JP4329236B2 - Spectrometer - Google Patents

Spectrometer Download PDF

Info

Publication number
JP4329236B2
JP4329236B2 JP2000198105A JP2000198105A JP4329236B2 JP 4329236 B2 JP4329236 B2 JP 4329236B2 JP 2000198105 A JP2000198105 A JP 2000198105A JP 2000198105 A JP2000198105 A JP 2000198105A JP 4329236 B2 JP4329236 B2 JP 4329236B2
Authority
JP
Japan
Prior art keywords
optical system
light
mirror
entrance slit
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000198105A
Other languages
Japanese (ja)
Other versions
JP2002013980A (en
Inventor
善壽 原田
亮 立野
雄一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000198105A priority Critical patent/JP4329236B2/en
Publication of JP2002013980A publication Critical patent/JP2002013980A/en
Application granted granted Critical
Publication of JP4329236B2 publication Critical patent/JP4329236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は分光器に関し、特に、短波長である真空紫外領域の光を波長分散するのに好適な分光器に関する。
【0002】
【従来の技術】
紫外可視分光光度計を始めとする分光光度計においては、光源から発した光のうち、特定の波長のみを含む単一波長光を取り出して試料に照射するために分光器が利用される。波長が120〜350nm程度の真空紫外領域の光を用いる分光器では、反射鏡での光の損失が大きいため、できるだけ反射鏡の数を減らした光学系を構成することが望ましい。
【0003】
そこで、従来の分光器では、光源と、該光源からの光を後記入口スリットに集光するための凹面鏡とから照明光学系を構成し、入口スリット、凹面回折格子及び出口スリットから分光光学系を構成している。分光光学系は、ローランド円を用いない構成として、いわゆる瀬谷−波岡マウンティングと呼ばれる分光光学系が利用される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のこのような光学系には次のような問題がある。一般的な構成では、上記凹面鏡として球面鏡が光軸からずらした状態(つまり軸外し)で使用されるため、入口スリット面上では、光源像はスリットの長手方向に細長い像となるばかりでなく、真直ぐに延伸せず湾曲形状となる。そのため、入口スリットでの光の損失が大きい。また、分光光学系においては、凹面回折格子として球面形状のものが使用されるが、この球面回折格子の非点収差により、分光スペクトルが分散方向と直交する方向に広がり、光量の損失が生じる。
【0005】
上述したように紫外領域の光を使用する分光器では光学素子による光の吸収の影響が大きいため、上記の如き光量の損失はできるだけ少なくしておく必要がある。特に、近年、半導体ウエハなどの分析・測定に利用される機器では、半導体の配線パターンの微細化に伴って測定光も短波長化する必要があり、150nm程度のかなり短い波長の紫外光を用いることが要求される。その場合、上記の如き光の損失を極限まで減らすことが望まれる。
【0006】
上述したような光量の損失を防止するために、照明光学系では、凹面鏡としてトロイダル鏡を用いることにより入口スリット面上での結像の垂直方向の伸びを補正する、分光光学系では、収差補正型回折格子を利用して分光スペクトルの非点収差を補正するなどの方法が考えられる。しかしながら、トロイダル鏡は垂直方向及び水平方向にそれぞれ異なる曲率半径を有するものであるため、球面鏡と比較して製作が非常に困難であり、製造コストが高くなるにも拘わらず精度も低く、像の曲がりを充分に補正することはできなかった。更に、組立時の調整も困難であり、調整不足による分解能の低下も免れなかった。また、収差補正型回折格子も通常の球面状の凹面回折格子と比較してコストが高いものであった。
【0007】
本発明はこのような点に鑑みて成されたものであり、その主たる目的は、トロイダル鏡や収差補正型回折格子のような高価な光学部品を用いることなく、出口スリットの外側の試料面での光の損失を軽減することができる光学系を有する分光器を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る分光器は、
光源、該光源からの光を反射する凹球面鏡、及び該凹球面鏡からの光を反射する凸面鏡を含む照明光学系と、入口スリット、該入口スリットを通して導入された光を波長分散する凹面回折格子、及び該凹面回折格子で波長分散された光の一部を通過させる出口スリットを含む分光光学系とを有し、
前記照明光学系にあっては、前記光源からの光を前記入口スリットの短手方向に集光させる凹球面鏡と該入口スリットの長手方向に伸長させる凸面鏡を光軸外しの配置とし、該照明光学系によるメリジオナル光線を前記入口スリットに集光させるとともに、
前記照明光学系及び分光光学系によるサジタル光線を前記出口スリットに集光させるように配置したことを特徴としている。
【0009】
ここで、メリジオナル光線は、光軸と主光線とを含む平面であるメリジオナル面内に含まれる光線、サジタル光線は、主光線を含みメリジオナル面に直交する平面であるサジタル面に含まれる光線のことである。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態による分光器について図面を参照して説明する。図1は本実施形態による分光器の光路構成図であり、(a)は上面図、(b)は斜視図である。
【0011】
この分光器において、照明光学系Aは、D2ランプである光源1、凹球面鏡2、及び凸円筒面鏡3から構成される。一方、分光光学系Bは、入口スリット4、凹面回折格子5及び出口スリット6から構成された、いわゆる瀬谷・波岡型マウンティングである。出口スリット6の外側にはモニタ用の反射鏡7が光路中に挿入・退却自在に配置され、更に、光束の進行方向に沿って、第1凹面円筒鏡8、第2凹面円筒鏡9、試料面10及び光検出器11が配設されている。
【0012】
上記構成における光の主光線は図1中に1点鎖線で示した通りである。すなわち、光源1から発した光は凹球面鏡2で反射・集光され、更に凸円筒面鏡3で反射される。凸円筒面鏡3の中心軸はスリット開口の延伸方向(つまりZ軸方向)に直交しているため、凸円筒面鏡3により、光束はZ軸方向には広がり、スリット開口の短手方向(つまりX軸方向)には凹球面鏡2による集光状態のまま集光する。つまり、凹球面鏡2及び凸円筒面鏡3により、入口スリット4の開口形状と同様に、Z軸方向に長く延伸した状態で入口スリット4に集光する。入口スリット4を通過した光は凹面回折格子5により、Z軸方向に集光されるとともに、その直交方向に波長分散される。そして、出口スリット6によりごく狭い波長範囲の光のみが取り出され、第1及び第2凹円筒面鏡8、9で反射されて試料面10に集光され、試料面10での反射光が検出器11に導入される。
【0013】
本実施形態による分光器では、各光学部品は、図1(a)及び(b)に示すような離間間隔及び角度を持って配置される。なお、図1中の寸法の単位はすべてmmである。また、各光学部品の具体的な仕様は次の通りである。
(1)光源1
2mmφの重水素ランプ(放射波長:115〜400nm)
(2)凹球面鏡2
曲率半径:322.0mm
(3)凸円筒面鏡3
曲率半径:397.36mm
(4)入口スリット4
開口サイズ:1(W)×40(H)mm
(5)凹面回折格子5
曲率:498.1mm
N=1200本/mm
逆線分散:1.66nm/mm
波長範囲:120〜350nm
ブレーズ波長:150nm
ブレーズ角:5°10′
回折次数:−1
回折格子サイズ:50(W)×30(H)mm
(6)出口スリット6
開口サイズ:1(W)×1(H)mm
(7)凹円筒面鏡8
曲率半径:397.36mm
(8)凹円筒面鏡9
曲率半径:322.0mm
【0014】
この光学系の構成の特徴の1つは、照明光学系Aにおけるメリジオナル光線が入口スリット4に集光するように、また、照明光学系A及び分光光学系Bにおけるサジタル光線が出口スリット6に集光するように配置が決められている点にある。照明光学系Aにおけるメリジオナル光線を入口スリット4に集光させることにより、照明光学系Aで発生する非点収差による非点隔差は、分光光学系Bから見ると入口スリット4の外側に位置する。一方、照明光学系A及び分光光学系Bにおけるサジタル光線を出口スリット6に集光させることにより、照明光学系A及び分光光学系Bで発生する非点収差による非点隔差は出口スリット6の外側に位置する。この両者の非点隔差は互いに逆方向に生じるため、この組み合わせにより非点収差は相殺される。その結果、試料面10における非点収差の影響は解消又は軽減され、光が拡散せずに小さなスポットを得ることができる。
【0015】
また、この光学系の他の特徴は、照明光学系Aにおいて、凹面鏡と凸面鏡との組み合わせを利用している点にある。すなわち、凹球面鏡2により光源1からの光を入口スリット4の短手方向に集光するとともに、凸円筒面鏡3により入口スリット4の長手方向に伸長させている。そのため、照明光学系Aは、サジタル面内、つまり入口スリット4の長手方向での開口数が実質的に大きくなり、入口スリット4での光量の損失の軽減に寄与している。
【0016】
図1に示した光学系構成で、入口スリット4上の結像を計算機シミュレーションにより算出した結果を図2(a)に、出口スリット6上での結像を計算機シミュレーションにより算出した結果を図2(b)に示す。また、試料面10での結像を計算機シミュレーションにより算出した結果を図3(a)に、従来の光学系による試料面での結像を計算機シミュレーションにより算出した結果を図3(b)に示す。なお、ここでは、光の波長は157nmである。
【0017】
図2に示すように、入口スリット4及び出口スリット6の開口寸法にほぼ収まる程度に光は集光されており、各スリット4、6でのけられによる光の損失はきわめて少なくてすむことがわかる。また、図3に明らかなように、本実施形態の光路構成によると、試料面10での集光スポットは非常に小さくなり、従来の光路構成よりも非点収差が大幅に改善されていることがわかる。
【0018】
なお、上記実施形態は単に一例であって、上記記載の数値は適宜に変えることができるほか、本発明の趣旨の範囲で適宜に変更や修正を行えることは明らかである。
【0019】
【発明の効果】
以上のように、本発明に係る分光器によれば、照明光学系と分光光学系とで生じる非点収差が相殺されるため、試料面において非点収差による光の拡散が軽減され、光の損失も軽減される。そのため、より多くの光を検出器に導入することができ、結果的に、分析感度の向上が達成される。また、入口スリットでの光の損失が軽減されるので、これによっても検出器に到達する光量が増加し、分析感度の向上に寄与する。
【0020】
また、従来、集光効率のよい光学系を作るにはトロイダル鏡等の複雑な構造の凹面鏡を用いる必要があったが、本発明によれば、比較的製造が容易な球面鏡や円筒面鏡で照明光学系を構成することができる。したがって、コストが安価ですむとともに、組立時の調整も容易になる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による分光器の光路構成図であり、(a)は上面図、(b)は斜視図。
【図2】 本実施形態の分光器における入口スリット上でのスポットダイヤグラム(a)、及び出口スリットでのスポットダイヤグラム(b)。
【図3】 本実施形態の分光器における試料面上でのスポットダイヤグラム(a)、及び従来の光学系による試料面でのスポットダイヤグラム(b)。
【符号の説明】
1…光源
2…凹球面鏡
3…凸円筒面鏡
4…入口スリット
5…凹面回折格子
6…出口スリット
7…モニタ用反射鏡
8…第1凹円筒面鏡
9…第2凹円筒面鏡
10…試料面
11…検出器
A…照明光学系
B…分光光学系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spectroscope, and more particularly to a spectroscope suitable for wavelength-dispersing light in a vacuum ultraviolet region having a short wavelength.
[0002]
[Prior art]
In a spectrophotometer such as an ultraviolet-visible spectrophotometer, a spectroscope is used to extract single-wavelength light including only a specific wavelength from light emitted from a light source and irradiate the sample. In a spectroscope that uses light in the vacuum ultraviolet region with a wavelength of about 120 to 350 nm, since the loss of light in the reflector is large, it is desirable to construct an optical system with as few reflectors as possible.
[0003]
Therefore, in a conventional spectroscope, an illumination optical system is composed of a light source and a concave mirror for condensing light from the light source into a post-entry slit, and the spectroscopic optical system is composed of an entrance slit, a concave diffraction grating, and an exit slit. It is composed. The spectroscopic optical system employs a so-called Seya-Namioka mounting spectroscopic optical system as a configuration that does not use a Roland circle.
[0004]
[Problems to be solved by the invention]
However, the conventional optical system has the following problems. In a general configuration, since the spherical mirror is used as the concave mirror in a state shifted from the optical axis (that is, off-axis), the light source image is not only an elongated image in the longitudinal direction of the slit on the entrance slit surface, It does not extend straight but has a curved shape. Therefore, the loss of light at the entrance slit is large. Further, in the spectroscopic optical system, a spherical diffraction grating is used, but due to the astigmatism of this spherical diffraction grating, the spectral spectrum spreads in the direction perpendicular to the dispersion direction, resulting in a loss of light quantity.
[0005]
As described above, a spectroscope that uses light in the ultraviolet region is greatly affected by the absorption of light by the optical element, so that the loss of light amount as described above must be minimized. In particular, in recent years, in instruments used for analysis and measurement of semiconductor wafers or the like, it is necessary to shorten the wavelength of the measurement light as the semiconductor wiring pattern is miniaturized, and ultraviolet light having a considerably short wavelength of about 150 nm is used. Is required. In that case, it is desired to reduce the loss of light as described above to the limit.
[0006]
In order to prevent the loss of light amount as described above, the illumination optical system uses a toroidal mirror as a concave mirror to correct the vertical extension of the image on the entrance slit surface, and the spectroscopic optical system corrects aberrations. A method of correcting the astigmatism of the spectral spectrum using a diffraction grating can be considered. However, since the toroidal mirrors have different radii of curvature in the vertical and horizontal directions, the toroidal mirror is very difficult to manufacture compared to the spherical mirror, and the accuracy is low despite the high manufacturing cost. The bending could not be corrected sufficiently. Furthermore, adjustment during assembly is difficult, and a reduction in resolution due to insufficient adjustment is inevitable. In addition, the aberration correction type diffraction grating is also expensive in comparison with a normal spherical concave diffraction grating.
[0007]
The present invention has been made in view of such points, and its main purpose is to use a sample surface outside the exit slit without using expensive optical components such as a toroidal mirror and an aberration correction type diffraction grating. It is an object of the present invention to provide a spectroscope having an optical system that can reduce the loss of light.
[0008]
[Means for Solving the Problems]
The spectrometer according to the present invention, which has been made to solve the above problems,
An illumination optical system including a light source, a concave spherical mirror that reflects light from the light source, and a convex mirror that reflects light from the concave spherical mirror, an entrance slit, and a concave diffraction grating that wavelength-disperses light introduced through the entrance slit; And a spectroscopic optical system including an exit slit that allows a part of the light wavelength-dispersed by the concave diffraction grating to pass therethrough,
In the illumination optical system, a concave spherical mirror that condenses light from the light source in the short direction of the entrance slit and a convex mirror that extends in the longitudinal direction of the entrance slit are disposed off the optical axis, and the illumination While condensing the meridional ray by the optical system to the entrance slit,
A sagittal light beam from the illumination optical system and the spectroscopic optical system is arranged to be condensed on the exit slit.
[0009]
Here, the meridional ray is a ray included in the meridional plane which is a plane including the optical axis and the principal ray, and the sagittal ray is a ray included in the sagittal plane including the principal ray and orthogonal to the meridional plane. It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A spectroscope according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an optical path configuration diagram of the spectrometer according to the present embodiment, where (a) is a top view and (b) is a perspective view.
[0011]
In this spectroscope, the illumination optical system A includes a light source 1, which is a D2 lamp, a concave spherical mirror 2, and a convex cylindrical mirror 3. On the other hand, the spectroscopic optical system B is a so-called Seya / Namioka type mounting composed of an entrance slit 4, a concave diffraction grating 5 and an exit slit 6. A reflection mirror 7 for monitoring is disposed outside the exit slit 6 so as to be freely inserted into and retracted from the optical path. Further, the first concave cylindrical mirror 8, the second concave cylindrical mirror 9, and the sample are arranged along the traveling direction of the light beam. A surface 10 and a photodetector 11 are arranged.
[0012]
The principal ray of light in the above configuration is as shown by the one-dot chain line in FIG. That is, the light emitted from the light source 1 is reflected and collected by the concave spherical mirror 2 and further reflected by the convex cylindrical mirror 3. Since the central axis of the convex cylindrical surface mirror 3 is orthogonal to the extending direction of the slit opening (that is, the Z-axis direction), the light beam spreads in the Z-axis direction by the convex cylindrical surface mirror 3 and the short direction of the slit opening ( In other words, the light is condensed in the condensing state by the concave spherical mirror 2 in the X-axis direction). That is, the concave spherical mirror 2 and the convex cylindrical surface mirror 3 collect the light on the entrance slit 4 while extending in the Z-axis direction in the same manner as the opening shape of the entrance slit 4. The light that has passed through the entrance slit 4 is condensed in the Z-axis direction by the concave diffraction grating 5 and wavelength-dispersed in the orthogonal direction. Then, only light in a very narrow wavelength range is taken out by the exit slit 6, reflected by the first and second concave cylindrical mirrors 8 and 9, collected on the sample surface 10, and reflected light on the sample surface 10 is detected. Introduced into the vessel 11.
[0013]
In the spectrometer according to the present embodiment, the optical components are arranged with a spacing and an angle as shown in FIGS. 1 (a) and 1 (b). In addition, the unit of the dimension in FIG. 1 is all mm. The specific specifications of each optical component are as follows.
(1) Light source 1
2mmφ deuterium lamp (radiation wavelength: 115-400nm)
(2) Concave spherical mirror 2
Curvature radius: 322.0mm
(3) Convex cylindrical mirror 3
Curvature radius: 397.36mm
(4) Entrance slit 4
Aperture size: 1 (W) x 40 (H) mm
(5) Concave diffraction grating 5
Curvature: 498.1mm
N = 1200 / mm
Inverse dispersion: 1.66 nm / mm
Wavelength range: 120-350nm
Blaze wavelength: 150nm
Blaze angle: 5 ° 10 '
Diffraction order: -1
Diffraction grating size: 50 (W) x 30 (H) mm
(6) Exit slit 6
Aperture size: 1 (W) x 1 (H) mm
(7) Concave cylindrical surface mirror 8
Curvature radius: 397.36mm
(8) Concave cylindrical mirror 9
Curvature radius: 322.0mm
[0014]
One of the characteristics of the configuration of this optical system is that the meridional light beam in the illumination optical system A is focused on the entrance slit 4, and the sagittal light beam in the illumination optical system A and the spectroscopic optical system B is collected in the exit slit 6. The arrangement is determined so as to shine. By concentrating the meridional ray in the illumination optical system A on the entrance slit 4, the astigmatism due to astigmatism generated in the illumination optical system A is located outside the entrance slit 4 when viewed from the spectroscopic optical system B. On the other hand, the astigmatic difference due to astigmatism generated in the illumination optical system A and the spectroscopic optical system B is collected outside the exit slit 6 by condensing the sagittal rays in the illumination optical system A and the spectroscopic optical system B on the exit slit 6. Located in. Since the astigmatic difference between the two occurs in the opposite direction, the astigmatism is canceled out by this combination. As a result, the effect of astigmatism on the sample surface 10 is eliminated or reduced, and a small spot can be obtained without light being diffused.
[0015]
Another feature of this optical system is that the illumination optical system A uses a combination of a concave mirror and a convex mirror. That is, the light from the light source 1 is condensed in the short direction of the entrance slit 4 by the concave spherical mirror 2 and is extended in the longitudinal direction of the entrance slit 4 by the convex cylindrical mirror 3. Therefore, the illumination optical system A has a substantially increased numerical aperture in the sagittal plane, that is, in the longitudinal direction of the entrance slit 4, and contributes to a reduction in light loss at the entrance slit 4.
[0016]
With the optical system configuration shown in FIG. 1, the result of calculating the image on the entrance slit 4 by computer simulation is shown in FIG. 2A, and the result of calculating the image on the exit slit 6 by computer simulation is shown in FIG. Shown in (b). FIG. 3A shows the result of calculating the image on the sample surface 10 by computer simulation, and FIG. 3B shows the result of calculating the image on the sample surface by the conventional optical system by computer simulation. . Here, the wavelength of light is 157 nm.
[0017]
As shown in FIG. 2, the light is collected to such an extent that it fits within the opening dimensions of the entrance slit 4 and the exit slit 6, and the loss of light due to scoring in each of the slits 4 and 6 can be extremely small. Recognize. Further, as apparent from FIG. 3, according to the optical path configuration of the present embodiment, the condensing spot on the sample surface 10 becomes very small, and the astigmatism is greatly improved as compared with the conventional optical path configuration. I understand.
[0018]
It should be noted that the above embodiment is merely an example, and the numerical values described above can be changed as appropriate, and it is obvious that changes and modifications can be made as appropriate within the scope of the present invention.
[0019]
【The invention's effect】
As described above, according to the spectroscope according to the present invention, astigmatism generated in the illumination optical system and the spectroscopic optical system is canceled out, light diffusion due to astigmatism on the sample surface is reduced, and Loss is also reduced. Therefore, more light can be introduced into the detector, and as a result, improvement in analysis sensitivity is achieved. In addition, since the loss of light at the entrance slit is reduced, this also increases the amount of light reaching the detector, contributing to improvement in analysis sensitivity.
[0020]
Conventionally, it has been necessary to use a concave mirror having a complicated structure such as a toroidal mirror in order to produce an optical system with high light collection efficiency. However, according to the present invention, a spherical mirror or a cylindrical surface mirror that is relatively easy to manufacture can be used. An illumination optical system can be configured. Therefore, the cost is low and the adjustment during assembly is easy.
[Brief description of the drawings]
1A and 1B are optical path configuration diagrams of a spectrometer according to an embodiment of the present invention, in which FIG. 1A is a top view and FIG. 1B is a perspective view.
FIG. 2 shows a spot diagram (a) on the entrance slit and a spot diagram (b) on the exit slit in the spectrometer of the present embodiment.
FIG. 3 is a spot diagram (a) on the sample surface in the spectrometer of the present embodiment, and a spot diagram (b) on the sample surface by a conventional optical system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Concave spherical mirror 3 ... Convex cylindrical surface mirror 4 ... Entrance slit 5 ... Concave diffraction grating 6 ... Exit slit 7 ... Reflection mirror 8 for monitoring ... 1st concave cylindrical surface mirror 9 ... 2nd concave cylindrical surface mirror 10 ... Sample surface 11 ... Detector A ... Illumination optical system B ... Spectral optical system

Claims (1)

光源、該光源からの光を反射する凹球面鏡、及び該凹球面鏡からの光を反射する凸面鏡を含む照明光学系と、入口スリット、該入口スリットを通して導入された光を波長分散する凹面回折格子、及び該凹面回折格子で波長分散された光の一部を通過させる出口スリットを含む分光光学系とを有し、
前記照明光学系にあっては、前記光源からの光を前記入口スリットの短手方向に集光させる凹球面鏡と該入口スリットの長手方向に伸長させる凸面鏡を光軸外しの配置とし、該照明光学系によるメリジオナル光線を前記入口スリットに集光させるとともに、
前記照明光学系及び分光光学系によるサジタル光線を前記出口スリットに集光させるように配置したことを特徴とする分光器。
An illumination optical system including a light source, a concave spherical mirror that reflects light from the light source, and a convex mirror that reflects light from the concave spherical mirror, an entrance slit, and a concave diffraction grating that wavelength-disperses light introduced through the entrance slit; And a spectroscopic optical system including an exit slit that allows a part of the light wavelength-dispersed by the concave diffraction grating to pass therethrough,
In the illumination optical system, a concave spherical mirror that condenses light from the light source in the short direction of the entrance slit and a convex mirror that extends in the longitudinal direction of the entrance slit are disposed off the optical axis, and the illumination While condensing the meridional ray by the optical system to the entrance slit,
A spectroscope comprising: a sagittal beam by the illumination optical system and a spectroscopic optical system arranged so as to be condensed on the exit slit.
JP2000198105A 2000-06-30 2000-06-30 Spectrometer Expired - Fee Related JP4329236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198105A JP4329236B2 (en) 2000-06-30 2000-06-30 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198105A JP4329236B2 (en) 2000-06-30 2000-06-30 Spectrometer

Publications (2)

Publication Number Publication Date
JP2002013980A JP2002013980A (en) 2002-01-18
JP4329236B2 true JP4329236B2 (en) 2009-09-09

Family

ID=18696315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198105A Expired - Fee Related JP4329236B2 (en) 2000-06-30 2000-06-30 Spectrometer

Country Status (1)

Country Link
JP (1) JP4329236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20180965A1 (en) * 2018-07-10 2020-01-13 Norsk Elektro Optikk As Hyperspectral camera

Also Published As

Publication number Publication date
JP2002013980A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US10488254B2 (en) Spectrometer with two-dimensional spectrum
US6813018B2 (en) Hyperspectral imager
US7345760B2 (en) Grating monochromator/spectrograph
US8520204B2 (en) Dyson-type imaging spectrometer having improved image quality and low distortion
US6744505B1 (en) Compact imaging spectrometer
US10288481B2 (en) Spectrometer for generating a two dimensional spectrum
JPH0339572B2 (en)
TW201142255A (en) Spectrometer capable of eliminating side-tail effects
JP5170488B2 (en) Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer
US20080013086A1 (en) Confocal spectrometer with astigmatic aperturing
US6597452B1 (en) Compact littrow-type scanning spectrometer
US5384656A (en) Astigmatism corrected gratings for plane grating and spherical mirror spectrographs
US5579106A (en) Method and apparatus for providing astigmatism-reduced images with spectroscopic instruments
US20010048526A1 (en) Compact spectrometer
US6597451B1 (en) Spectrometry measuring apparatus
JP4329236B2 (en) Spectrometer
JPH02108929A (en) Double spectrographic device
US20050134847A1 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
EP1193482B1 (en) Spectroscope
JP2001289713A (en) Spectrophotometer
JP3141106B2 (en) Convergent light incidence type spectrometer using spherical diffraction grating
US10837832B2 (en) Spectrometer and method for measuring the spectral characteristics thereof
JPH04335122A (en) Spectrometer wherein astigmatism is corrected
Poletto et al. Grazing incidence flat-field spectrometer with spatial resolution capability for extended sources
JP2002005739A (en) Zernitana type spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R151 Written notification of patent or utility model registration

Ref document number: 4329236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees