JP4331579B2 - Spinning device for hollow fiber production - Google Patents

Spinning device for hollow fiber production Download PDF

Info

Publication number
JP4331579B2
JP4331579B2 JP2003407581A JP2003407581A JP4331579B2 JP 4331579 B2 JP4331579 B2 JP 4331579B2 JP 2003407581 A JP2003407581 A JP 2003407581A JP 2003407581 A JP2003407581 A JP 2003407581A JP 4331579 B2 JP4331579 B2 JP 4331579B2
Authority
JP
Japan
Prior art keywords
temperature
hollow fiber
polymer solution
spinneret
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003407581A
Other languages
Japanese (ja)
Other versions
JP2005163240A (en
Inventor
慎二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Engineering Corp
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Engineering Corp
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Engineering Corp, Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Engineering Corp
Priority to JP2003407581A priority Critical patent/JP4331579B2/en
Publication of JP2005163240A publication Critical patent/JP2005163240A/en
Application granted granted Critical
Publication of JP4331579B2 publication Critical patent/JP4331579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、複数の二重管型等の紡糸ノズルを用いて、一斉に複数の中空糸を製造する紡糸装置に関する。 The present invention relates to a spinning device for producing a plurality of hollow fiber membranes simultaneously using a plurality of double tube type spinning nozzles .

高分子からなる中空糸は、透析膜をはじめとする種々の分離膜に用いられている。
この中空糸は、二重管型等の紡糸ノズルを用い、外管部に中空糸形成用の高分子溶液を、中央の内管部に中空を形成するための液を注入して製造する方法が一般的である。
また、このような二重管型紡糸ノズルを内部に複数配置して、溶液を一箇所から流入し、内部で各々の紡糸孔に分岐させて、複数の吐出口から一度に多数本の中空糸を製造する多錘紡糸口金が、生産性向上の観点から一般に利用されている。
Hollow fibers made of polymers are used in various separation membranes including dialysis membranes.
This hollow fiber membrane is manufactured by using a spinning nozzle of a double tube type or the like, and injecting a polymer solution for forming a hollow fiber in the outer tube part and a liquid for forming a hollow in the central inner tube part. The method is common.
In addition, a plurality of such double tube type spinning nozzles are arranged inside, the solution flows in from one place, branches into each spinning hole inside, and a large number of hollow fibers from a plurality of discharge ports at once. A multi-spindle spinneret for manufacturing is generally used from the viewpoint of improving productivity.

こうした多錘紡糸口金においては、各紡糸ノズル間の吐出量にバラツキがあると、得られる中空糸間に糸径差や膜厚差が生じ、安定した製品性能を維持することが困難となる。特に、中空糸膜においては、透過量バラツキを引き起こし、製品加工時のトラブルを発生させたり、製品歩留まりを低下させることがある。
この吐出量バラツキの主な原因は、例えば紡糸ノズルの溶液流路の製作加工斑や溶液温度のバラツキ発生等である。
In such a multi-spindle spinneret, if there is a variation in the discharge amount between the spinning nozzles , a difference in yarn diameter or film thickness occurs between the hollow fibers obtained, making it difficult to maintain stable product performance. In particular, in the hollow fiber membrane, the amount of permeation varies, which may cause trouble during processing of the product and may reduce the product yield.
The main causes of the discharge amount variation are, for example, production processing spots of the solution flow path of the spinning nozzle and the occurrence of variation in the solution temperature.

中空糸膜を形成する高分子溶液は一般的に高粘度の流体であり、その送液圧力を所定圧以下に抑えたり、サイクリックダイマーなど低分子量物の析出を抑制するために、溶解・貯蔵および送液の各工程中は、比較的高温に維持される。
他方、紡糸ノズルから吐出成形する工程では、中空糸の製品性能が吐出時の溶液温度に強く依存するために、所定の温度まで溶液を冷却して吐出形成する製法が一般的である。
The polymer solution that forms the hollow fiber membrane is generally a high-viscosity fluid, and it is dissolved and stored in order to keep the liquid feeding pressure below a predetermined pressure or to suppress the precipitation of low molecular weight substances such as cyclic dimers. And during each process of liquid feeding, it is maintained at a relatively high temperature.
On the other hand, in the process of discharging from the spinning nozzle , the product performance of the hollow fiber membrane strongly depends on the solution temperature at the time of discharging. Therefore, a manufacturing method in which the solution is cooled to a predetermined temperature and discharged to form is generally used.

しかしながら、上述した多錘紡糸口金による中空糸製造においては、比較的高温で流入した高分子溶液を所定の温度まで一様に温度低下させて吐出させることは極めて難しく、吐出量バラツキを十分に抑制することは困難であった。   However, in hollow fiber production using the above-described multi-spinning spinneret, it is extremely difficult to discharge a polymer solution that has flowed in at a relatively high temperature by uniformly lowering the temperature to a predetermined temperature, and the discharge amount variation is sufficiently suppressed. It was difficult to do.

多錘紡糸口金で中空糸を製造する従来の技術には、溶液の分割・配置転換を行う静止型混合器を用いるものに、特許文献1がある。これは、中空糸を形成する際に、高精度濾過フィルターと一体化した多錘紡糸口金の内外流路における温度ムラを、内蔵ヒーターやスタティックミキサーによって抑制する手段に関する。また、多錘紡糸口金と静止型混合器を用いて紡糸する関連従来技術には、特許文献2及び3がある。しかし、いずれの従来技術によっても、比較的高温で流入した高分子溶液を所望温度まで一様に低下させて、吐出量バラツキを十分に抑制することで、糸形状の均一度が高い中空糸を製造することは困難であった。 Patent Document 1 discloses a conventional technique for producing a hollow fiber with a multi-spinning spinneret using a static mixer for dividing and rearranging a solution. This relates to a means for suppressing temperature unevenness in the inner and outer flow paths of a multi- spinning spinneret integrated with a high-precision filter when a hollow fiber is formed by a built-in heater or a static mixer. Patent Documents 2 and 3 are related prior arts for spinning using a multi-spinning spinneret and a static mixer. However, according to any of the conventional techniques, a hollow fiber having a high degree of uniformity in the yarn shape can be obtained by uniformly reducing the polymer solution flowing at a relatively high temperature to a desired temperature and sufficiently suppressing the discharge amount variation. It was difficult to manufacture.

そこで、本発明は、上記の従来の問題点を解消し、複数の紡糸ノズルを有する多錘紡糸口金を備えた装置において、中空糸形成用高分子溶液の温度調整を万全にし、吐出量バラツキを十分に抑制することで、糸形状の均一度が高い中空糸を製造する紡糸装置を提供することを課題とする。 Therefore, the present invention solves the above-mentioned conventional problems, and in an apparatus equipped with a multi-spinning spinneret having a plurality of spinning nozzles , the temperature of the polymer solution for forming a hollow fiber is completely adjusted, and the discharge amount variation is reduced. It is an object of the present invention to provide a spinning device that produces a hollow fiber membrane having a high degree of uniformity of the yarn shape by sufficiently suppressing.

上記課題を解決するために、本発明の中空糸製造用紡糸装置は以下の構成を有する。すなわち、中空糸を製造するための紡糸装置であって、中空糸形成用の高分子溶液と中空形成用液とを吐出する多錘紡糸口金に、中空糸形成用高分子溶液を流入する直前に、多錘紡糸口金本体とは独立に温度制御可能な熱交換器を有して、中空糸形成用高分子溶液の分割・配置転換を行う静止型混合器を設けたことを特徴とする。 In order to solve the above problems, the spinning device for producing hollow fibers of the present invention has the following configuration. That is, a spinning device for producing a hollow fiber membrane , immediately before flowing a polymer solution for forming a hollow fiber into a multi-spindle spinneret for discharging a polymer solution for forming a hollow fiber and a solution for forming a hollow fiber Further, the present invention is characterized in that a static mixer is provided that has a heat exchanger capable of controlling the temperature independently of the multi-spindle spinneret body and that divides and rearranges the polymer solution for forming a hollow fiber.

本発明によると、多錘紡糸口金に、中空糸形成用高分子溶液を流入する直前に、紡糸装置本体とは独立に温度制御可能な熱交換器を有する静止型混合器を設けたので、比較的高温で流入した高分子溶液を所望の温度まで一様に低下させて、吐出量バラツキを十分に抑制することができる。そのため、糸形状の均一度が高い中空糸を製造することが可能になった。   According to the present invention, a static mixer having a heat exchanger capable of controlling the temperature independently of the spinning device main body is provided immediately before the hollow fiber forming polymer solution flows into the multi-spindle spinneret. It is possible to uniformly reduce the polymer solution that has flowed in at a high temperature to a desired temperature and sufficiently suppress the discharge amount variation. Therefore, it has become possible to produce a hollow fiber having a high degree of uniformity of the yarn shape.

以下に、本発明の実施形態を、図面に基づいて説明する。
図1は、本発明の実施例を示す多錘紡糸口金組立品の概略正面断面図であり、図2は、紡糸口金を用いた中空糸膜製造工程の一例を示す概略工程図である。
多錘紡糸口金は、上部ブロック1、中間ブロック2、下部ブロック3および内管4、保温ブロック5を備える。なお、多錘紡糸口金外周部に保温ブロック5を装着しない場合もある。
このような多錘紡糸口金において、中空形成液は、上部ブロック1に設けられた供給口6より供給され、鉛直部6a、水平部6bの流路を経て、内管4の中央部流路6cに達する。一方、中空糸形成用高分子溶液は、供給口7より供給され、鉛直部7a、7b、水平部7cの流路を経て、内管4の外周部と下部ブロック3から形成される環状流路7dに達する。こうして吐出された高分子溶液は、他方の中空形成液によって中空糸の内径が規制され、鞘芯構造を形成する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic front sectional view of a multi-spindle spinneret assembly showing an embodiment of the present invention, and FIG. 2 is a schematic process diagram showing an example of a hollow fiber membrane manufacturing process using a spinneret.
The multi- spinning spinneret includes an upper block 1, an intermediate block 2, a lower block 3, an inner tube 4, and a heat retaining block 5. In some cases, the heat retaining block 5 is not attached to the outer periphery of the multi- spinning spinneret.
In such a multi- spinning spinneret, the hollow forming liquid is supplied from the supply port 6 provided in the upper block 1 and passes through the flow path of the vertical part 6a and the horizontal part 6b, and then the central flow path 6c of the inner tube 4. To reach. On the other hand, the hollow fiber-forming polymer solution is supplied from the supply port 7 and passes through the channels of the vertical portions 7a and 7b and the horizontal portion 7c, and is formed from the outer peripheral portion of the inner tube 4 and the lower block 3 7d is reached. In the polymer solution thus discharged, the inner diameter of the hollow fiber is regulated by the other hollow forming liquid to form a sheath core structure.

この時、上部ブロック1の保温用熱媒流路8や保温ブロック5には、流入した高分子溶液や中空形成液を所定の温度に保つように熱媒流体を通している。
その理由は、紡糸ノズルから吐出された直後が、高分子溶液と中空形成液が初めて接触し、脱溶媒による膜構造の発現が始まる箇所だからである。ここは、中空糸膜の性能管理上、極めて重要な工程であり、脱溶媒が急激になり過ぎないように、一般的には比較的低い温度30℃以上50℃以下程度に維持される。
At this time, the heat medium fluid is passed through the heat retaining heat medium flow path 8 and the heat retaining block 5 of the upper block 1 so as to maintain the polymer solution and the hollow forming liquid flowing into the predetermined temperature.
The reason is that immediately after being discharged from the spinning nozzle , the polymer solution and the hollow forming liquid are in contact with each other for the first time, and the expression of the membrane structure by desolvation begins. This is an extremely important step in performance management of the hollow fiber membrane, and is generally maintained at a relatively low temperature of about 30 ° C. or more and about 50 ° C. or less so that the solvent removal does not become too rapid.

中空形成液は、この多錘紡糸口金に流入する以前より、多錘紡口保温温度と同じに保持して紡糸口金に流入させても問題ないが、高分子溶液を多錘紡糸口金に流入する以前(例えば、図2における送液流路14)より30℃以上50℃以下に保持すると別の問題が生じる。
第一の問題は、高分子溶液が一般的に高粘度流体であり、その温度を低下させると液粘度が著しく増加して、運転圧が上昇する点である。運転圧が上昇すれば、ギアポンプや配管は高耐圧仕様とせざるを得ず、設備費が高価となってしまう。
第二の問題は、高分子溶液の温度が低下すると、溶剤の活性化エネルギーが低下し、低分子量物やミクロゲルの析出が顕著になる点である。析出が顕著になると、フィルタ詰りやノズル詰りが生じ易くなり、生産性が低下する問題が生じる。なお、この問題を解決する方法としては、ポリマーを80℃以上に保持する方法が、
特開平11−60738号などに開示されている。こうした問題を回避するため、高分子溶液は、多錘紡糸口金に流入するまでは60〜80℃に保持し、保温用流路や保温ブロックを有する多錘紡糸口金に流入した後に温度を下げる製造方法をとることが一般的である。
The hollow forming fluid, than before flowing into the Tatsumu spinneret, there is no problem even if flowed into the spinneret and the same holds with Tatsumu spinneret retained temperature, flows the polymer solution to Tatsumu spinneret Another problem arises when the temperature is maintained at 30 ° C. or higher and 50 ° C. or lower than before (for example, the liquid supply flow path 14 in FIG. 2).
The first problem is that the polymer solution is generally a high-viscosity fluid, and when the temperature is lowered, the liquid viscosity is remarkably increased and the operating pressure is increased. If the operating pressure rises, the gear pump and piping must be made to have a high pressure resistance specification, and the equipment cost becomes expensive.
The second problem is that when the temperature of the polymer solution is lowered, the activation energy of the solvent is lowered, and precipitation of low molecular weight substances and microgels becomes remarkable. When the precipitation becomes remarkable, filter clogging and nozzle clogging are likely to occur, resulting in a problem of reduced productivity. In addition, as a method of solving this problem, a method of holding the polymer at 80 ° C. or higher,
It is disclosed in Japanese Patent Application Laid-Open No. 11-60738. In order to avoid such problems, the polymer solution is maintained at 60 to 80 ° C. until it flows into the multi-spinning spinneret, and the temperature is lowered after flowing into the multi-spinning spinneret having a heat retaining channel or a heat retaining block. It is common to take a method.

しかしながら、図1に示すように流入口から各吐出口までの経路が異なり、吐出口毎に滞留時間が異なる多錘紡糸口金においては、高温で流入した高分子溶液の温度を一様に低下させて吐出することは極めて難しく、十分満足のいく吐出量バラツキにまで抑制することは困難であった。
多錘紡糸口金自体だけでなく、流入直前(例えば、図1の流入口7)に二重管式等の熱交換器を設置し、外周部に冷媒流体を流して、高分子溶液の温度を下げる方法も考えられる。しかし、一般的に高粘度流体となる高分子溶液を短い区間で冷却しても、管壁近傍の溶液温度が下がるだけであって、管路中央の溶液温度はほとんど低下しない。かえって、この流入部における温度分布が吐出口の温度ムラ、ひいては吐出量バラツキを増大させてしまうこともある。
また、多錘紡糸口金に流入する前の熱交換に、十分な配管長をとれば(例えば、図2の送液流路14)、こうした流入直前の溶液の温度分布を小さくできるが、上述した低分子量物の析出の点から好ましくない。
However, as shown in FIG. 1, in a multi-spindle spinneret in which the path from the inlet to each outlet is different and the residence time is different for each outlet, the temperature of the polymer solution flowing at a high temperature is uniformly reduced. it is very Umate difficult to discharge Te, it is difficult to suppress up the discharge amount variation entirely satisfactory.
In addition to the multi-spinning spinneret itself, a heat exchanger such as a double pipe type is installed just before the inflow (for example, the inlet 7 in FIG. 1), and a refrigerant fluid is allowed to flow around the outer periphery to control the temperature of the polymer solution. A method of lowering is also conceivable. However, even if a polymer solution that is generally a high-viscosity fluid is cooled in a short section, only the solution temperature in the vicinity of the tube wall is lowered, and the solution temperature in the center of the tube is hardly lowered. On the contrary, the temperature distribution in the inflow portion may increase the temperature unevenness of the discharge port, and thus increase the discharge amount variation.
Further, if a sufficient pipe length is taken for heat exchange before flowing into the multi-spindle spinneret (for example, the liquid feeding flow path 14 in FIG. 2), the temperature distribution of the solution immediately before such inflow can be reduced. It is not preferable from the viewpoint of precipitation of low molecular weight substances.

これに対し、本発明は、高分子溶液の導入管の流入部に、静止型混合器を有する熱交換器を設けた。この熱交換器は、高分子溶液を分割・配置転換するためのスタティックミキサーエレメント9と、外周部に冷媒流体を流すことができる二重管部10とで構成される。このスタティックミキサー部における高分子溶液の滞留時間を10秒以内程度、より好ましくは3秒以内とすることで、前述した低分子量物の析出を抑制しつつ、多錘紡糸口金の吐出部において適正な成形条件が選択できることになる。 In contrast, in the present invention, a heat exchanger having a static mixer is provided at the inflow portion of the polymer solution introduction pipe. This heat exchanger is composed of a static mixer element 9 for dividing and rearranging a polymer solution, and a double pipe portion 10 capable of flowing a refrigerant fluid to the outer peripheral portion. By setting the residence time of the polymer solution in the static mixer section to about 10 seconds or less, more preferably within 3 seconds, it is possible to prevent the above-described precipitation of the low molecular weight substance and to prevent an appropriate amount in the discharge section of the multi-spinning spinneret. The molding conditions can be selected.

なお、熱交換器は、図示した二重管式のものの他に、多管式など従来公知のものが適宜利用できる。   As the heat exchanger, a conventionally known one such as a multi-tubular type can be used as appropriate in addition to the illustrated double-pipe type.

多錘紡糸口金の流入直前に設けた静止型混合器の主要な働きは以下の二点である。
ひとつは、高分子溶液の熱交換性能、具体的には総括伝熱係数を大幅に改善できる点である。通常の二重管式熱交換器に対し、静止型混合器付き熱交換器の総括伝熱係数は2.5〜5倍程度である。
もうひとつは、管壁近傍で温度低下した高分子溶液の配置転換が頻繁になされ、管路内溶液に温度分布がほとんど生じない点である。この特徴は、外周部の冷媒温度を多錘紡糸口金保温温度より低くして、高分子溶液の冷却を効率的に行う際により一層効果的である。
The main functions of the static mixer provided immediately before the inflow of the multi- spinning spinneret are the following two points.
One is that the heat exchange performance of the polymer solution, specifically, the overall heat transfer coefficient can be greatly improved. The general heat transfer coefficient of a heat exchanger with a static mixer is about 2.5 to 5 times that of a normal double tube heat exchanger.
The other is that the polymer solution whose temperature has dropped near the pipe wall is frequently relocated, and the temperature distribution hardly occurs in the solution in the pipe line. This feature is more effective when the polymer solution is efficiently cooled by lowering the refrigerant temperature at the outer peripheral portion below the heat retaining temperature of the multi- spinning spinneret.

例えば、通常の二重管式熱交換器に多錘紡糸口金保温温度より低い温度の冷媒を用いて高分子溶液を冷却した場合、溶液の平均温度が多錘紡糸口金保温温度と同じになっても、配管内溶液には大きな温度分布が生じていて、上述と同様の吐出量バラツキが生じる。これに対し、本発明の方式では、配管内に適当な個数のスタティックミキサーエレメントを配置しておけば、熱交換器を非常に短い長さにできる。例えば、高分子溶液の温度を一様に30〜50℃低下させるために、単純な二重管式では数mの配管長が必要であるが、本発明では数十cmの長さで済むことになり、定量ギアポンプや濾過フィルターの下流側にでも容易に設置できる。すると、仮に冷却を施している本発明の熱交換器内で析出物が発生しても、配管寸法が非常に短いため、取り外して洗浄したり、予備品と交換したりすることが可能となる。したがって、長期運転後の復旧・メンテナンスが非常に容易となり、操業安定性や稼働率も大幅に改善される。 For example, when cooling the polymer solution using a refrigerant temperature lower than Tatsumu spinneret retained temperature to normal double-tube heat exchanger, the average temperature of the solution is the same as the Tatsumu spinneret retained temperature However, a large temperature distribution is generated in the solution in the pipe, and the discharge amount variation similar to the above occurs. On the other hand, in the system of the present invention, if an appropriate number of static mixer elements are arranged in the pipe, the heat exchanger can be made very short. For example, in order to uniformly lower the temperature of the polymer solution by 30 to 50 ° C., a simple double pipe type requires a pipe length of several meters, but in the present invention, a length of several tens of centimeters is sufficient. Therefore, it can be easily installed on the downstream side of the metering gear pump or filtration filter. Then, even if precipitates are generated in the heat exchanger of the present invention that has been cooled, since the piping dimensions are very short, it can be removed and cleaned, or replaced with spare parts. . Therefore, recovery / maintenance after long-term operation becomes very easy, and operational stability and availability are greatly improved.

以下、図面に基づいて本発明による実施例を説明する。実施例と比較例は、後記の表1にまとめてある。
高分子溶液として、ポリスルフォンP 3500(SOLVOY社製)17g、ポリビニルピロリドンK90(ISP製)4gをジメチルアセトアミド(水分含有率100ppm以下)79gに溶解したポリスルフォン溶液を作成した。この溶液を用いて、図1の多錘紡糸口金を装着した図2の紡糸装置で、平均外径約300μmの中空糸を製造した。
本実施例では、ポリスルフォン溶液の溶解・貯蔵・送液は78℃で行った。また、中空形成液は、濃度50wt%、温度45℃のジメチルアセトアミド水溶液を、凝固浴液は濃度2wt%、温度50℃のジメチルアセトアミド水溶液を用い、水洗、乾燥を施した後に巻き取る製法で中空糸膜を製造した。
なお、ポリスルフォン溶液の調整方法に関しては、特許文献5などに開示されている。
特開平11−100709号
Embodiments according to the present invention will be described below with reference to the drawings. Examples and comparative examples are summarized in Table 1 below.
As a polymer solution, a polysulfone solution was prepared by dissolving 17 g of polysulfone P 3500 (manufactured by SOLVOY) and 4 g of polyvinylpyrrolidone K90 (manufactured by ISP) in 79 g of dimethylacetamide (water content 100 ppm or less). Using this solution, hollow fibers having an average outer diameter of about 300 μm were produced with the spinning device of FIG. 2 equipped with the multi-spindle spinneret of FIG.
In this example, the polysulfone solution was dissolved, stored, and delivered at 78 ° C. The hollow forming liquid is a dimethylacetamide aqueous solution with a concentration of 50 wt% and a temperature of 45 ° C, and the coagulation bath liquid is a dimethylacetamide aqueous solution with a concentration of 2 wt% and a temperature of 50 ° C. A yarn membrane was produced.
A method for preparing a polysulfone solution is disclosed in Patent Document 5 and the like.
Japanese Patent Laid-Open No. 11-100709

本実施例で用いた多錘紡糸口金は、二重管型紡糸ノズルを、20〜30mmピッチで4×8列に配置し、紡口ノズル配列の中央部から高分子溶液が流入し、水平部7cの流路を経て、32個の各紡糸ノズルに達する構造であった。
なお、図1の多錘紡糸口金を用い、紡糸口金保温温度24℃として、中空形成部には通液しないで、高分子溶液流路のみに24℃ジメチルアセトアミド100%溶液を流し、32個の紡糸ノズル各々の吐出量を測定したところ、その平均吐出量は 25.4cc/min、吐出バラツキはσn=0.14cc/min、σ%=0.5%となり、後述する中空糸の膜厚バラツキに比べて、非常に良好であることが確認できた。すなわち、多錘紡糸口金流路の製作加工斑に起因する膜厚バラツキ以外の影響はほとんど排除できていた。
In the multi-spinning spinneret used in this example, double tube type spinning nozzles are arranged in 4 × 8 rows at a pitch of 20 to 30 mm, and a polymer solution flows from the central part of the spinning nozzle array, and the horizontal part. The structure reached each of the 32 spinning nozzles through the flow path 7c.
In addition, the multi-spindle spinneret of FIG. 1 was used, the spinneret was kept at a temperature of 24 ° C., the liquid was not passed through the hollow forming part, and the 24% dimethylacetamide 100% solution was allowed to flow only in the polymer solution flow path. When the discharge amount of each spinning nozzle was measured, the average discharge amount was 25.4 cc / min, the discharge variation was σn = 0.14 cc / min, σ% = 0.5%, compared to the film thickness variation of the hollow fiber described later, It was confirmed that it was very good. That is, the influence other than the film thickness variation caused by the fabrication processing unevenness of the multi-spindle spinneret channel could be almost eliminated.

本実施例で用いた静止型混合器付き熱交換器の仕様は以下の通りであった。
内管径φ6mm、有効配管長153mmであり、高分子溶液のスタティックミキサー内滞留時間は1.65秒であった。スタティックミキサーエレメント数17個(分割数N=131072)を設けた。エレメント数を増やすほど、分割・混合の度合いは良くなるが、ミキサー部の圧力損失が増加するため、本発明への適用には5〜40個程度、より好ましくは10〜25個が好ましい。
なお、実施例中に表記した温調後高分子溶液流入温度は図1の高分子溶液の流入口7と流路7aの間に温度計を挿入して測定した。また、製造した中空糸の内径および膜厚は、透過型顕微鏡に40万画素CCDカメラを搭載し、分解能1.28μmの画像処理装置で測定した。
The specifications of the heat exchanger with a static mixer used in this example were as follows.
The inner pipe diameter was 6 mm, the effective pipe length was 153 mm, and the residence time of the polymer solution in the static mixer was 1.65 seconds. The number of static mixer elements was 17 (number of divisions N = 131072). As the number of elements is increased, the degree of division / mixing is improved, but the pressure loss of the mixer section is increased. Therefore, about 5 to 40 elements, more preferably 10 to 25 elements are preferable for application to the present invention.
The temperature-adjusted polymer solution inflow temperature described in the examples was measured by inserting a thermometer between the polymer solution inlet 7 and the channel 7a in FIG. The inner diameter and film thickness of the manufactured hollow fiber were measured with an image processing apparatus having a resolution of 1.28 μm equipped with a 400,000-pixel CCD camera in a transmission microscope.

図1の多錘紡糸口金を用い、二重管部10に45℃の冷媒を流して、中空糸膜を製造した。この実施例において、温調後の高分子溶液流入温度は67℃であった。得られた中空糸32本の内径、膜厚を全数測定して評価を行ったところ、内径バラツキσ%≒2%と極めて良好であった。このとき、32本の中空糸の膜厚みバラツキはσ%≒7%とかなり良好であった。 A hollow fiber membrane was manufactured by flowing a 45 ° C. refrigerant through the double tube portion 10 using the multi-spindle spinneret of FIG. In this example, the polymer solution inflow temperature after temperature control was 67 ° C. An evaluation was made by measuring all the inner diameters and film thicknesses of the 32 hollow fibers obtained, and the inner diameter variation was very good, σ% ≈2%. At this time, the film thickness variation of the 32 hollow fibers was as good as σ% ≈7%.

図1の二重管部10に10℃の冷媒を流した以外は、実施例1と同様にして中空糸膜を製造した。この実施例において、温調後の高分子溶液流入温度は56℃であった。得られた中空糸32本の膜厚みバラツキはσ%≒4%と非常に優れたものであった。   A hollow fiber membrane was produced in the same manner as in Example 1 except that a refrigerant at 10 ° C. was passed through the double tube portion 10 of FIG. In this example, the polymer solution inflow temperature after temperature control was 56 ° C. The film thickness variation of the 32 hollow fibers obtained was very excellent with σ% ≈4%.

[比較例1]
静止型混合器付き熱交換器を用いなかった以外は、実施例1と同様にして中空糸膜を製造した。温調後の高分子溶液流入温度は76℃であった。得られた中空糸32本の膜厚みバラツキはσ%≒12%と膜厚みバラツキが不良であった。
[Comparative Example 1]
A hollow fiber membrane was produced in the same manner as in Example 1 except that the heat exchanger with a static mixer was not used. The polymer solution inflow temperature after temperature control was 76 ° C. The film thickness variation of the 32 hollow fibers obtained was σ% ≈12%, and the film thickness variation was poor.

[比較例2]
多錘紡糸口金に静止混合器を有さない二重管部を設け、45℃の冷媒を流した以外は、実施例1と同様にして中空糸膜を製造した。温調後の高分子溶液流入温度は73℃であった。得られた中空糸32本の膜厚みバラツキはσ%≒12%と膜厚みバラツキが不良であった。
[Comparative Example 2]
A hollow fiber membrane was produced in the same manner as in Example 1, except that a double pipe portion having no static mixer was provided in the multi- spinning spinneret and a 45 ° C. refrigerant was flowed. The inflow temperature of the polymer solution after temperature adjustment was 73 ° C. The film thickness variation of the 32 hollow fibers obtained was σ% ≈12%, and the film thickness variation was poor.

[比較例3]
ポリスルフォン溶液の溶解を78℃で行い、溶液の貯蔵・送液を45℃で行った後、静止型混合器付き熱交換器を備えない多錘紡糸口金を用いて、45℃の冷媒を流した以外は、実施例1と同様にして中空糸膜を製造した。高分子溶液の流入温度は46℃であった。得られた中空糸32本の膜厚みバラツキはσ%≒3%と非常に優れたものであった。しかし、わずか3日間の運転期間で、ノズヘの異物析出に起因する偏芯糸が多発し、多錘紡糸口金を用いた操業運転には不適格であった。
[Comparative Example 3]
After dissolving the polysulfone solution at 78 ° C and storing and feeding the solution at 45 ° C, use a multi- spinning spinneret without a heat exchanger with a static mixer to flow a 45 ° C refrigerant. A hollow fiber membrane was produced in the same manner as in Example 1 except that. The inflow temperature of the polymer solution was 46 ° C. The film thickness variation of the 32 hollow fibers obtained was very excellent with σ% ≈3%. However, in only 3 days of operation, eccentric yarns due to precipitation of foreign matter in Nozhe occurred frequently, which was unsuitable for operation using a multi-spinning spinneret.

Figure 0004331579
Figure 0004331579

本発明によると、多錘紡糸口金直前に溶液温度を一様に調節する機構が備わっているため、溶液を各紡糸ノズルに分岐するヘッダー部の滞留時間に起因する溶液温度差を抑制することができる。その結果、各吐出口から得られる中空糸の形状バラツキを小さくすることができ、寸法バラツキが非常に少ない高品質の中空糸膜を製造できる。
また、溶液の溶解・貯蔵・送液工程とは無関係に吐出成形工程の温度を選定できるため、広範かつ安定した中空糸膜の製造条件が選択でき、一つの多錘紡糸口金でいろいろな製品性能(具体的には、透水性能、分画性能など)の中空糸膜を製造することができる。
さらに、低い冷媒温度の選定と組み合わせることで、熱交換器を非常に短く構成できるため、高分子溶液の吐出温度を下げた場合に、高耐圧が必要となるエリアや析出物等が発生して一定周期で分解・洗浄が必要なエリアを、例えば単体で取り外し可能なサイズにまで極めて狭く構成でき、設備費を低減することが可能でもある。
本発明の装置によって製造される中空糸は、糸形状が均一で製品精度が高いので、腎臓等の人工臓器などに有用である。
According to the present invention, since a mechanism for uniformly adjusting the solution temperature is provided immediately before the multi- spinning spinneret, it is possible to suppress the difference in solution temperature caused by the residence time of the header portion that branches the solution to each spinning nozzle. it can. As a result, the shape variation of the hollow fiber obtained from each discharge port can be reduced, and a high-quality hollow fiber membrane with very little dimensional variation can be manufactured.
Further, since it selected temperature regardless ejection molding step the dissolution, storage and feeding step of the solution, extensive and stable production conditions of the hollow fiber membrane can be selected, various product performance in one Tatsumu spinneret A hollow fiber membrane (specifically, water permeation performance, fractionation performance, etc.) can be produced.
Furthermore, when combined with the selection of a low refrigerant temperature, the heat exchanger can be configured to be very short, so when the discharge temperature of the polymer solution is lowered, areas and precipitates that require high pressure resistance are generated. An area that needs to be disassembled and cleaned at a constant cycle can be configured to be extremely narrow, for example, to a size that can be detached as a single unit, and it is also possible to reduce equipment costs.
The hollow fiber produced by the apparatus of the present invention is useful for artificial organs such as the kidney because the yarn shape is uniform and the product accuracy is high.

本発明の実施例を示す多錘紡糸口金組立品の概略正面断面図1 is a schematic front sectional view of a multi- spinning spinneret assembly showing an embodiment of the present invention. 多錘紡糸口金を用いた中空糸膜製造工程の一例を示す概略工程図Schematic process diagram showing an example of hollow fiber membrane manufacturing process using multi-spindle spinneret

符号の説明Explanation of symbols

多錘紡糸口金上部ブロック
2 中間ブロック
3 下部ブロック
4 内管
5 保温ブロック
6 中空形成液供給口
6a 中空形成液供給鉛直流路
6b 中空形成液供給水平流路
6c 中空形成液吐出中央部流路
7 高分子溶液供給口
7a、7b 高分子溶液供給鉛直流路
7c 高分子溶液供給水平流路
7d 高分子溶液吐出環状流路
8 保温用熱媒流路
9 スタティックミキサーエレメント
10 熱交換用二重管
11 溶解槽
12 定量ギアポンプ
13 濾過フィルター
14 送液配管
15 多錘紡糸口金
16 凝固浴
17 水洗機
18 乾燥機
19 巻取機
1 Multi-spindle spinneret upper block 2 Intermediate block 3 Lower block 4 Inner tube 5 Insulating block 6 Hollow forming liquid supply port 6a Hollow forming liquid supply vertical flow path 6b Hollow forming liquid supply horizontal flow path 6c Hollow forming liquid discharge central flow path 7 Polymer solution supply port 7a, 7b Polymer solution supply vertical flow path 7c Polymer solution supply horizontal flow path 7d Polymer solution discharge annular flow path 8 Heat retention heat medium flow path 9 Static mixer element 10 Double tube for heat exchange DESCRIPTION OF SYMBOLS 11 Dissolution tank 12 Fixed gear pump 13 Filtration filter 14 Liquid supply piping 15 Multi- spinning spinneret 16 Coagulation bath 17 Washing machine 18 Dryer 19 Winder

Claims (1)

中空糸を製造するための紡糸装置であって、
中空糸形成用の高分子溶液と中空形成用液とを二重管型の紡糸ノズルとヘッダー部を有して吐出する多錘紡糸口金に、中空糸形成用高分子溶液を流入する直前に、
紡糸装置本体とは独立に温度制御可能な熱交換器を有して、中空糸形成用高分子溶液の分割・配置転換を行う静止型混合器を設けて、
糸形状の均一度を高めることを特徴とする中空糸製造用紡糸装置。
A spinning device for producing a hollow fiber membrane ,
Immediately before flowing the polymer solution for forming a hollow fiber into a multi-spindle spinneret that discharges the polymer solution for forming a hollow fiber and the liquid for forming a hollow tube with a double tube type spinning nozzle and a header portion ,
It has a heat exchanger that can control the temperature independently of the spinning device body, and a static mixer that splits and rearranges the polymer solution for forming hollow fibers ,
A spinning device for producing hollow fibers, characterized by increasing the uniformity of the yarn shape .
JP2003407581A 2003-12-05 2003-12-05 Spinning device for hollow fiber production Expired - Lifetime JP4331579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407581A JP4331579B2 (en) 2003-12-05 2003-12-05 Spinning device for hollow fiber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407581A JP4331579B2 (en) 2003-12-05 2003-12-05 Spinning device for hollow fiber production

Publications (2)

Publication Number Publication Date
JP2005163240A JP2005163240A (en) 2005-06-23
JP4331579B2 true JP4331579B2 (en) 2009-09-16

Family

ID=34729583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407581A Expired - Lifetime JP4331579B2 (en) 2003-12-05 2003-12-05 Spinning device for hollow fiber production

Country Status (1)

Country Link
JP (1) JP4331579B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339301A (en) * 2010-11-24 2013-10-02 三菱丽阳株式会社 Hollow fiber membrane spinning nozzle, and method for manufacturing hollow fiber membrane
CN109876676A (en) * 2019-04-01 2019-06-14 江苏康微纳米科技有限公司 A kind of hollow fiber nanofiltration membrane and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075936B2 (en) * 2011-04-07 2017-02-08 三菱レイヨン株式会社 Raw material supply device for porous membrane
CN102888668B (en) * 2011-07-21 2015-10-14 北京金通量科技有限公司 A kind of technique by device fabrication hollow fiber ultrafiltration membrane
CN102517652A (en) * 2011-12-13 2012-06-27 天邦膜技术国家工程研究中心有限责任公司 Assembled type spinneret plate with a plurality of spinning nozzles
KR101789368B1 (en) * 2012-03-16 2017-10-23 미쯔비시 케미컬 주식회사 Method and spinning device for producing porous hollow yarn membrane
CN110592691B (en) * 2019-09-26 2021-06-25 福建新创锦纶实业有限公司 Adjustable hollow spinneret plate and using method thereof
EP3842132A1 (en) * 2019-12-23 2021-06-30 Gambro Lundia AB Spinneret

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339301A (en) * 2010-11-24 2013-10-02 三菱丽阳株式会社 Hollow fiber membrane spinning nozzle, and method for manufacturing hollow fiber membrane
CN103339301B (en) * 2010-11-24 2016-08-17 三菱丽阳株式会社 Hollow-fibre membrane spinning-nozzle and the manufacture method of hollow-fibre membrane
CN109876676A (en) * 2019-04-01 2019-06-14 江苏康微纳米科技有限公司 A kind of hollow fiber nanofiltration membrane and preparation method thereof

Also Published As

Publication number Publication date
JP2005163240A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4331579B2 (en) Spinning device for hollow fiber production
CN102413910B (en) Method for manufacturing composite porous film
TW201632365A (en) Hollow-fiber degassing module and inkjet printer
CN105063778A (en) Hollow fiber membrane spinning nozzle, and method for manufacturing hollow fiber membrane
CN113842786A (en) Method for producing hollow fiber membrane and nozzle for spinning hollow fiber membrane
WO2017037912A1 (en) Method for manufacturing hollow fiber membrane and nozzle for hollow fiber membrane spinning
JP4715733B2 (en) Manufacturing method of reverse osmosis membrane
JP2001254221A (en) Method of fabricating spinneret for hollow fiber and spinneret for hollow fiber
JPH06200407A (en) Hollow yarn and its production
JP2000288365A (en) Hollow fiber membrane and manufacture thereof
CN211713265U (en) Spinning assembly and spinning equipment based on solution spinning technology
JPH0796152A (en) Gradient hollow-fiber membrane and its production
KR102087507B1 (en) Composition of flexible PPS porous hollow fiber having symmetric structure, flexible PPS porous hollow fiber membrane having symmetric structure and Manufacturing method thereof
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
CN112789103B (en) Hollow fiber membrane spinning nozzle and method for producing hollow fiber membrane
JP4760017B2 (en) Method for producing hollow fiber membrane and method for producing hollow fiber membrane module
KR20160034743A (en) Water Treatment Module With Reduced Fracture Rate And Method For Preparation Thereof
JP4578263B2 (en) Cellulose acetate-based core-sheath type composite fiber manufacturing apparatus, and concentric-sheath type composite fiber manufacturing method
EP4331714A1 (en) Hollow fiber membrane and manufacturing method therefor
JP2016215102A (en) Polyarylate hollow fiber membrane, and its manufacturing method and hollow fiber membrane module
AU6420190A (en) Membrane fabrication
CN116194624A (en) Assembly comprising a central fluid distributor and a multi-fiber spinneret
JP2005144205A (en) Method for manufacturing hollow fiber membrane
TWI480096B (en) Apparatus and method for manufacturing hollow fiber membrane and hollow fiber membrane manufactured therefrom
CN104562228B (en) The method for preventing spinning solution delivery pipe skinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Ref document number: 4331579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term