JP4330830B2 - Ice making equipment - Google Patents

Ice making equipment Download PDF

Info

Publication number
JP4330830B2
JP4330830B2 JP2001301505A JP2001301505A JP4330830B2 JP 4330830 B2 JP4330830 B2 JP 4330830B2 JP 2001301505 A JP2001301505 A JP 2001301505A JP 2001301505 A JP2001301505 A JP 2001301505A JP 4330830 B2 JP4330830 B2 JP 4330830B2
Authority
JP
Japan
Prior art keywords
connecting pipe
water
pipe
supercooler
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001301505A
Other languages
Japanese (ja)
Other versions
JP2003106716A (en
Inventor
大介 三戸
正幸 谷野
貴彦 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2001301505A priority Critical patent/JP4330830B2/en
Priority to SG200205831A priority patent/SG104982A1/en
Priority to KR1020020058336A priority patent/KR100823813B1/en
Priority to CNB021442525A priority patent/CN100416189C/en
Publication of JP2003106716A publication Critical patent/JP2003106716A/en
Application granted granted Critical
Publication of JP4330830B2 publication Critical patent/JP4330830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/14Temperature of water

Description

【0001】
【発明の属する技術分野】
本発明は,連続的に水の過冷却状態を解消して製氷し,かつ長時間に渡って過冷却水の製造を妨ずに連続して製氷できる装置に関するものである。
【0002】
【従来の技術】
従来から過冷却状態の水を密閉配管内で連続的に解除して氷を製造する方法が提案されているが,長時間の連続製氷を行うためには,氷の結晶が存在する製氷容器から冷却器に向かって相変化(過冷却解除)が伝播しないようにし,冷却器の凍結を回避する必要がある。
【0003】
すなわち,過冷却器で製造された過冷却水が解除器内で相変化を始めると,解除器内の壁面では氷の核が次々に成長と剥離を繰り返す状態となる。この過冷却水と接する固体表面での氷の成長と剥離という現象は,解除器の入口に連結されている連結管内壁を伝わって上流側,すなわち過冷却器側に伝播する。このような伝播が起こる理由は,壁面への氷の付着と関係がある。つまり壁面に付着した氷は高速な流れの中にさらされていても,付着している間は管壁に対して静止しているか,極めてゆっくりとした速度で下流側に向かって移動している状態なので,その間の氷の成長分だけ相変化が上流側に前進する。なお流れによって剥離が起こっても,元の接着面にはミクロな結晶群が残留し,そこからまた新たな氷核が成長する。
【0004】
この点に関し,例えば特許第2806155号においては,連結管を加熱することによって相変化の伝播を防止する方法が開示されており,また特開2000−74532においては,連結管の製氷容器側の端部を特殊加工し,流速を2.7m/s以上に上げて,連結管内に氷が侵入しないようにする方法が提案されている。
【0005】
さらにまた解除器内における氷の壁面への接着を弱める方法には,第35回伝熱シンポジウム講演論文集(1998,P.221)にて開示されているように,壁面材料自体に熱伝導率の小さな材料を使用するという方法もある。
【0006】
【発明が解決しようとする課題】
しかしながら,特許第2806155号に開示の技術では,加熱のためのエネルギーが別途必要になり,また過冷却水の温度上昇によって,製氷量が低下することが避けられないという問題がある。
【0007】
一方特開2000−74532に開示の技術では,連結管の流速を上げることによって連結管の配管抵抗が大きくなるため,水及び製造した氷水を搬送するためのエネルギーが,流速を上げない場合に比べて余分に必要になる。また相変化が上流側へ伝播しない効果を長期間にわたって持続させるためには,連結管端部の特殊加工が施された面に,微細な傷やスケール等の異物が着かないように別途対策を講じる必要がある。
【0008】
また壁面材料自体に熱伝導率の小さな材料を使用する方法も,熱伝導率が0の物質が存在しない以上,氷の付着力を0にすることはできず,このため,相変化が上流側に伝播するのを完全に防ぐことはできない。
【0009】
本発明は,かかる点に鑑みてなされたものであり,いわゆる密閉系での過冷却却解除による氷製造において,前記したような伝播防止のための格別の加熱エネルギーや連結管端部表面への特殊な加工も必要とせず,長期間に渡って安定して解除器から連結管への相変化の伝播を防止する氷製造装置を提供して,前記問題の解決を図ることをその目的としている。
【0010】
【課題を解決するための手段】
前記目的を達成するため、本発明の氷製造装置は、水を過冷却状態にする過冷却器と、過冷却状態の水を解除する密閉系の解除器と、前記過冷却器の出口と前記解除器との入口を結ぶ連結管とを有する氷の製造装置において、連結管の外周を水密に覆う外部容器と、この外部容器内に水を注水する注水管とを有し、前記外部容器内で、前記連結管は空隙を介して全周に渡って分断され、前記注水管は、前記過冷却器の入口側に接続される導入管から分岐して過冷却器をバイパスして、前記外部容器との間に接続され、前記導入管における注水管の接続部の上流側で、導入管内を流れる水を加熱する加熱器を有し、前記連結管の分断端面は、上流側連結管の端面の内壁側が下流側に向けて突出しているテーパ形状であり、下流側連結管の端面の外壁側が上流側に向けて突出し、かつ下流側連結管の端面自体は上流側に向けて凸に湾曲していることを特徴としている。
【0012】
本発明によれば、外部容器内で連結管が空隙を介して全周に渡って分断しているので,注水管から外部容器内に注水すると,前記空隙から連結管の内壁に水を供給して,空隙から下流側の連結管内壁に注水した水の液膜を形成することができる。したがって連結管の内壁面全周に対して0℃以上の水を供給すると,供給された部分よりも下流側の連結器内壁面全周に,0℃以上の水の液膜が形成される。この液膜によって,連結管内壁への氷の付着・相変化の上流側への伝播を防止することができる。また壁面に形成された0℃以上の液膜内部では,たとえ氷核が存在していても成長することはなく,やがて融解するか,下流に流されてゆくため,相変化が連結管に0℃以上の水和供給している部分を越えて上流側に伝播することはない。以上のような効果を得るためには,連結管の出口からの流量を,解除器に流入する水の流量の2%〜3%程度に保持することが必要である。また連結管内の流速は1m/s以上であればよい。
【0014】
なお連結管の分断は,解除器から連結管に氷片が形成され始めた際に,隙間により若干伝播が緩和される。しかしブリッジ作用が働くため,上流側への伝播を完全には防げない。
【0015】
前記注水管は,前記過冷却器の入口側に接続される導入管から分岐して過冷却器をバイパスして,前記外部容器との間に接続されているので、別途水源を確保する必要がなく,また注水する水の温度も適したものか,あるいは加熱するにしても僅かな熱量で済む。また本発明においては、前記導入管における注水管の接続部の上流側で,導入管内を流れる水を加熱する加熱器を有しているので、外部容器内に注水する水をより適切なものとすることが可能になる。
【0017】
連結管の分断端面を前記したような形状としているので、注水管から注水した水によって好適に連結管の内壁に液膜を形成することができる。
【0019】
【発明の実施の形態】
以下に,本発明の好ましい実施の形態を図面に基いて説明する。図1は本実施の形態にかかる氷製造装置1の全体の構成を示しており,過冷却器2は,例えばいわゆるシェル・アンド・チューブの構成を有するもので,過冷却器2内に導入した水を,冷凍機(図示せず)からのブラインによって冷却して,この水を例えば0℃以下の過冷却状態にする機能を有している。
【0020】
過冷却器2の出口側,すなわち吹出口2aには,連結管3の一端部が接続され,連結管3の他端部は,密閉型の解除器4に接続されている。解除器4は,連結管3を通じて流入した過冷却水の過冷却状態を解除して,相変化させてスラリー状の氷を生成し,外部に流出させる機能を有している。過冷却解除のトリガとしては,例えば超音波振動子からの超音波が用いられるが,この種の密閉型の解除器4としては公知のものを適宜使用することができる。
【0021】
過冷却器2の入口側には,導入管11が接続されており,ポンプ12によって蓄熱槽をはじめとする各種の水槽13から取水した水が,過冷却器2内に送られるようになっている。また導入管11におけるポンプ12の上流側には,加熱器として,例えば予熱器14が設けられており,導入管11内を流れる水を,例えば0.5℃に加熱することが可能である。
【0022】
導入管11におけるポンプ12の下流側には,注水管21の一端部が接続されており,他端部は,連結管3の外周を水密に覆っている外部容器22に接続されている。したがって,導入管11の水の一部はこの注水管21を通じて過冷却器2をバイパスして外部容器22内に送水される。したがって注水管21への送水と過冷却器2への送水は1つのポンプ12によって行われている。
【0023】
連結管3は,図2に示したように,外部容器22内において空隙dを創出するように,軸方向に対して直角に分断され,上流側連結管3aと下流側連結管3bとに分けられている。したがって注水管21から外部容器22内に注水されると,前記空隙dから連結管3内に侵入した水は,連結管3内の流れに沿って下流側連結管3bの壁面に沿って下流側に流れていき,下流側連結管3bの壁面に注入された水の液膜が形成されるようになっている。
なおポンプ12によって注水管21を流れる水に付与される圧力は,外部容器22に至るまで維持されるため,後述の隙間dから連結管3内に水を押し込むのに支障はない。
【0024】
本実施の形態にかかる氷製造装置1は,以上のような構成を有しており,次にその運転例について説明すると,例えば水槽13から0℃の水が取水されると,予熱器14によって0.5℃まで昇温される。この0.5℃の水は,過冷却器2内で例えば−2℃の過冷却状態にまで冷却され,そのまま連結管3を通じて解除器4に送られ,解除器4において過冷却状態が解除されて,例えば0℃のスラリー状の氷が製造され,外部へと連続的に流出される。
【0025】
一方,導入管3から分岐して注水管21に流れた0.5℃の水は,外部容器22内に注水され,連結管3の分断部分,すなわち空隙dから連結管3内に進入し,そのまま過冷却状態の水の流れに沿って,下流側に流れていく。このとき空隙dは全周に渡っているから,前記0.5℃の水は,下流側連結管3bの内壁の壁面に沿って流れ,その結果当該壁面全周に渡って,0.5℃の水の液膜が形成される。
なお注水管21と外部容器22の接合点(注水の吐水/受入開口)は,隙間dとは軸線をずらし,所定の距離をとって設定されている。これは壁面全周から均一に水が注水されるようにするための構成である。
【0026】
したがって,解除器4においてなされている過冷却解除が壁面に沿って上流側に伝播しようとしても,下流側連結管3bの内壁の壁面には0℃以上の液膜が形成されているので,当該上流側への伝搬は防止される。また壁面に形成された0℃以上の液膜内部では,たとえ氷核が存在していても成長することはなく,やがて融解するか,過冷却状態の水の流れによって下流に流されてゆくため,相変化が連結管3の出口を越えて上流側に伝播することはない。それゆえ,連結管3,過冷却器2の出口での凍結が防止され,安定してスラリー状の氷を連続して製造することができる。
【0027】
また従来技術と異なり,壁面の表面に樹脂等の特別な加工を施す必要はなく,長期間に渡って安定した伝播防止効果が得られる。また本実施の形態では,予熱器14によって液膜形成用の水を0.5℃にまで加熱しているが,それに要するエネルギは極めて少ないものであり,従来のような直接連結管等を加熱して凍結を防止する方法と比較すれば,はるかに少ないエネルギで足りる。
【0028】
そして本実施の形態では,導入管11を流れる水の一部を分岐して外部容器22内に注水するようにしたので,外部容器2内に注水する水の水源を別途確保する必要はない。
【0030】
連結管3の分断端面、すなわち上流側連結管3aの端面と、下流側連結管3bの端面の形状は、図3以下の各例のようなものを採用することができる。
【0031】
図3に示した例は,上流側連結管3aの端面の内壁31側を下流側に向けて突出させたテーパ形状とし,下流側連結管3bの端面の外壁32側を上流側に向けて突出させたテーパ形状としたものである。
【0032】
図4に示した例は,上流側連結管3aの端面の内壁31側は図3の例と同様下流側に向けて突出させたテーパ形状であるが,下流側連結管3bの端面の外壁32側を上流側に向けて突出させると共に,下流側連結管3bの端面33自体は上流側に向けて凸に湾曲させた形状としたものである。
【0033】
図5に示した例は,上流側連結管3aの端面の内壁31側は外壁34側よりも下流側に突出し,下流側連結管3bの端面の内壁35側は外壁32側よりも上流側に突出し,上流側連結管3aの端面の先端36,上流側連結管3bの端面の先端37は,各々軸方向に対して垂直に切断された構成の面を有している構成を有している。
【0034】
図6に示した例は,上流側連結管3aの端面の内壁31側は外壁34側よりも下流側に突出させ,下流側連結管3bの端面の内壁35側は外壁32側よりも上流側に突出させ,上流側連結管3aの端面38,下流側連結管3bの端面39自体は,連結管3の外方に向けて凸に湾曲させた形状としたものである。
【0035】
以上に示した図3〜図6のような連結管3の分断端面形状を採用すれば,空隙dから進入した水が,より一層好適に下流側連結管3bの内壁35に沿って流れ,下流側連結管3bの内壁35の表面に,当該水による液膜をより好適に形成することが可能である。なお発明者が図3〜6に示す分断端面形状により実験した結果では,図4の態様が最も良好な効果を示した。
以上の実施の形態以外でも,例えばシェル・アンド・チューブ型熱交換器(過冷却器)に代えて,プレート式熱交換器を用いることができる。
また外部容器22についても,箱形の他に,連結管3より大径の環状のものも用いることができる。
【0036】
【発明の効果】
本発明によれば,いわゆる密閉系による過冷却解除による氷の製造において,格別の加熱エネルギーや連結管端部表面への特殊な加工を必要とせず,長期間に渡って安定して解除器から連結管への相変化の伝播を防止することができる。したがって,連続的に水の過冷却状態を解消して製氷し,かつ長時間に渡ってこれを安定して実施することが可能である。
【図面の簡単な説明】
【図1】 実施の形態にかかる氷製造装置の構成の概略を示す説明図である。
【図2】 実施の形態にかかる氷製造装置における連結管の内部の様子を示す一部断面側面図である。
【図3】 連結管の分断端面の他の例を示す側面断面図である。
【図4】 連結管の分断端面の別の例を示す側面断面図である。
【図5】 連結管の分断端面のさらに別の例を示す側面断面図である。
【図6】 連結管の分断端面の他の例を示す側面断面図である。
【符号の説明】
1 氷製造装置
2 過冷却器
3 連結管
3a 上流側連結管
3b 下流側連結管
4 解除器
11 導入管
14 予熱器
21 注水管
22 外部容器
d 空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus capable of continuously making ice by eliminating a supercooled state of water and continuously making ice without obstructing the production of supercooled water for a long time.
[0002]
[Prior art]
Conventionally, a method for producing ice by continuously releasing supercooled water in a sealed pipe has been proposed. However, in order to make ice for a long period of time, an ice making container containing ice crystals is used. It is necessary to prevent the phase change (release of supercooling) from propagating toward the cooler and to avoid freezing of the cooler.
[0003]
In other words, when the supercooled water produced by the supercooler begins to change phase in the releaser, ice nuclei are repeatedly grown and separated one after another on the wall in the releaser. The phenomenon of ice growth and separation on the surface of the solid in contact with the supercooled water propagates upstream through the inner wall of the connecting pipe connected to the inlet of the releaser, that is, to the subcooler side. The reason for this propagation is related to the adhesion of ice to the wall. In other words, even if the ice adhering to the wall surface is exposed to a high-speed flow, it remains stationary with respect to the pipe wall while adhering, or moves toward the downstream side at a very slow speed. Since it is in a state, the phase change advances upstream by the amount of ice growth in the meantime. Even if peeling occurs due to the flow, a micro group of crystals remains on the original adhesion surface, and new ice nuclei grow from there.
[0004]
In this regard, for example, Japanese Patent No. 2806155 discloses a method for preventing propagation of phase change by heating the connecting pipe, and Japanese Patent Application Laid-Open No. 2000-74532 discloses an end of the connecting pipe on the ice making container side. A method has been proposed in which the part is specially processed and the flow velocity is increased to 2.7 m / s or more so that ice does not enter the connecting pipe.
[0005]
Furthermore, as disclosed in the 35th Heat Transfer Symposium Proceedings (1998, p. 221), there is a method for weakening the adhesion of ice to the wall in the releaser. There is also a method of using a small material.
[0006]
[Problems to be solved by the invention]
However, in the technique disclosed in Japanese Patent No. 2806155, there is a problem that energy for heating is required separately, and that the ice making amount is inevitably lowered due to the temperature rise of the supercooling water.
[0007]
On the other hand, in the technique disclosed in Japanese Patent Laid-Open No. 2000-74532, the pipe resistance of the connecting pipe increases by increasing the flow speed of the connecting pipe, so that the energy for transporting water and manufactured ice water is higher than that when the flow speed is not increased. And need extra. In addition, in order to maintain the effect that the phase change does not propagate to the upstream side for a long period of time, separate measures should be taken to prevent fine scratches and scales from adhering to the specially processed surface of the connecting pipe end. It is necessary to take.
[0008]
In addition, the method of using a material with low thermal conductivity for the wall material itself cannot make ice adhesion zero because there is no substance with zero thermal conductivity. Cannot be completely prevented from propagating.
[0009]
The present invention has been made in view of such points, and in ice production by canceling supercooling rejection in a so-called closed system, the special heating energy for preventing propagation as described above and the surface of the end of the connecting pipe are used. The object is to provide an ice production device that does not require special processing and that stably prevents the propagation of phase change from the releaser to the connecting pipe over a long period of time, and to solve the above problems. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an ice making device of the present invention includes a supercooler that makes water supercooled, a closed system releaser that releases supercooled water, an outlet of the supercooler, and the In an ice manufacturing apparatus having a connecting pipe that connects an inlet to a release unit, an external container that covers the outer periphery of the connecting pipe in a watertight manner, and a water injection pipe that injects water into the external container, The connecting pipe is divided over the entire circumference through a gap, and the water injection pipe branches off from the introduction pipe connected to the inlet side of the supercooler, bypasses the supercooler, and the external pipe And a heater for heating water flowing in the introduction pipe on the upstream side of the connection portion of the water injection pipe in the introduction pipe, and the divided end face of the connection pipe is an end face of the upstream connection pipe The inner wall side of the taper is protruding toward the downstream side, and the end face of the downstream connecting pipe Wall protrudes toward the upstream side, and the end face itself of the downstream side connecting pipe is characterized in that it is curved in a convex toward the upstream side.
[0012]
According to the present invention , since the connecting pipe is divided over the entire circumference through the gap in the outer container, when water is poured from the water injection pipe into the outer container, water is supplied from the gap to the inner wall of the connecting pipe. Thus, it is possible to form a liquid film of water poured from the gap to the inner wall of the connecting pipe on the downstream side. Therefore , when water of 0 ° C. or higher is supplied to the entire inner wall surface of the connecting pipe, a liquid film of water of 0 ° C. or higher is formed on the entire inner wall surface of the connector downstream from the supplied portion . By this liquid film, it is possible to prevent the ice from adhering to the inner wall of the connecting pipe and the propagation of the phase change to the upstream side. Also, inside the liquid film of 0 ° C or higher formed on the wall surface, even if ice nuclei exist, it does not grow, but eventually melts or flows downstream, so that phase change does not occur in the connecting pipe. It does not propagate upstream beyond the portion where hydration is supplied above ℃. In order to obtain the above effects, it is necessary to maintain the flow rate from the outlet of the connecting pipe at about 2% to 3% of the flow rate of water flowing into the releaser. Moreover, the flow velocity in a connecting pipe should just be 1 m / s or more.
[0014]
Note that the splitting of the connecting pipe is slightly mitigated by the gap when ice pieces start to form on the connecting pipe from the releaser. However, due to the bridging action, it is not possible to completely prevent the upstream propagation.
[0015]
The water injection pipe is branched from the introduction pipe connected to the inlet side of the supercooler and bypasses the supercooler and is connected to the external container. Therefore, it is necessary to secure a separate water source. In addition, the temperature of the water to be injected is suitable, or even if it is heated, only a small amount of heat is required. Further, in the present invention, since it has a heater for heating the water flowing in the introduction pipe on the upstream side of the connection section of the injection pipe in the introduction pipe, the water to be poured into the external container is more appropriate. It becomes possible to do.
[0017]
Since the cutting edge of the connecting tube has a shape as described above, it is possible to form a liquid film on the inner wall of suitably connecting pipe by pouring water from water injection tube.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of an ice manufacturing apparatus 1 according to the present embodiment. A supercooler 2 has a so-called shell-and-tube configuration, for example, and is introduced into the supercooler 2. The water is cooled by brine from a refrigerator (not shown), and the water is brought into a supercooled state of 0 ° C. or less, for example.
[0020]
One end of the connecting pipe 3 is connected to the outlet side of the supercooler 2, that is, the outlet 2 a, and the other end of the connecting pipe 3 is connected to the hermetic release device 4. The releaser 4 has a function of releasing the supercooled state of the supercooled water that has flowed in through the connecting pipe 3, changing the phase to generate slurry-like ice, and flowing it out. As a trigger for canceling the supercooling, for example, an ultrasonic wave from an ultrasonic vibrator is used. As this type of hermetic release unit 4, a known one can be used as appropriate.
[0021]
An inlet pipe 11 is connected to the inlet side of the supercooler 2, and water taken from various water tanks 13 including a heat storage tank by the pump 12 is sent into the supercooler 2. Yes. Further, for example, a preheater 14 is provided as a heater on the upstream side of the pump 12 in the introduction pipe 11, and water flowing in the introduction pipe 11 can be heated to, for example, 0.5 ° C.
[0022]
One end of a water injection pipe 21 is connected to the downstream side of the pump 12 in the introduction pipe 11, and the other end is connected to an external container 22 that covers the outer periphery of the connecting pipe 3 in a watertight manner. Accordingly, a part of the water in the introduction pipe 11 is fed into the external container 22 by bypassing the supercooler 2 through the water injection pipe 21. Therefore, the water supply to the water injection pipe 21 and the water supply to the supercooler 2 are performed by one pump 12.
[0023]
As shown in FIG. 2, the connecting pipe 3 is divided at right angles to the axial direction so as to create a gap d in the outer container 22, and is divided into an upstream connecting pipe 3a and a downstream connecting pipe 3b. It has been. Therefore, when water is poured from the water injection pipe 21 into the outer container 22, the water that has entered the connection pipe 3 from the gap d flows downstream along the wall of the downstream connection pipe 3 b along the flow in the connection pipe 3. A liquid film of water injected into the wall surface of the downstream connecting pipe 3b is formed.
The pressure applied to the water flowing through the water injection pipe 21 by the pump 12 is maintained up to the outer container 22, so there is no problem in pushing water into the connecting pipe 3 from the gap d described later.
[0024]
The ice manufacturing apparatus 1 according to the present embodiment has the above-described configuration. Next, an operation example thereof will be described. For example, when water at 0 ° C. is taken from the water tank 13, the preheater 14 The temperature is raised to 0.5 ° C. The water at 0.5 ° C. is cooled to, for example, a −2 ° C. supercooled state in the supercooler 2, and is sent to the releaser 4 as it is through the connecting pipe 3. Thus, for example, slurry-like ice at 0 ° C. is produced and continuously discharged to the outside.
[0025]
On the other hand, 0.5 ° C. water branched from the introduction pipe 3 and flowing into the water injection pipe 21 is injected into the outer container 22 and enters the connection pipe 3 from a divided portion of the connection pipe 3, that is, from the gap d. As it is, it flows downstream along the flow of supercooled water. At this time, since the gap d extends over the entire circumference, the water at 0.5 ° C. flows along the wall surface of the inner wall of the downstream side connecting pipe 3b, and as a result, 0.5 ° C. over the entire circumference of the wall surface. A liquid film of water is formed.
In addition, the junction (water injection / accepting opening) of the water injection pipe 21 and the external container 22 is set with a predetermined distance by shifting the axis from the gap d. This is a configuration for uniformly injecting water from the entire wall surface.
[0026]
Therefore, even if the supercooling release made in the releaser 4 attempts to propagate upstream along the wall surface, a liquid film of 0 ° C. or higher is formed on the wall surface of the inner wall of the downstream connecting pipe 3b. Propagation upstream is prevented. Also, inside the liquid film of 0 ° C or higher formed on the wall surface, it will not grow even if ice nuclei exist, and will eventually melt or be flowed downstream by the flow of supercooled water. , The phase change does not propagate upstream beyond the outlet of the connecting pipe 3. Therefore, freezing at the outlet of the connecting pipe 3 and the supercooler 2 is prevented, and stable slurry-like ice can be continuously produced.
[0027]
Unlike the prior art, it is not necessary to apply special processing such as resin to the surface of the wall surface, and a stable propagation preventing effect can be obtained over a long period of time. In the present embodiment, the water for forming the liquid film is heated to 0.5 ° C. by the preheater 14, but the energy required for this is extremely small, and the conventional direct connection pipe or the like is heated. Compared with the method of preventing freezing, much less energy is required.
[0028]
In the present embodiment, a part of the water flowing through the introduction pipe 11 is branched and injected into the external container 22, so that it is not necessary to separately secure a water source for water to be injected into the external container 2.
[0030]
Cutting end surface of the connecting pipe 3, i.e. the end surface of the upstream-side connecting pipe 3a, the downstream connecting pipe 3b end surface shape of the can employ the kind of the example of Figure 3 below.
[0031]
The example shown in FIG. 3 has a tapered shape in which the inner wall 31 side of the end face of the upstream connection pipe 3a protrudes toward the downstream side, and the outer wall 32 side of the end face of the downstream connection pipe 3b protrudes toward the upstream side. The tapered shape is used.
[0032]
In the example shown in FIG. 4, the inner wall 31 side of the end face of the upstream connecting pipe 3a has a tapered shape protruding toward the downstream side as in the example of FIG. 3, but the outer wall 32 on the end face of the downstream connecting pipe 3b. The end surface 33 itself of the downstream side connecting pipe 3b is convexly curved toward the upstream side while projecting toward the upstream side.
[0033]
In the example shown in FIG. 5, the inner wall 31 side of the end face of the upstream connecting pipe 3a protrudes more downstream than the outer wall 34 side, and the inner wall 35 side of the end face of the downstream connecting pipe 3b is more upstream than the outer wall 32 side. The leading end 36 of the end face of the upstream connecting pipe 3a and the leading end 37 of the end face of the upstream connecting pipe 3b each have a configuration that is cut perpendicular to the axial direction. .
[0034]
In the example shown in FIG. 6, the inner wall 31 side of the end face of the upstream connecting pipe 3a protrudes downstream of the outer wall 34 side, and the inner wall 35 side of the end face of the downstream connecting pipe 3b is upstream of the outer wall 32 side. The end face 38 of the upstream connecting pipe 3a and the end face 39 itself of the downstream connecting pipe 3b are curved in a convex shape toward the outside of the connecting pipe 3.
[0035]
If the divided end face shape of the connecting pipe 3 as shown in FIGS. 3 to 6 is employed, the water that has entered from the gap d flows more suitably along the inner wall 35 of the downstream connecting pipe 3b, and is downstream. It is possible to more suitably form a liquid film with water on the surface of the inner wall 35 of the side connecting pipe 3b. As a result of experiments conducted by the inventor with the cut end face shape shown in FIGS. 3 to 6, the embodiment of FIG. 4 showed the best effect.
In addition to the above embodiments, for example, a plate-type heat exchanger can be used instead of a shell-and-tube heat exchanger (supercooler).
In addition to the box shape, the outer container 22 may be an annular container having a diameter larger than that of the connecting pipe 3.
[0036]
【The invention's effect】
According to the present invention, in the production of ice by so-called supercooling release by a closed system, no special heating energy or special processing on the end surface of the connecting pipe is required, and the releaser can be stably removed over a long period of time. Propagation of the phase change to the connecting pipe can be prevented. Therefore, it is possible to eliminate the supercooled state of water continuously to make ice and to carry out this stably for a long time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a configuration of an ice manufacturing apparatus according to an embodiment.
FIG. 2 is a partial cross-sectional side view showing the inside of a connecting pipe in the ice making device according to the embodiment.
FIG. 3 is a side sectional view showing another example of a divided end face of a connecting pipe.
FIG. 4 is a side cross-sectional view showing another example of a divided end face of a connecting pipe.
FIG. 5 is a side cross-sectional view showing still another example of a divided end face of a connecting pipe.
FIG. 6 is a side cross-sectional view showing another example of a divided end face of a connecting pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ice production apparatus 2 Supercooler 3 Connecting pipe 3a Upstream side connecting pipe 3b Downstream side connecting pipe 4 Release device 11 Introducing pipe 14 Preheater 21 Water injection pipe 22 External container d Gap

Claims (1)

水を過冷却状態にする過冷却器と、過冷却状態の水を解除する密閉系の解除器と、前記過冷却器の出口と前記解除器との入口を結ぶ連結管とを有する氷の製造装置において、
連結管の外周を水密に覆う外部容器と、この外部容器内に水を注水する注水管とを有し、
前記外部容器内で、前記連結管は空隙を介して全周に渡って分断され、
前記注水管は、前記過冷却器の入口側に接続される導入管から分岐して過冷却器をバイパスして、前記外部容器との間に接続され、
前記導入管における注水管の接続部の上流側で、導入管内を流れる水を加熱する加熱器を有し、
前記連結管の分断端面は、上流側連結管の端面の内壁側が下流側に向けて突出しているテーパ形状であり、下流側連結管の端面の外壁側が上流側に向けて突出し、かつ下流側連結管の端面自体は上流側に向けて凸に湾曲していることを特徴とする、氷製造装置。
Production of ice having a supercooler for bringing water into a supercooled state, a closed system releaser for releasing supercooled water, and a connecting pipe connecting the outlet of the supercooler and the inlet of the releaser In the device
An outer container that tightly covers the outer periphery of the connecting pipe, and a water injection pipe that injects water into the outer container;
In the outer container, the connecting pipe is divided over the entire circumference through a gap,
The water injection pipe is branched from the introduction pipe connected to the inlet side of the supercooler, bypasses the supercooler, and is connected between the external container,
In the upstream side of the connection portion of the injection tube in the inlet tube, it has a heater for heating the water flowing through the inlet tube,
The dividing end surface of the connecting pipe has a tapered shape in which the inner wall side of the end face of the upstream connecting pipe protrudes toward the downstream side, the outer wall side of the end face of the downstream connecting pipe protrudes toward the upstream side, and the downstream connection An ice making device characterized in that the end face of the tube itself is convexly curved toward the upstream side .
JP2001301505A 2001-09-28 2001-09-28 Ice making equipment Expired - Lifetime JP4330830B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001301505A JP4330830B2 (en) 2001-09-28 2001-09-28 Ice making equipment
SG200205831A SG104982A1 (en) 2001-09-28 2002-09-25 Ice making method and ice making apparatus
KR1020020058336A KR100823813B1 (en) 2001-09-28 2002-09-26 Ice making method and ice making apparatus
CNB021442525A CN100416189C (en) 2001-09-28 2002-09-28 Ice making method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301505A JP4330830B2 (en) 2001-09-28 2001-09-28 Ice making equipment

Publications (2)

Publication Number Publication Date
JP2003106716A JP2003106716A (en) 2003-04-09
JP4330830B2 true JP4330830B2 (en) 2009-09-16

Family

ID=19121907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301505A Expired - Lifetime JP4330830B2 (en) 2001-09-28 2001-09-28 Ice making equipment

Country Status (4)

Country Link
JP (1) JP4330830B2 (en)
KR (1) KR100823813B1 (en)
CN (1) CN100416189C (en)
SG (1) SG104982A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498406B2 (en) 1999-10-27 2013-07-30 Keyless Systems Ltd. Integrated keypad system
US9158388B2 (en) 2005-06-16 2015-10-13 Keyless Systems Ltd. Data entry system
US9768487B2 (en) 2009-11-19 2017-09-19 Huawei Device Co., Ltd. Electronic device with plug

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476826B2 (en) * 2005-01-28 2010-06-09 大日本スクリーン製造株式会社 Ice slurry manufacturing apparatus and substrate processing apparatus
JP4664884B2 (en) * 2006-09-15 2011-04-06 株式会社大気社 Supercooler release
JP6022879B2 (en) * 2011-10-05 2016-11-09 高砂熱学工業株式会社 Ice making stability method and ice making apparatus
CN103486786B (en) * 2013-09-18 2016-02-03 广州鑫誉蓄能科技有限公司 Ice crystal spread-resistant device
KR101488911B1 (en) * 2013-09-30 2015-02-11 최영환 Ice container manufacturing appratus that use supercooled water
CN104729175A (en) * 2015-04-17 2015-06-24 安徽绿能技术研究院有限公司 Rapid dynamic ice making method of ice making system
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 A kind of enclosed type supercooling release device
CN105135565A (en) * 2015-08-26 2015-12-09 苏州高野能源科技有限公司 Dynamic ice storage system
CN106895624B (en) * 2017-04-17 2022-10-18 广州高菱机电工程有限公司 Device for preventing ice crystals from spreading in supercooled water flow and ice making method
CN110595127B (en) * 2019-10-14 2020-08-25 大连理工大学 High-concentration ice slurry porous jet impact strengthening local cooling system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2811271B2 (en) * 1993-06-18 1998-10-15 新菱冷熱工業株式会社 Ice making equipment
FR2709817B1 (en) * 1993-09-08 1995-10-20 Thermique Generale Vinicole Heat exchange device incorporating means for removing a solid phase.
JPH0842945A (en) * 1994-08-01 1996-02-16 Hoshizaki Electric Co Ltd Icemaker
JPH08110133A (en) * 1994-10-05 1996-04-30 Shinryo Corp Ice-making apparatus
JPH08210672A (en) * 1995-02-03 1996-08-20 Mitsubishi Electric Corp Ice heat storage device
JPH09264643A (en) * 1996-03-29 1997-10-07 Kubota Corp Supercooling type ice making device
JPH10145432A (en) * 1996-11-13 1998-05-29 Toshiba Corp Network connection device and network system
JPH11257694A (en) * 1998-03-16 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd Ice cold storage method and device
JP4166865B2 (en) * 1998-06-08 2008-10-15 高砂熱学工業株式会社 Ice making equipment for air conditioning
JP3338657B2 (en) * 1998-08-26 2002-10-28 新菱冷熱工業株式会社 Ice making equipment
CN1117955C (en) * 2000-03-01 2003-08-13 清华同方股份有限公司 High supercooling degree supercooler of ice cold storage air conditioner supercooling water dynamic ice making system
CN1123747C (en) * 2000-03-01 2003-10-08 清华同方股份有限公司 Micro ice crystal eliminator of ice cold storage air conditioner supercooling water dynamic ice making system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498406B2 (en) 1999-10-27 2013-07-30 Keyless Systems Ltd. Integrated keypad system
US9158388B2 (en) 2005-06-16 2015-10-13 Keyless Systems Ltd. Data entry system
US9768487B2 (en) 2009-11-19 2017-09-19 Huawei Device Co., Ltd. Electronic device with plug

Also Published As

Publication number Publication date
KR100823813B1 (en) 2008-04-21
CN100416189C (en) 2008-09-03
CN1409078A (en) 2003-04-09
KR20030028396A (en) 2003-04-08
SG104982A1 (en) 2004-07-30
JP2003106716A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP4330830B2 (en) Ice making equipment
EP1476707B1 (en) Thermal storage apparatus
JPH0545070A (en) Nozzle assembly for continuous alloy manufacturing process and manufacture of said nozzle
US4323115A (en) Shell and tube heat exchanger with polymeric tube sheets
BE898877A (en) METHOD FOR FREEZING ARTICLES IN CONTAINERS AND APPARATUS FOR CARRYING OUT SAID METHOD
EP0088980B1 (en) Casting apparatus and tubular mould for the continuous casting of thin-walled iron tubes
KR100774604B1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
CN205763745U (en) The hot runner structure of magnesium alloy mold
US7082985B2 (en) Moulding apparatus
EP1352219A2 (en) Stick for measuring the level of a molten metal bath
JP2005152963A (en) Metallic mold for casting wheel for car
JP2000074532A (en) Icemaker
CN215791579U (en) Cooling water jacket structure
CN109321968A (en) The laying method of one type single crystal seed
CN218475983U (en) Crystallizer capable of being rapidly disassembled
EP0891236A1 (en) Ingot mould for the continuous vertical casting of metals
CN210334302U (en) Semi-solid metal cavity inner forming die
JPS61163291A (en) Forming die made by electrocasting and its production
JP2009061677A (en) Mold apparatus for molding
JPH0484000A (en) Ice melting device for carburetor for low temperature liquefied gas
JPH0644964B2 (en) Pressurized freeze concentrator
FR2960630A1 (en) Method for generating ice crystals produced in mixer system from two sources of initial two-phase liquid/solid secondary refrigerant, involves adjusting flow of pump according to temperature predetermined from sensor and automatic part
BE390381A (en)
JP2004218997A (en) Ice making device
JPS59127834A (en) Amorphous matter manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090323

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5