JP4330738B2 - Aluminum nitride powder for resin filling and its use - Google Patents

Aluminum nitride powder for resin filling and its use Download PDF

Info

Publication number
JP4330738B2
JP4330738B2 JP33770499A JP33770499A JP4330738B2 JP 4330738 B2 JP4330738 B2 JP 4330738B2 JP 33770499 A JP33770499 A JP 33770499A JP 33770499 A JP33770499 A JP 33770499A JP 4330738 B2 JP4330738 B2 JP 4330738B2
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
less
resin
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33770499A
Other languages
Japanese (ja)
Other versions
JP2001158609A (en
Inventor
正人 川野
卓 川崎
哲美 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP33770499A priority Critical patent/JP4330738B2/en
Publication of JP2001158609A publication Critical patent/JP2001158609A/en
Application granted granted Critical
Publication of JP4330738B2 publication Critical patent/JP4330738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂充填用窒化アルミニウム粉末及びその用途に関する。
【0002】
【従来の技術】
近年、発熱性電子部品は高密度化により、放熱部材の熱伝導性の要求が益々高まっている。また、携帯用パソコンをはじめ、電子機器の小型、薄型、軽量化が進み、今後もこの方向性は変わらないと考えられる。従って、これらの電子機器へ用いる放熱部材も高熱伝導化にあわせて薄型化が要求されている。
【0003】
放熱部材の熱伝導率を向上させる方法としては、放熱部材のマトリックスとなる樹脂へ熱伝導率の高い粒子を分散させる方法が主流であるが、それに加えて、放熱部材を薄型化させるとなると、解決すべき様々な課題が発生する。
【0004】
熱伝導率向上には窒化アルミニウム粉末が適している。各種充填剤(以下「フィラー」という。)の中でも、窒化アルミニウム粉末は特に熱伝導率の高いフィラーであり、これを用いた放熱部材は数多く提案されている(特開平3−14873号公報、特開平3−295863号公報、特開平6−164174号公報等)。
【0005】
しかしながら、樹脂中の窒化アルミニウム粉末は、水分と加水分解を起こし、水酸化アルミニウムとアンモニアガスを発生する。水酸化アルミニウムは、熱伝導率が窒化アルミニウムよりもかなり小さく、またアンモニアガスはそのまま気泡として残存するので、いずれの場合も放熱部材の放熱特性が低下し、窒化アルミニウム粉末の良好な熱伝導性を充分に生かすことができていない。
【0006】
ここで、放熱部材とは、シリコーン等の絶縁性樹脂に窒化アルミニウム粉末、窒化ホウ素粉末、アルミナ等の熱伝導性フィラーが充填されたものであり、IC、LSI等の半導体素子等の発熱性電子部品から発生した熱を効率よく系外に除去するため、例えば半導体素子と放熱基板等との間の0.1〜0.3mm程度の隙間に組み込まれて使用されているものであり、そのサイズ、硬さ、用途等の違いによって、放熱板、放熱シート、放熱スペーサー等がある。
【0007】
そこで、上記問題を解決するため、耐加水分解性の高い粒子径の大きい百μm前後の粒子だけを用いることが考えられるが、この場合、放熱部材の表面には粗い粒子による凹凸が生じるため、発熱性電子部品に実装したときに密着性が悪くなり、効率的な放熱を行うことができなくなる。この放熱部材の密着性の問題は、放熱部材が薄型化されると、さらに顕著となる。薄型化した場合、放熱部材自体の熱伝導率よりも、表面の凹凸による熱抵抗がかなり勝るためである。
【0008】
大きい粒子を用いるのと同様な考え方から、球状窒化アルミニウム焼結体粒子を用いることの提案(特開平11−269302号公報等)がある。この技術は、原料窒化アルミニウム粒子サイズをあらかじめ造粒等によって焼結粒子サイズに調整しておくものであり、粉砕工程を経ないことが特徴である。このようにして製造された球状粒子をフィラーとすることによって、樹脂の熱伝導率が向上し、また樹脂の流動性や成型時の金型摩耗も改善させることができるので、確かに理想的なフィラーといえる。
【0009】
しかし、この球状粒子を工業的規模で生産するには、品質面、製造技術面でクリアすべき課題が多い。品質面では、球状を維持するために熱伝導率の低い結晶化触媒をバインダーとして球状粒子内に留めておく必要があり、球状粒子自体の熱伝導率を向上させることが困難であること、また、製造技術面では、造粒時に有機系バインダー及び溶剤を用いること、焼成時に焼結助剤の溶出により球状粒子同士が合着・凝集することなどである。しかも、所期したほどには放熱部材の熱伝導率は向上しない。その原因は、放熱部材の凹凸による密着性低にある。
【0010】
そこで、放熱部材の密着性を、窒化アルミニウム焼結体の粉砕粉末(以下、単に「焼結体粉末」ともいう。)の平均粒子径を50μm以下にして解決することの提案(特開平6−209057号公報)があるが、この場合、耐加水分解性に劣る懸念がある。また、粒子径が小さくなると、粒子間に薄い熱伝導率の小さい樹脂層が介在し、粒子間の接触抵抗が増大するため、放熱部材の熱伝導率を十分に向上させることができなくなる。
【0011】
更には、平均粒子径30〜50μmの焼結体粉末に、未焼結の窒化アルミニウム超微粉を混合し、これを樹脂へ充填する提案がある(特開平6−24715号公報)。これによって、放熱部材の凹凸が少なくなり、密着性は向上するが、焼結体粉末自体が微粉を有することに加え、更に0.1〜5μmの超微粉を20%以上を混合するので、熱伝導率の大幅な向上はない。
【0012】
このように、焼結体粉末をフィラーとする場合、その粒子径については、放熱部材自体の熱伝導率向上と、放熱部材表面の凹凸低減とには二律背反の関係がある。近年、放熱部材の高熱伝導化と薄型化への要求は益々高まりつつある中、発熱性電子部品の放熱をより効率的に行うために、この二律背反を考慮に入れた高度な技術開発が必要となっている。
【0013】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は、焼結体粉末の粒度構成を適正化することによって、熱伝導率と耐加水分解性のバランスに優れた樹脂充填用窒化アルミニウム粉末を提供することである。また、本発明の別の目的は、そのような窒化アルミニウム粉末を樹脂に充填された、放熱特性に優れた樹脂組成物及びその樹脂組成物で成形された放熱部材を提供することである。
【0014】
【課題を解決するための手段】
すなわち、本発明は、以下のとおりである。
(請求項1) 窒化アルミニウム焼結体の粉砕物からなり、平均粒子径が50μm以下、3μm以下の微粉の含有率が10%以下であることを特徴とする樹脂充填用窒化アルミニウム粉末。
(請求項2) 不均一歪みが0.005以下であることを特徴とする請求項1記載の樹脂充填用窒化アルミニウム粉末。
(請求項3) 請求項1又は2記載の窒化アルミニウム粉末と、平均粒子径が3μm以下の、窒化アルミニウム、窒化けい素、窒化ホウ素、炭化けい素、黒鉛、アルミニウム、シリコン、銅、銀及び金から選ばれた1種又は2種以上の良熱伝導性超微粉とからなり、良熱伝導性超微粉末の含有率が20%未満であることを特徴とする混合粉末。
(請求項4) 不均一歪みが0.005以下であることを特徴とする請求項3記載の混合粉末。
(請求項5) 請求項1又は2記載の窒化アルミニウム粉末を50〜85体積%含有してなることを特徴とする樹脂組成物。
(請求項6) 請求項3又は4記載の混合粉末を50〜85体積%含有してなることを特徴とする樹脂組成物。
(請求項7) 請求項5又は6記載の樹脂組成物の成型体からなることを特徴とする発熱性電子部品の放熱部材。
【0015】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0016】
本発明において、重要なことは、樹脂組成物特に放熱部材の熱伝導率向上させるために、フィラーとして焼結体粉末を用い、また、薄型化と耐加水分解性を高度に実現させるために、焼結体粉末の粒度構成を平均粒子径50μm以下、3μm以下の微粉の含有率を10%以下としたことである。
【0017】
本発明で使用される焼結体粉末は、例えば、窒化アルミニウム粉末にイットリア等の焼結助剤を0.5〜10%程度添加し、成形後、窒素、アルゴン等の非酸化性雰囲気下、温度1600〜2000℃程度で焼結された窒化アルミニウム焼結体を粉砕して得られたものである。窒化アルミニウム焼結体の相対密度の違いによって、樹脂への最大可能充填量、ひいては放熱部材の熱伝導率が相違するので、相対密度は90%以上であることが好ましい。相対密度が90%未満であると、焼結体粉末が嵩高くなり、最大充填可能量は相対密度にほぼ比例して多くなるが、その絶対量は少ない。これに対し、相対密度が90%以上であると、最大充填可能量は相対密度にあまり関係せずにその絶対量は多くなる。例えば、相対密度94%の焼結体粉末の最大充填可能量は66体積%程度であるのに対して、相対密度86%の焼結体粉末のそれは57体積%程度である。このような現象は、本発明者が初めて見いだしたものであり、本発明はこの知見に基づいている。
【0018】
本発明の焼結体粉末の平均粒子径は50μm以下、好ましくは15〜45μmである。平均粒子径が50μmをこえると、樹脂組成物特に放熱部材の熱伝導率の更なる向上と耐加水分解性の付与に好都合であるが、放熱部材の表面の凹凸が多くなり薄型化が困難となる。また、平均粒子径50μm以上の焼結体粉末の使用に際しては、耐加水分解性の大きな、例えば不均一歪みのない窒化アルミニウム、窒化ホウ素、炭化けい素等の微粉と併用しないと、放熱部材の熱伝導率を著しく向上させることが困難である。
【0019】
一方、焼結体粉末の平均粒子径が15μmよりも著しく小さいと、例えば主粒子群が10μm以下であると、通常そのような粉末には不均一歪みのある、3μm以下の微粉が多く含まれているので、耐加水分解性に劣ったものとなる。
【0020】
すなわち、振動ミルを用いて窒化アルミニウム焼結体の粉砕を進めると、3μm以下の微粉が経時的に増加する。この微粉には、粉砕によって結晶格子が壊れた、不均一歪みのある窒化アルミニウム粉末が多く混入しており、例えば風力分級により回収された3μm以下の焼結体粉末の不均一歪みは、0.011であり、耐加水分解性に劣る。
【0021】
そこで、本発明においては、焼結体粉末の平均粒子径を50μm以下にすると共に、3μm以下の微粉の含有率を10%以下にすることが必要となる。好ましくは、焼結体粉末の不均一歪みを0.005以下にする。これを、例えば3μm以下の微粉の含有率が12%である焼結体粉末(この粉末の不均一歪みは0.006である)をフィラーとして用いると、得られた放熱部材には、加水分解により発生したアンモニアガスに起因すると思われる多数の気泡が存在していることが、その断面のSEM写真観察によって確認することができる。また、この場合の充填量は59体積%が限界である。
【0022】
本発明でいう不均一歪みとは、窒化アルミニウム粉末結晶の不完全性を表す指標である(例えば「X線回折の手引き 改訂第四版」 理学電気株式会社発行 1993年6月15日 第76頁参照)。窒化アルミニウム粉末製造時、例えば合成や粉砕等のプロセスを経る間に、結晶格子中に欠陥や転移が生じたり、酸素が固溶することによって変化する。不均一歪みの値が大きい場合、粉末の耐加水分解性と熱伝導性が劣ることとなる。不均一歪みの測定法については、後記実施例で説明する。
【0023】
上記のように、本発明の焼結体粉末には、3μm以下の窒化アルミニウム微粉の含有率を10%以下にすることが必要であるが、それは焼結体粉末の不均一歪みを0.005以下にすることを考慮したからである。しかしながら、本発明においては、不均一歪みが0.005をこえさせない範囲で、平均粒子径3μm以下の良熱伝導性超微粉を積極的に本発明の焼結体粉末と併用することによって、樹脂組成物特に放熱部材の密着性を改善させることができる。
【0024】
そのような良熱伝導性超微粉としては、不均一歪みがないか、あっても0.005以下、特に0.003以下の窒化アルミニウム粉末、窒化けい素、窒化ホウ素、炭化けい素、アルミニウム、シリコン、銅、金、銀から選ばれた1種又は2種以上の超微粉である。この超微粉の平均粒子径が3μmよりも著しく大きくなると、放熱部材の表面の凹凸の影響が大きくなり、効率的な放熱ができなくなる。
【0025】
上記良熱伝導性超微粉が窒化アルミニウム粉末である場合、それはビルドアップ法で合成された易粉砕性窒化アルミニウムインゴットを解砕することによって製造することができる。その易粉砕性インゴットは、アルミナ粉末の炭素還元窒化法、や金属アルミニウム粉末の直接窒化法、例えば金属アルミニウム粉末に窒化アルミニウム粉末を混合し、それを時間当たりの反応量が2%以下となるように温度・雰囲気等をコントロールして金属アルミニウム粉末を窒化して製造することができる。
【0026】
本発明の焼結体粉末と良熱伝導性超微粉との構成比率は、両者の混合粉中、良熱伝導性超微粉の含有率が20%未満特に5〜15%であることが好ましい。良熱伝導性超微粉が20%以上であると、混合粉中の超微粉量が過多となり、混合粉の充填量を高めることができなくなり、熱伝導率の著しい向上は望めない。
【0027】
焼結体粉末、又は焼結体粉末と良熱伝導性超微粉との混合粉末の樹脂組成物特に放熱部材への充填量は、50〜85体積%、特に70〜80体積%であることが好ましい。50体積%未満では樹脂組成物の熱伝導率は向上せず、また85体積%をこえると樹脂組成物の成形が困難となる。
【0028】
樹脂組成物の密着性の評価は、後記実施例に示すように、樹脂組成物の成型体(放熱部材)を二枚の銅板間に組み込み、熱伝導率を測定することによって行うことができる。
【0029】
窒化アルミニウム焼結体の粉砕には、ボールミル、振動ミル、ローラーミル、媒体攪拌ミル等の粉砕機が用いられる。また、焼結体粉末と良熱伝導性超微粉からなる混合粉末の調合には、ボールミル、振動ミル等の混合機が使用される。
【0030】
本発明の樹脂組成物で使用される樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴムースチレン)樹脂等をあげることができる。
【0031】
樹脂がエポキシ樹脂である場合、その硬化剤については、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、ビスフェノールAやビスフェノールS等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類、無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミンなどがある。
【0032】
これらの中で、放熱部材のマトリックスとなる樹脂としては、例えばエポキシ系樹脂、ポリウレタン系樹脂、天然ゴム、シリコーン系樹脂が好適であり、アスカーC硬度が50程度以下の高柔軟性放熱部材の場合には、以下のシリコーン原料の加硫物であることが好ましい。
【0033】
シリコーン原料としては、付加反応型液状シリコーンゴム、過酸化物を用いる熱加硫型ミラブルタイプのシリコーンゴム等が使用されるが、電子部品の放熱部材では、発熱電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーンゴムが望ましい。その具体例としては、一分子中にビニル基とH−Si基の両方を有する一液性のシリコーンや、末端又は側鎖にビニル基を有するオルガノポリシロキサンと末端又は側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどがあり、市販品としては、東レダウコーニング社製、商品名「SE−1885」等がある。シリコーン硬化物の柔軟性は、シリコーンの架橋密度や熱伝導性フィラーの充填量によって調整することができる。
【0034】
本発明の樹脂組成物は、上記諸材料をブレンダーやミキサーで混合することによって製造することができる。
【0035】
本発明の樹脂組成物の用途は、それを成形してなる放熱部材があるが、何らこれに限られることはない。放熱部材は、プレス成形法、押し出し成形法、ドクダーブレード法によって、樹脂組成物を成形し、それを加熱硬化させることによって製造することができる。
【0036】
【実施例】
以下、実施例及び比較例をあげて更に具体的に本発明を説明する。
【0037】
実施例1〜3 比較例1〜3
質量基準で、平均粒子径4.1μmの窒化アルミニウム粉末(電気化学工業社製「AP−50」)100部と酸化イットリウム粉末(三菱化学社製、比表面積20m2/g)5部の混合粉を、圧力20MPaをかけて直径50mmの成型体をつくり、窒素雰囲気中、温度1950℃で焼結した。得られた窒化アルミニウム焼結体の相対密度は92%であった。これを以下に従って粉砕・分級し、各種の焼結体粉末を製造した。
【0038】
先ず、窒化アルミニウム焼結体をジョークラッシャー、ロールクラッシャーの順で粗粉砕した後、JIS篩により74μm以下の粉末を回収し、篩上粗粉は再度ロールクラッシャーにかけ、74μm篩下に整えた。74μm篩下の収率が80〜90%程度になるまでこの操作を繰り返して行い、回収された焼結体粉末を実施例1とした。また、実施例1の焼結体粉末をボールミルで微粉砕し、粉砕時間にて粒度を調整して実施例2及び比較例1の焼結体粉末とした。更に、比較例1の焼結体粉末を風力分級機にかけ、粗粉側回収粉を実施例3、微粉側の回収粉を比較例2の焼結体粉末とした。また、実施例1と同様の方法で、篩目開きを150μmとして比較例3の焼結体粉末を調整した。
【0039】
上記で得られた焼結体粉末について、以下に従い、平均粒子径、3μm以下の微粉の含有率を表1に、不均一歪み、加水分解度及び試作した放熱部材の熱伝導率を表2に示す。
【0040】
(1)平均粒子径及び3μm以下の微粉含有率:
実施例1及び比較例3は、JIS篩を用いたロータップ法により測定した。また、3μm以下の粒子の含有率は、先ず45μm篩いにより45μm以下の粉末を回収し、これを用いてレーザー回折式粒度分布法(測定装置:Leed&Northrup社製「マイクロトラックSPA」)で測定した。実施例2及び3と比較例1及び2は、平均粒子径、3μm以下の微粉含有率共に、レーザー回折式粒度分布法により測定した。
【0041】
(2)不均一歪み:
X線回折法による修正Hall法により測定した。粉末のKα1とKα2の回折線を多重ピーク分離し、真の半値幅βは、実測半値幅Bと機械的半価幅bに対して、β2=B2−b2であるとする。bはSiO2の回折線から求める。βは結晶子径と不均一歪みより決まり、歪みがGauss分布に従うとすると、β2/tan2θ=Kλβ/(εtanθ・sinθ)+4η2の関係がある。ここでK:定数(=0.9)、λ:CuKα線の波長(1.54Å)、η:不均一歪み、ε:結晶子径である。従って、Kλβ/(εtanθ・sinθ)とβ2/tan2θをプロットし、その切片より4η2を求め、粉末の不均一歪みが求まる。なお、実施例1の粉末はX線回折測定用のサンプルが成型できないため測定することはできなかった。
【0042】
(3)加水分解度:
焼結体粉末を温度80℃、相対湿度95%以上の条件下に24時間静置した後、粉末の酸素量を測定して評価した。試験前後の酸素量の差が、式、AlN+3H2O=Al(OH)3 +NH3 、に従い、窒化アルミニウムが水酸化アルミニウムに変化したと仮定し、試験前後の酸素量の差を窒化アルミニウムが水酸化アルミニウムに変化したときの理論酸素量(61.5%)で割った値を、加水分解度とした。
【0043】
(4)熱伝導率:
焼結体粉末:シリコーン樹脂(東芝シリコーン社製商品名「TSE3070」)の体積比を65:35として、ラボプラストミルを用いて両者を混練りした。この混練り物を金板2枚に挟んで、10MPaの圧力をかけて厚さ0.3mmのシート状に成型し、これを乾燥機中、150℃の温度で5時間保持して加硫させ、その熱伝導率を測定した。
【0044】
熱伝導率は、シート状成型物をTO−3型銅製ヒーターケースと銅板の間に挟み、締め付けトルク300kPaでセットした後、ヒーターケースに電力15Wをかけて5分間保持した後、ヒーターケースと銅板の温度差を測定し、TO−3型の伝熱面積0.0006m2から、式、熱伝導率(W/mK)=〔電力(W)×シート厚さ(0.0005m)〕/〔伝熱面積(0.0006m2)×温度差(℃)〕から算出した。
【0045】
なお、放熱部材の熱伝導率の測定方法には幾通りもあるが、上記測定法は、柔軟性を持つ放熱部材を発熱性電子部品等の発熱体に実装させたときの状態を最も正確に反映させた方法である。
【0046】
【表1】

Figure 0004330738
【0047】
【表2】
Figure 0004330738
【0048】
表1、表2に示すとおり、同一の窒化アルミニウム焼結体を粉砕し、粒度構成の異なる焼結体粉末を種々調整したところ、粒度構成によって、不均一歪みと加水分解度に大きな差があることが確認された。特に、3μm以下の微粉は加水分解度試験で大半が酸化されたが、3μm以下の微粉を含まない焼結体粉末は殆ど酸化が進んでいないことが示された。
【0049】
また、表2より、3μm以下の微粉を10%以上含む焼結体粉末(比較例1及び比較例2)では、放熱部材の熱伝導率が小さかった。その放熱部材の断面をSEM写真観察をしたところ、多数の気泡が認められた。
【0050】
実施例4〜15
次に、実施例1〜3で使用した焼結体粉末と表3に示される各種の良熱伝導性超微粉とを混合して混合粉末となし、それを樹脂への充填量(体積%)を表4にしてシート状成型物を製造した。その際、シートの厚さ方向に300MPaの圧力をかけて成形した。それらの結果を表4に示す。
【0051】
なお、ここで用いられた良熱伝導性超微粉の窒化アルミニウム粉末は、平均粒子径1.8μm、不均一歪み0.000の窒化アルミニウム粉末(トクヤマ社製「Hグレード」)である。また、その他の超微粉、窒化けい素(電気化学工業製「SN−9FW」)、窒化ホウ素(電気化学工業製「GP粉」)などは、市販品をそのまま、又は平均粒子径が3μmをこえるものについては、それを粉砕・分級して平均粒子径3μm以下に調整して使用した。
【0052】
【表3】
Figure 0004330738
【0053】
【表4】
Figure 0004330738
【0054】
表4から明らかなように、焼結体粉末と良熱伝導性超微粉の混合粉末を用いることによって密着性が高まり、放熱部材の熱伝導率が一段と向上した。
【0055】
【発明の効果】
本発明によれば、熱伝導率と耐加水分解性のバランスに優れた樹脂充填用窒化アルミニウム粉末、窒化アルミニウム粉末と良熱伝導性微粉からなる混合粉末、及びそれが充填されてなる樹脂組成物、特に放熱部材が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride powder for resin filling and its use.
[0002]
[Prior art]
In recent years, heat-generating electronic components have been increasingly demanded for thermal conductivity of heat-dissipating members due to higher density. In addition, the trend toward smaller, thinner, and lighter electronic devices, including portable personal computers, is expected to continue in the future. Therefore, the heat dissipation member used for these electronic devices is also required to be thin in accordance with high thermal conductivity.
[0003]
As a method of improving the thermal conductivity of the heat radiating member, a method of dispersing particles having high thermal conductivity in the resin that becomes the matrix of the heat radiating member is the mainstream, but in addition to that, when the heat radiating member is thinned, Various problems to be solved occur.
[0004]
Aluminum nitride powder is suitable for improving thermal conductivity. Among various fillers (hereinafter referred to as “fillers”), aluminum nitride powder is a filler having a particularly high thermal conductivity, and a large number of heat dissipating members using the same have been proposed (Japanese Patent Laid-Open No. 3-14873, especially (Kaihei 3-295863, JP-A-6-164174, etc.).
[0005]
However, the aluminum nitride powder in the resin causes moisture and hydrolysis to generate aluminum hydroxide and ammonia gas. Aluminum hydroxide has a much lower thermal conductivity than aluminum nitride, and ammonia gas remains as bubbles as it is, so in either case the heat dissipation characteristics of the heat dissipation member are reduced, and the aluminum nitride powder has good thermal conductivity. I have not been able to make full use of it.
[0006]
Here, the heat radiating member is a material in which an insulating resin such as silicone is filled with a heat conductive filler such as aluminum nitride powder, boron nitride powder, and alumina, and heat generating electrons such as semiconductor elements such as IC and LSI. In order to efficiently remove the heat generated from the components out of the system, for example, it is incorporated in a gap of about 0.1 to 0.3 mm between the semiconductor element and the heat dissipation board, etc., and its size Depending on differences in hardness, usage, etc., there are heat radiating plates, heat radiating sheets, heat radiating spacers, etc.
[0007]
Therefore, in order to solve the above problem, it is conceivable to use only particles having a large particle diameter of about 100 μm with high hydrolysis resistance, but in this case, unevenness due to coarse particles occurs on the surface of the heat dissipation member. When mounted on a heat-generating electronic component, the adhesion deteriorates and efficient heat dissipation cannot be performed. This problem of adhesion of the heat radiating member becomes more prominent when the heat radiating member is thinned. This is because, when the thickness is reduced, the thermal resistance due to the unevenness on the surface is considerably superior to the thermal conductivity of the heat dissipation member itself.
[0008]
From the same view as using large particles, there is a proposal to use spherical aluminum nitride sintered particles (Japanese Patent Laid-Open No. 11-269302). This technique is characterized in that the raw material aluminum nitride particle size is adjusted in advance to a sintered particle size by granulation or the like and does not go through a pulverization step. By using the spherical particles thus produced as a filler, the thermal conductivity of the resin can be improved, and the fluidity of the resin and the mold wear during molding can be improved. It can be said that it is a filler.
[0009]
However, in order to produce the spherical particles on an industrial scale, there are many problems to be solved in terms of quality and manufacturing technology. In terms of quality, it is necessary to keep the crystallization catalyst having a low thermal conductivity in the spherical particles as a binder in order to maintain the spherical shape, and it is difficult to improve the thermal conductivity of the spherical particles themselves, In terms of production technology, an organic binder and a solvent are used at the time of granulation, and spherical particles are coalesced and aggregated by elution of the sintering aid at the time of firing. Moreover, the thermal conductivity of the heat dissipation member does not improve as expected. The cause is low adhesion due to the unevenness of the heat dissipation member.
[0010]
Accordingly, a proposal to solve the adhesiveness of the heat radiating member by reducing the average particle diameter of the pulverized powder of aluminum nitride sintered body (hereinafter also simply referred to as “sintered body powder”) to 50 μm or less (Japanese Patent Laid-Open No. 6-6 / 1999). In this case, there is a concern that the hydrolysis resistance is inferior. Further, when the particle diameter is reduced, a thin resin layer having a small thermal conductivity is interposed between the particles, and the contact resistance between the particles is increased. Therefore, the thermal conductivity of the heat dissipation member cannot be sufficiently improved.
[0011]
Furthermore, there is a proposal of mixing unsintered aluminum nitride ultrafine powder into a sintered body powder having an average particle size of 30 to 50 μm and filling this into a resin (Japanese Patent Laid-Open No. 6-24715). As a result, the unevenness of the heat dissipating member is reduced and the adhesion is improved. However, in addition to the sintered powder itself having fine powder, the super fine powder of 0.1 to 5 μm is further mixed with 20% or more. There is no significant improvement in conductivity.
[0012]
As described above, when the sintered body powder is used as a filler, there is a trade-off between the particle diameter and the improvement of the thermal conductivity of the heat radiating member itself and the reduction of irregularities on the surface of the heat radiating member. In recent years, the demand for higher thermal conductivity and thinner heat dissipation members has been increasing, and in order to more efficiently dissipate heat-generating electronic components, it is necessary to develop advanced technologies that take this tradeoff into consideration. It has become.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to optimize the particle size constitution of the sintered body powder, thereby improving the balance between the thermal conductivity and the hydrolysis resistance. To provide powder. Another object of the present invention is to provide a resin composition excellent in heat dissipation characteristics, in which such aluminum nitride powder is filled in a resin, and a heat dissipation member molded from the resin composition.
[0014]
[Means for Solving the Problems]
That is, the present invention is as follows.
(Claim 1) An aluminum nitride powder for filling a resin, which is made of a pulverized product of an aluminum nitride sintered body and has an average particle size of 50 µm or less and a fine powder content of 3 µm or less of 10% or less.
(Claim 2) The aluminum nitride powder for filling a resin according to claim 1, wherein the non-uniform strain is 0.005 or less.
(Claim 3) Aluminum nitride powder according to claim 1 or 2, and aluminum nitride, silicon nitride, boron nitride, silicon carbide, graphite, aluminum, silicon, copper, silver and gold having an average particle size of 3 μm or less 1 or 2 or more types of highly heat conductive ultrafine powders selected from the above, and the content of the good heat conductive ultrafine powders is less than 20%.
(Claim 4) The mixed powder according to claim 3, wherein the non-uniform strain is 0.005 or less.
(Claim 5) A resin composition comprising 50 to 85% by volume of the aluminum nitride powder according to claim 1 or 2.
(Claim 6) A resin composition comprising 50 to 85% by volume of the mixed powder according to claim 3 or 4.
(Claim 7) A heat dissipating member for a heat-generating electronic component, comprising a molded body of the resin composition according to claim 5 or 6.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0016]
In the present invention, what is important is to use a sintered powder as a filler in order to improve the thermal conductivity of the resin composition, in particular, the heat radiating member, and to achieve a high degree of thinning and hydrolysis resistance. That is, the content of fine powder having an average particle size of 50 μm or less and 3 μm or less is set to 10% or less.
[0017]
The sintered body powder used in the present invention includes, for example, about 0.5 to 10% of a sintering aid such as yttria added to aluminum nitride powder, and after molding, in a non-oxidizing atmosphere such as nitrogen and argon, It is obtained by pulverizing an aluminum nitride sintered body sintered at a temperature of about 1600 to 2000 ° C. Since the maximum possible filling amount into the resin, and hence the thermal conductivity of the heat radiating member, varies depending on the relative density of the aluminum nitride sintered body, the relative density is preferably 90% or more. When the relative density is less than 90%, the sintered body powder becomes bulky, and the maximum filling amount increases in proportion to the relative density, but the absolute amount is small. On the other hand, when the relative density is 90% or more, the maximum amount that can be filled does not greatly relate to the relative density, and the absolute amount increases. For example, the maximum filling amount of a sintered body powder having a relative density of 94% is about 66% by volume, whereas that of a sintered body powder having a relative density of 86% is about 57% by volume. Such a phenomenon has been found for the first time by the present inventors, and the present invention is based on this finding.
[0018]
The average particle size of the sintered body powder of the present invention is 50 μm or less, preferably 15 to 45 μm. When the average particle diameter exceeds 50 μm, it is convenient for further improvement of the thermal conductivity of the resin composition, particularly the heat radiating member, and imparting hydrolysis resistance. Become. In addition, when using a sintered body powder having an average particle diameter of 50 μm or more, if it is not used in combination with fine powders such as aluminum nitride, boron nitride, silicon carbide, etc. that have high hydrolysis resistance, such as non-uniform strain, It is difficult to significantly improve the thermal conductivity.
[0019]
On the other hand, if the average particle size of the sintered powder is significantly smaller than 15 μm, for example, if the main particle group is 10 μm or less, such powder usually contains a lot of fine powder of 3 μm or less with non-uniform distortion. Therefore, the hydrolysis resistance is inferior.
[0020]
That is, when the aluminum nitride sintered body is pulverized using a vibration mill, fine powder of 3 μm or less increases with time. This fine powder contains a large amount of non-uniform strained aluminum nitride powder whose crystal lattice is broken by pulverization. For example, the non-uniform strain of a sintered body powder of 3 μm or less recovered by air classification is 0. 011 and inferior in hydrolysis resistance.
[0021]
Therefore, in the present invention, it is necessary to make the average particle size of the sintered body powder 50 μm or less and the content of fine powder 3 μm or less to 10% or less. Preferably, the nonuniform strain of the sintered body powder is 0.005 or less. For example, when a sintered body powder having a content of fine powder of 3 μm or less of 12% (nonuniform strain of this powder is 0.006) is used as a filler, the obtained heat radiating member is hydrolyzed. It can be confirmed by the SEM photograph observation of the cross section that there are a large number of bubbles that are thought to be caused by the ammonia gas generated by. In this case, the filling amount is limited to 59% by volume.
[0022]
The nonuniform strain referred to in the present invention is an index representing imperfection of an aluminum nitride powder crystal (for example, “Guidelines for X-ray diffraction, revised fourth edition”, published by Rigaku Denki Co., Ltd., June 15, 1993, page 76). reference). During the production of aluminum nitride powder, for example, during a process such as synthesis or pulverization, defects and transition occur in the crystal lattice or change due to solid solution of oxygen. When the value of the non-uniform strain is large, the powder has poor hydrolysis resistance and thermal conductivity. The method for measuring the non-uniform strain will be described in Examples below.
[0023]
As described above, in the sintered body powder of the present invention, the content of aluminum nitride fine powder of 3 μm or less is required to be 10% or less. This is because the following is taken into consideration. However, in the present invention, in a range in which the non-uniform strain does not exceed 0.005, a resin having a good thermal conductivity with an average particle diameter of 3 μm or less is actively used together with the sintered body powder of the present invention. The adhesiveness of the composition, particularly the heat radiating member, can be improved.
[0024]
As such good heat conductive ultrafine powder, there is no non-uniform strain, or even 0.005 or less, especially 0.003 or less aluminum nitride powder, silicon nitride, boron nitride, silicon carbide, aluminum, It is one type or two or more types of ultrafine powders selected from silicon, copper, gold, and silver. When the average particle diameter of the ultrafine powder is significantly larger than 3 μm, the influence of the unevenness on the surface of the heat radiating member becomes large, and efficient heat dissipation cannot be performed.
[0025]
When the good heat conductive ultrafine powder is an aluminum nitride powder, it can be produced by crushing an easily pulverizable aluminum nitride ingot synthesized by a build-up method. The easily grindable ingot is a carbon reduction nitriding method of alumina powder or a direct nitriding method of metal aluminum powder, for example, aluminum nitride powder is mixed with metal aluminum powder so that the reaction amount per hour is 2% or less. Further, it can be manufactured by nitriding the metal aluminum powder by controlling the temperature and atmosphere.
[0026]
The constituent ratio of the sintered body powder of the present invention and the highly heat conductive ultrafine powder is preferably such that the content of the highly heat conductive ultrafine powder is less than 20%, particularly 5 to 15% in the mixed powder of the both. If the heat conductive ultrafine powder is 20% or more, the amount of the ultrafine powder in the mixed powder becomes excessive, the filling amount of the mixed powder cannot be increased, and a significant improvement in thermal conductivity cannot be expected.
[0027]
The filling amount of the sintered body powder or the mixed powder of the sintered body powder and the highly heat conductive ultrafine powder into the resin composition, particularly the heat radiating member, may be 50 to 85% by volume, particularly 70 to 80% by volume. preferable. If it is less than 50% by volume, the thermal conductivity of the resin composition will not be improved, and if it exceeds 85% by volume, it will be difficult to mold the resin composition.
[0028]
The evaluation of the adhesiveness of the resin composition can be performed by incorporating a molded body (heat radiating member) of the resin composition between two copper plates and measuring the thermal conductivity, as shown in Examples below.
[0029]
For the pulverization of the aluminum nitride sintered body, a pulverizer such as a ball mill, a vibration mill, a roller mill, or a medium stirring mill is used. In addition, a mixer such as a ball mill or a vibration mill is used to prepare the mixed powder composed of the sintered body powder and the highly heat conductive ultrafine powder.
[0030]
Examples of the resin used in the resin composition of the present invention include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, and other polyamides, polybutylenes Polyester such as terephthalate and polyethylene terephthalate, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene) And propylene / diene rubber / styrene) resin.
[0031]
When the resin is an epoxy resin, the curing agent is not particularly limited as long as it is cured by reacting with the epoxy resin. For example, phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, Novolac type resin, polyparahydroxystyrene resin, bisphenol A, and the like obtained by reacting one or more mixtures selected from the group of isopropylphenol, octylphenol and the like together with formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst Bisphenol compounds such as bisphenol S, trifunctional phenols such as pyrogallol and phloroglucinol, acid anhydrides such as maleic anhydride, phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, dia Bruno diphenylmethane, and the like aromatic amines such as diaminodiphenyl sulfone.
[0032]
Among these, as the resin serving as the matrix of the heat dissipation member, for example, epoxy resin, polyurethane resin, natural rubber, and silicone resin are suitable, and in the case of a highly flexible heat dissipation member having an Asker C hardness of about 50 or less The following silicone raw material vulcanizates are preferred.
[0033]
As the silicone raw material, addition reaction type liquid silicone rubber, heat vulcanization type millable type silicone rubber using peroxide, etc. are used. Therefore, addition reaction type liquid silicone rubber is desirable. Specific examples thereof include one-part silicone having both vinyl group and H-Si group in one molecule, organopolysiloxane having vinyl group at the terminal or side chain, and two or more terminals or side chain. There are two-part silicones with organopolysiloxanes having H-Si groups, and commercially available products include “SE-1885” manufactured by Toray Dow Corning. The flexibility of the silicone cured product can be adjusted by the crosslinking density of the silicone and the filling amount of the thermally conductive filler.
[0034]
The resin composition of the present invention can be produced by mixing the above materials with a blender or a mixer.
[0035]
The use of the resin composition of the present invention is a heat radiating member formed by molding it, but is not limited to this. The heat radiating member can be manufactured by molding a resin composition by a press molding method, an extrusion molding method, or a doctor blade method, and curing the resin composition.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0037]
Examples 1-3 Comparative Examples 1-3
Mixed powder of 100 parts of aluminum nitride powder (“AP-50” manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4.1 μm and 5 parts of yttrium oxide powder (manufactured by Mitsubishi Chemical Co., Ltd., specific surface area 20 m 2 / g) on a mass basis. A molded body having a diameter of 50 mm was produced by applying a pressure of 20 MPa and sintered at a temperature of 1950 ° C. in a nitrogen atmosphere. The relative density of the obtained aluminum nitride sintered body was 92%. This was pulverized and classified according to the following to produce various sintered powders.
[0038]
First, the aluminum nitride sintered body was coarsely pulverized in the order of jaw crusher and roll crusher, and then a powder of 74 μm or less was recovered with a JIS sieve, and the coarse powder on the sieve was again subjected to a roll crusher and arranged under a 74 μm sieve. This operation was repeated until the yield under the 74 μm sieve was about 80 to 90%, and the recovered sintered body powder was taken as Example 1. Further, the sintered body powder of Example 1 was finely pulverized with a ball mill, and the particle size was adjusted by the pulverization time to obtain the sintered body powders of Example 2 and Comparative Example 1. Furthermore, the sintered compact powder of Comparative Example 1 was subjected to an air classifier, the coarse powder side recovered powder was Example 3, and the fine powder side recovered powder was the sintered powder of Comparative Example 2. Further, in the same manner as in Example 1, the sintered body powder of Comparative Example 3 was prepared with a sieve opening of 150 μm.
[0039]
Regarding the sintered body powder obtained above, the content of fine powder having an average particle diameter of 3 μm or less is shown in Table 1 according to the following, the non-uniform strain, the degree of hydrolysis, and the thermal conductivity of the prototype heat dissipation member are shown in Table 2. Show.
[0040]
(1) Average particle size and fine powder content of 3 μm or less:
Example 1 and Comparative Example 3 were measured by a low tap method using a JIS sieve. Further, the content of particles of 3 μm or less was first measured by a laser diffraction particle size distribution method (measuring device: “Microtrac SPA” manufactured by Leed & Northrup) using a 45 μm sieve to collect a powder of 45 μm or less. In Examples 2 and 3 and Comparative Examples 1 and 2, both the average particle size and the fine powder content of 3 μm or less were measured by the laser diffraction particle size distribution method.
[0041]
(2) Non-uniform distortion:
The measurement was made by the modified Hall method using an X-ray diffraction method. The diffraction lines of Kα1 and Kα2 of the powder are subjected to multiple peak separation, and the true half width β is assumed to be β 2 = B 2 −b 2 with respect to the measured half width B and mechanical half width b. b is obtained from the diffraction line of SiO 2 . β is determined by the crystallite diameter and the non-uniform strain. If the strain follows a Gaussian distribution, there is a relationship of β 2 / tan 2 θ = Kλβ / (εtan θ · sin θ) + 4η 2 . Here, K: constant (= 0.9), λ: wavelength of CuKα ray (1.541.5), η: nonuniform strain, ε: crystallite diameter. Thus, by plotting the β 2 / tan 2 θ and Kλβ / (εtanθ · sinθ), obtains the 4Ita 2 from the section, the irregular distortion of the powder is obtained. Note that the powder of Example 1 could not be measured because a sample for X-ray diffraction measurement could not be molded.
[0042]
(3) Degree of hydrolysis:
The sintered body powder was allowed to stand for 24 hours under conditions of a temperature of 80 ° C. and a relative humidity of 95% or more, and then the oxygen content of the powder was measured and evaluated. Assuming that the difference in oxygen amount before and after the test is in accordance with the formula AlN + 3H 2 O = Al (OH) 3 + NH 3 , the aluminum nitride was changed to aluminum hydroxide, and the difference in oxygen amount before and after the test was The value obtained by dividing by the theoretical oxygen amount (61.5%) when changed to aluminum oxide was taken as the degree of hydrolysis.
[0043]
(4) Thermal conductivity:
The volume ratio of the sintered powder: silicone resin (trade name “TSE3070” manufactured by Toshiba Silicone Co., Ltd.) was set to 65:35, and both were kneaded using a lab plast mill. This kneaded product is sandwiched between two metal plates and molded into a sheet having a thickness of 0.3 mm by applying a pressure of 10 MPa, and this is kept in a dryer at a temperature of 150 ° C. for 5 hours to vulcanize, Its thermal conductivity was measured.
[0044]
Thermal conductivity is obtained by sandwiching a sheet-like molded product between a TO-3 type copper heater case and a copper plate, setting it with a tightening torque of 300 kPa, holding the heater case with electric power of 15 W and holding it for 5 minutes, then the heater case and the copper plate The temperature difference of TO-3 type was measured, and from the heat transfer area of 0.0006 m 2 , the formula, thermal conductivity (W / mK) = [power (W) × sheet thickness (0.0005 m)] / [transfer] Thermal area (0.0006 m 2 ) × temperature difference (° C.)].
[0045]
Although there are various methods for measuring the thermal conductivity of the heat dissipation member, the above measurement method is most accurate when the flexible heat dissipation member is mounted on a heating element such as a heat-generating electronic component. This is a reflected method.
[0046]
[Table 1]
Figure 0004330738
[0047]
[Table 2]
Figure 0004330738
[0048]
As shown in Tables 1 and 2, when the same aluminum nitride sintered body was pulverized and various sintered body powders having different particle size configurations were prepared, there was a large difference in non-uniform strain and degree of hydrolysis depending on the particle size configuration. It was confirmed. In particular, the fine powder of 3 μm or less was mostly oxidized in the hydrolysis degree test, but it was shown that the sintered powder containing no fine powder of 3 μm or less hardly oxidized.
[0049]
Further, from Table 2, in the sintered body powder (Comparative Example 1 and Comparative Example 2) containing 10% or more of fine powder of 3 μm or less, the heat conductivity of the heat radiating member was small. When the cross section of the heat radiating member was observed with an SEM photograph, a large number of bubbles were observed.
[0050]
Examples 4-15
Next, the sintered compact powder used in Examples 1 to 3 and various heat-conductive ultrafine powders shown in Table 3 are mixed to form a mixed powder, which is filled in resin (% by volume). Table 4 was made into a sheet-like molded product. At that time, it was molded by applying a pressure of 300 MPa in the thickness direction of the sheet. The results are shown in Table 4.
[0051]
In addition, the aluminum nitride powder of good heat conductive ultrafine powder used here is an aluminum nitride powder (“H grade” manufactured by Tokuyama Co., Ltd.) having an average particle diameter of 1.8 μm and a non-uniform strain of 0.000. In addition, other ultrafine powders, silicon nitride (“SN-9FW” manufactured by Denki Kagaku Kogyo), boron nitride (“GP powder” manufactured by Denki Kagaku Kogyo), etc., are commercially available or have an average particle diameter exceeding 3 μm. For the product, it was pulverized and classified to adjust to an average particle size of 3 μm or less.
[0052]
[Table 3]
Figure 0004330738
[0053]
[Table 4]
Figure 0004330738
[0054]
As is clear from Table 4, the use of the mixed powder of the sintered body powder and the good heat conductive ultrafine powder increased the adhesion and further improved the thermal conductivity of the heat radiating member.
[0055]
【The invention's effect】
According to the present invention, resin-filled aluminum nitride powder having an excellent balance between thermal conductivity and hydrolysis resistance, mixed powder composed of aluminum nitride powder and fine heat-conductive fine powder, and resin composition filled therewith In particular, a heat dissipation member is provided.

Claims (5)

相対密度90%以上の窒化アルミニウム焼結体の粉砕物からなり、平均粒子径が15〜45μm、3μm以下の微粉の含有率が10%以下であり、不均一歪みが0.005以下であることを特徴とする樹脂充填用窒化アルミニウム粉末。Consists pulverized relative density of 90% or more of aluminum nitride sintered body, the average particle diameter of 15 to 45 m, Ri der content of less fine 3μm is more than 10%, non-uniform distortion is 0.005 or less An aluminum nitride powder for filling a resin. 請求項1記載の窒化アルミニウム粉末と、平均粒子径が3μm以下の、窒化アルミニウム、窒化けい素、窒化ホウ素、炭化けい素、黒鉛、アルミニウム、シリコン、銅、銀及び金から選ばれた1種又は2種以上の良熱伝導性超微粉とからなり、良熱伝導性超微粉末の含有率が20%未満であり、不均一歪みが0.005以下であることを特徴とする樹脂充填用混合粉末。The aluminum nitride powder according to claim 1 and one or more selected from aluminum nitride, silicon nitride, boron nitride, silicon carbide, graphite, aluminum, silicon, copper, silver and gold having an average particle diameter of 3 μm or less A resin-filled mixture comprising two or more types of highly heat-conductive ultrafine powder, wherein the content of the highly heat-conductive ultrafine powder is less than 20%, and the non-uniform strain is 0.005 or less Powder. 請求項記載の窒化アルミニウム粉末を50〜85体積%含有してなることを特徴とする樹脂組成物。A resin composition comprising 50 to 85% by volume of the aluminum nitride powder according to claim 1 . 請求項記載の混合粉末を50〜85体積%含有してなることを特徴とする樹脂組成物。A resin composition comprising 50 to 85% by volume of the mixed powder according to claim 2 . 請求項又は記載の樹脂組成物の成型体からなることを特徴とする発熱性電子部品の放熱部材。A heat dissipating member for a heat-generating electronic component, comprising a molded product of the resin composition according to claim 3 or 4 .
JP33770499A 1999-11-29 1999-11-29 Aluminum nitride powder for resin filling and its use Expired - Fee Related JP4330738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33770499A JP4330738B2 (en) 1999-11-29 1999-11-29 Aluminum nitride powder for resin filling and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33770499A JP4330738B2 (en) 1999-11-29 1999-11-29 Aluminum nitride powder for resin filling and its use

Publications (2)

Publication Number Publication Date
JP2001158609A JP2001158609A (en) 2001-06-12
JP4330738B2 true JP4330738B2 (en) 2009-09-16

Family

ID=18311185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33770499A Expired - Fee Related JP4330738B2 (en) 1999-11-29 1999-11-29 Aluminum nitride powder for resin filling and its use

Country Status (1)

Country Link
JP (1) JP4330738B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014454B2 (en) * 2002-06-12 2007-11-28 電気化学工業株式会社 Resin composition, method for producing the same, and heat radiating member
JP4942978B2 (en) * 2005-09-30 2012-05-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive silicone grease composition and semiconductor device using the same
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US11118056B2 (en) 2016-07-22 2021-09-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
JP6246986B1 (en) * 2016-07-22 2017-12-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
EP3489280B1 (en) 2016-07-22 2022-02-16 Momentive Performance Materials Japan LLC Surface treatment agent for thermally conductive polyorganosiloxane composition
TWI746856B (en) 2017-05-31 2021-11-21 日商邁圖高新材料日本合同公司 Thermally conductive polysiloxane composition
JP7082563B2 (en) * 2018-12-04 2022-06-08 信越化学工業株式会社 Cured product of thermally conductive silicone composition

Also Published As

Publication number Publication date
JP2001158609A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP7207384B2 (en) Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet
KR102033328B1 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet
TWI715729B (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
WO2020004600A1 (en) Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member
US20200216738A1 (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
EP3647265A1 (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
TW201829300A (en) Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2012070289A1 (en) Thermal conductive sheet and power module
JP7273587B2 (en) Boron nitride powder and resin composition
US8383714B2 (en) Alumina fiber aggregate, process for producing the same, and use thereof
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
JP4330739B2 (en) Aluminum nitride powder for resin filling and its use
JPWO2020158758A1 (en) Boron nitride powder and resin composition
JP4330738B2 (en) Aluminum nitride powder for resin filling and its use
JPWO2020175377A1 (en) Boron Nitride Coagulated Powder, Heat Dissipating Sheets and Semiconductor Devices
CN111937140A (en) Thermally conductive composite particle and method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit board, metal-base circuit board, and power module
JP2020138903A (en) Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device
JP3764083B2 (en) Method for producing aluminum nitride powder
JP7291304B2 (en) Boron nitride powder, heat-dissipating sheet, and method for producing heat-dissipating sheet
JP2005209765A (en) Mixed powder and application thereof
WO2020196644A1 (en) Bulk boron nitride particles, thermally conductive resin composition, and heat dissipating member
JP4357064B2 (en) Heat dissipation member
JP7273586B2 (en) Boron nitride powder and resin composition
TWI832978B (en) Boron nitride agglomerated powder, heat sink and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees