the same
US6835790B2 (en) (Meth) acrylic copolymer and its production process
JP2012224680A (en) (meta)acrylic acid copolymer, method of producing the same, and application therefor
JP5916843B2 (en) (Meth) acrylic acid copolymer and method for producing the same
JP2011072851A (en) Scale inhibitor containing amino group-containing copolymer
US9388263B2 (en) (Meth)acrylate copolymer and method for producing same
JP2005264190A (en) Corrosion inhibitor
JP3718414B2 (en) (Meth) acrylic acid copolymer and method for producing the same
JP6014372B2 (en) Polycarboxylic acid polymer and process for producing the same
JP2004307588A (en) Method for producing (meth)acrylic acid copolymer
WO2019172365A1 (en) (meth)acrylic acid copolymer-containing composition and method for producing (meth)acrylic acid copolymer
JP4642316B2 (en) Method for producing (meth) acrylic acid polymer
JP6397633B2 (en) POLY (METH) ACRYLIC ACID POLYMER AND PROCESS FOR PRODUCING THE SAME
JP4995709B2 (en) Method for producing (meth) acrylic acid copolymer
JP6195461B2 (en) Maleic acid copolymer composition, production method thereof and use thereof
JP5982145B2 (en) Polycarboxylic acid polymer composition and method for producing the same
JP6173736B2 (en) Acrylic acid (salt) -maleic acid (salt) polymer composition and method for producing the same
JP2018039885A (en) Method for producing polycarboxylic acid-based copolymer
JP6413771B2 (en) Method for producing polymer aqueous solution
JP4995711B2 (en) Method for producing (meth) acrylic acid polymer
JP2004238521A (en) Production method for (meth)acrylic acid copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4332415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees