JP4329177B2 - X-ray generator, projection exposure apparatus and exposure method provided with the same - Google Patents

X-ray generator, projection exposure apparatus and exposure method provided with the same Download PDF

Info

Publication number
JP4329177B2
JP4329177B2 JP23139499A JP23139499A JP4329177B2 JP 4329177 B2 JP4329177 B2 JP 4329177B2 JP 23139499 A JP23139499 A JP 23139499A JP 23139499 A JP23139499 A JP 23139499A JP 4329177 B2 JP4329177 B2 JP 4329177B2
Authority
JP
Japan
Prior art keywords
ray
optical element
plasma
blocking member
particle blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23139499A
Other languages
Japanese (ja)
Other versions
JP2001057298A (en
JP2001057298A5 (en
Inventor
典明 神高
洋行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP23139499A priority Critical patent/JP4329177B2/en
Publication of JP2001057298A publication Critical patent/JP2001057298A/en
Publication of JP2001057298A5 publication Critical patent/JP2001057298A5/ja
Application granted granted Critical
Publication of JP4329177B2 publication Critical patent/JP4329177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides

Description

【0001】
【発明の属する技術分野】
本発明は、X線縮小投影露光装置やX線顕微鏡、X線分析装置及びこれらが備えるX線発生装置に関するものである。
【0002】
【従来の技術】
波長が13nmあるいは11nmであるX線の光源(X線発生装置)の1つの候補として考えられているのが、レーザープラズマX線源(以下、LPXと記す)である。
LPXを用いた場合、X線を発生させるために標的にレーザー光を照射すると、標的を構成する材料がガス化した物質やイオン化した材料等の飛散粒子が発生する。このような飛散粒子が標的の周辺部材に付着するとLPXを備えた装置の性能に悪影響を及ぼすことがある。しかし、飛散粒子が全く発生しないLPXは、現在のところ存在しない。そのため、発生した飛散粒子の周辺部材への到達を阻止することが提案されている。その飛散粒子の阻止方法として、X線の吸収が問題とならない程度の量のバッファガスを真空容器内に充填する方法が提案されている。
【0003】
バッファガスを用いる場合には、飛散粒子の低減効果を高めるために、発生するX線の光路中あるいは光路の近傍に図6に示すような筒状の飛散粒子阻止部材4を配置することが提案されている(特開平8−321395号公報)。
ここに記載されている飛散粒子阻止部材4を用いる方法とは、以下のようなものである。標的材料1に励起用パルスレーザー光2を照射することにより生じるプラズマ3からの飛散粒子と、容器内に導入したバッファガス分子とを衝突させることで飛散粒子の運動の方向を変化させる。これにより、飛散粒子阻止部材4に飛散粒子を付着させるものである。この方法によれば、従来、標的の周辺部材の表面に到達し、付着してしまっていた飛散粒子を低減させる効果が飛躍的に向上する。
【0004】
また、図7のように、取り出すX線光束5の立体角内に板状の阻止部材4を複数個配置することで飛散粒子の付着を阻止することも提案されている。これにより大きな立体角でX線を取り出す際にも取り出すX線光量をほとんど低減させることなく、非常に効果的に飛散粒子を低減することが可能になる。
また前記のように光源としてX線を利用する場合、不必要な波長域をカットする薄膜フィルター(例えばベリリウム箔)や透過回折光学素子(例えばゾーンプレート)等が使用される場合がある。このような場合でも前記のようなX線の光路中や光路近傍に図7のような配置で飛散粒子阻止部材4を配置することは、非常に有効な飛散粒子を低減する手段となる。
【0005】
前記のようなLPXの他に近年では、X線発生装置として放電プラズマを用いたものが提案されている。この方法の中の1種であるDPF(Dence Plasma Focus)を用いたときに大きなX線の輻射量が得られたとする報告が成されている。
このDPFを用いた方法では、以下のようにしてX線を発生させる。
例えば圧力が0.2Torrのアルゴン等のガス雰囲気中に同軸円筒状の電極を設置する。この電極間に1kV程度のパルス電圧を印加し、放電プラズマを生成する。生成したプラズマ中を流れる電流とこれによって形成される磁場によって、イオンと電子を電極先端部に集中させながら加速することによって加熱する。これにより、電極先端部の電極部材や電極近傍に存在する標的材料がプラズマ化し、X線が輻射される。
【0006】
この方法では、投入した電気エネルギーが高い割合でX線に変換される報告が成されている。また、1kHzを超える繰り返し運転が確認されている。これらのことからレーザープラズマと同様にDPFは、X線発生装置としての利用が期待されている。
また、前記のようなLPXやDPFで発生させたX線は、反射鏡等の反射光学素子で反射させてから利用される場合が多かった。
【0007】
【発明が解決しようとする課題】
例えば、X線の平行光束を形成する場合、X線反射光学素子である回転放物面鏡で反射させることが考えられる。前記の如く薄膜フィルター等の透過型光学素子を利用する場合に、飛散粒子の周辺部材への付着を阻止するには、図7のように光路に複数の飛散粒子阻止部材4を配置することが非常に有効である。しかし、発生したX線を反射鏡等の反射光学素子に反射させ、反射したX線を利用する場合には、飛散粒子素子部材の配置を自由に設定することはできなかった。
【0008】
飛散粒子阻止部材4は、高い飛散粒子低減効果を得るためにできるだけ広い面積を有することが望ましい。しかし、反射鏡を利用する場合に、例えば図5のように飛散粒子阻止部材4を配置すると、反射鏡の表面で反射したX線を遮ってしまい(5−a)、反射光の一部しか通常の反射(5−b)を行うことができなくなってしまう。従って、反射光が通過する領域には飛散粒子阻止部材を配置することができないことになる。
【0009】
これを解決するには、反射鏡を大きくし、これに比例して大きな飛散粒子阻止部材を配置すればよい。しかし、実際のX線反射鏡の製造においては、高い加工精度と微妙な多層膜の制御が必要であるために、あまり大きな素子の製造は容易ではない。更に、装置全体をある程度の大きさに抑えるためにも反射光学素子等の光学素子をむやみに大きくすることは好ましくない。よって、反射鏡を大きくし、飛散粒子阻止部材を大きくする方法は、実質的な解決方法にはならない。
【0010】
このように、プラズマから発生するX線を利用し、X線の反射光学素子を有するX線発生装置において、飛散粒子を効果的に低減することが望まれていた。
また、DPFにおいても電極材料や標的材料をプラズマ化してX線を発生させるため、電極や標的を構成する物質が飛散粒子となり、また発生したX線を利用する際に反射光学素子を用いる場合が多いため、レーザープラズマ方式と同様に飛散粒子を効果的に低減させる必要があった。
【0011】
【課題を解決するための手段】
そこで本発明者は、反射光学素子を備え、プラズマからX線を発生させるX線発生装置において、入射するレーザー光や反射したX線を遮ることなく、効率よく飛散粒子を低減させる方法を研究した。その結果、本発明者は、レーザー光やX線を遮ることなく、飛散粒子を効率よく阻止する飛散粒子素子部材の形状とその配置を見い出した。
【0012】
そこで本発明は第1に「プラズマから発生したX線が入射するX線反射光学素子を有するX線発生装置において、前記X線反射光学素子への入射光及び/又は前記X線反射光学素子からの反射光の光路上の該各光路が形成する面に対して平行又は略平行な位置に飛散粒子阻止部材を有することを特徴とするX線発生装置(請求項1)」を提供する。第2に「減圧した容器内に設置又は供給される標的と、該標的から前記プラズマを発生させるために前記標的にレーザービームを照射するパルスレーザー光発生装置を有することを特徴とする請求項1に記載のX線発生装置(請求項2)」を提供する。第3に「パルス的に高電圧を印加することにより前記プラズマを発生させる電極を有することを特徴とする請求項1に記載のX線発生装置(請求項3)」を提供する。第4に「前記X線反射光学素子への飛散粒子の付着を防止するカバーが前記X線反射光学素子を取り囲むように前記X線反射光学素子の周辺部に設置されていることを特徴とする請求項1又は2又は3に記載のX線発生装置(請求項4)」を提供する。第5に「前記飛散粒子阻止部材の厚さは2mm以下であることを特徴とする請求項1又は2又は3又は4に記載のX線発生装置(請求項5)」を提供する。第6に「前記前記飛散粒子阻止部材は複数の板を有し、前記複数の板は放射状に配置されていることを特徴とする請求項1乃至5のいずれか1項に記載のX線発生装置(請求項6)」を提供する。第7に「プラズマから発生したX線が入射するX線反射光学素子を有し、前記X線反射光学素子への入射光及び/又は前記X線反射光学素子からの反射光の光路上の該各光路が形成する面に対して平行又は略平行な位置に飛散粒子阻止部材を有するX線発生装置と、前記X線が照射され、投影するパターンが形成されたレチクルが設置されるレチクル保持部と、該レチクルを透過又は反射した前記X線を基板に照射する投影光学系を有することを特徴とする投影露光装置(請求項)」を提供する。第に「前記飛散粒子阻止部材は複数の板部材を有し、前記複数の板は放射状に配置されていることを特徴とする請求項7に記載の投影露光装置(請求項8)」を提供する。第9に、「プラズマからX線を輻射する工程と、該X線を反射光学素子に入射し反射させるときに、該入射光と該反射光の光路が該各光路の形成する面に対して平行又は略平行な位置に設置された飛散粒子阻止部材間にくるようにする工程と、前記反射したX線をパターンが形成されたレチクルに照射する工程と、該レチクルを透過又は反射した前記X線を基板に照射する工程を有することを特徴とする投影露光方法(請求項)」を提供する
【0013】
【発明の実施の形態】
本発明では、薄板あるいは薄膜等の板状の飛散粒子阻止部材は、プラズマから発生したX線が反射鏡の表面で反射する際に入射光路と反射光路によって形成する面に平行か又は略平行に配置されていることを特徴とするものである。そのため、飛散粒子阻止部材は、プラズマから反射鏡へ入射する入射光の光束と反射鏡で反射した反射光の光束のいずれの光束もほとんど遮ることがない。
【0014】
因みに本発明において、「入射光路と反射光路によって形成する面」とは図4に示すような面Xを称するものである。

また、本発明は、主にX線の発生に関するものであるが、X線の波長領域に近い紫外線(極端紫外)や紫外領域に近いX線(軟X線)の発生にも適用可能である。
【0015】
図1に本発明に関わるX線発生装置(LPX)の概略図を示す。
本実施の形態では、X線投影露光装置における照明光学系の平行X線光束発生部分を例に説明する。
真空容器10内にはノズル12が配置されており、このノズル12からはクリプトン(Kr)ガスが噴出する。真空容器10内に噴出したクリプトンガスは急激に膨張し、断熱膨張により冷却されガスの大部分はクラスターを形成する。
【0016】
ノズル12の先端から0.5mm程度のところには、YAGレーザー発生装置(不図示)から出射した励起用パルスレーザー光2が集光されている。これにより、クラスター及びガスにレーザー光2が照射されプラズマ3が発生する。そして、このプラズマ3の発生時にX線が輻射される。発生したX線は、プラズマの発生位置を焦点に持つように配置され、表面にMo/Si多層膜が形成された回転放物面鏡7によって反射され、平行光束13を形成する。
【0017】
本発明では、プラズマと回転放物面鏡7の間に厚さ約100μmのアルミニウムの薄板(飛散粒子阻止部材)8が配置されている。
YAGレーザー(励起用パルスレーザー光)2を照射して十分な量のX線を発生させるには、噴出したクリプトンガス(クラスター)の密度が高いことが必要である。しかし、ノズル12から噴出したクリプトンガスは、急激に膨張するためにノズル12から大きく離れた位置にプラズマ3を形成させることはできない。このような理由からプラズマ3は、ノズル12の先端から約0.5mmという極近傍で生成される。このために、プラズマ3を形成している高速のイオンがノズル12の表面(特に先端部)に数多く到達し、ノズル12の表面を削り取り、削り取られたノズル12を形成する材料は、飛散粒子となって周囲に飛散することになる。この飛散粒子が回転放物面鏡7に到達し、表面に付着すると反射性能が悪化することになる。これを防ぐために、飛散粒子阻止部材8を設置し、飛散粒子が回転放物面鏡7に到達しないようにするのである。
【0018】
飛散粒子阻止部材8を設置する場所は、回転放物面鏡7に入射するX線の光路と、回転放物面鏡7で反射したX線13の光路によって形成される面に対して平行になるように配置されている。つまり、回転放物面鏡7への入射光と反射光とを遮断しない位置に設置される。
また、ノズル12から噴出したクリプトンガスは、真空容器10内に取り付けられた排気装置11によって排気され、クリプトンガス回収装置(不図示)によって回収される。これにより真空容器10内のクリプトンガスの圧力は、0.1Torr程度に保たれている。
【0019】
図2に回転放物面鏡7付近の概略図を示す。
図2のような配置で薄板からなる飛散粒子阻止部材4を配置することにより、回転放物面鏡7に入射するX線及びここから反射するX線のいずれの光路もほとんど遮ることがない。そのため、X線の光路に悪影響を及ぼすことなく、バッファガスによって散乱された飛散粒子の回転放物面鏡7への付着を阻止することができる。
【0020】
本実施の形態で飛散粒子阻止部材4は、表面につや消し加工がなされているため実質的には表面積が非常に大きい状態になっている。そのため、飛散粒子の吸着能力がより高くなっている。
飛散粒子阻止部材4を配置する密度をどの程度にするか(何枚の飛散粒子阻止部材をどの程度の間隔で配置するか)は、導入されているバッファガスの圧力とそれによる飛散粒子の散乱の度合いに依存し適宜決定することが好ましい。例えばバッファガスによる散乱の度合いが小さい場合には、飛散粒子がその進行方向をわずかに変えた場合にも飛散粒子阻止部材4によって高い確率で阻止できるように、飛散粒子阻止部材4の間隔を小さくし、密に配置する必要がある。
【0021】
また、本実施の形態のようなLPXの場合には、ノズルはSiCで形成することが好ましい。その理由は、SiCは硬度が高く、高融点であるために高速のイオンによって削られ難いことにある。更に、僅かに削られてノズルの構成物質が反射鏡表面に到達したとしても、シリコン(Si)は13nm付近のX線に対して透過率が高いため、そのX線光量低下への影響は比較的小さくて済む。
【0022】
図1のような装置の場合、飛散粒子阻止部材8は、その法線の方向を保ったままの移動を行う駆動装置9を備えた構成としてもよい。これによって、長期間の使用により飛散粒子の阻止効果が低下した飛散粒子阻止部材8は、前記駆動装置9によってX線の光路から取り除かれ、新たな部材と交換することが可能になる。そして、飛散粒子阻止部材8の移動中も反射鏡における入射光路及び反射光路のいずれも大きく遮ることはないので、X線発生中に交換を行うことができる。但し、全ての飛散粒子阻止部材の交換を同時におこなうと、一時的に飛散粒子阻止効果が大きく低下してしまうので、交換は順次行うことが好ましい。
【0023】
また、X線の発生を停止しても良いなら、飛散粒子阻止部材8の移動機構は、前記のような移動構成を備えたものでなくてもよく、手動により飛散粒子素子部材を移動してもよい。
本実施の形態では、飛散粒子阻止部材8は厚さ100μmのアルミニウムの板によって構成されているが、飛散粒子阻止部材の厚さは、できるだけX線を遮らないようにするために可能な限り薄いことが望ましい。具体的には2mm以下が好ましく、1mm以下がより好ましい。
【0024】
また飛散粒子阻止部材8の材質は、本実施の形態で用いたアルミニウムに限るものではない。ただし、配置されたときにたわみを生ずることなく平面を保つ材料であることが必要である。
また、本実施の形態では飛散粒子阻止部材を板状にし、この厚さを略一定にしたが、プラズマが十分に小さければプラズマに近い部分では薄くし、遠い部分では厚くても良い。
【0025】
また、飛散粒子阻止部材が同一の部材で形成されている必要は無く、例えば、プラズマから遠い部分を比較的厚い部材、プラズマに近い部分を可能な限り薄い部材で構成し、前者を後者の支持材として用いても良い。これは、前記のように飛散粒子阻止部材は、より薄いことが好ましいが、薄くすると強度が低下してしまう問題を解決するものである。飛散粒子素子部材の先端(プラズマから遠い部分)を厚くすれば、この部分で飛散粒子素子部材を支えることができ、強度を補うことが可能になるのである。
【0026】
また、プラズマから飛散粒子阻止部材までの距離を十分に確保することができず、プラズマを形成する高速のイオンによって阻止部材が問題となる程度に削られてしまうような場合も考えられる。このような場合には、削られた物質の付着により引き起こされる反射鏡の反射率の低下を小さく抑えるために、利用するX線の透過率が高い物質により阻止部材を製造することが望ましい。具体的には、例えばシリコン(Si)やモリブデン(Mo)、あるいはこれらの物質を含む材料である。
【0027】
本実施の形態では、飛散粒子阻止部材の交換は、順次行っているが、交換方法とし、飛散粒子阻止部材の間に新たな阻止板を挿入し、その後それまで使用していた部材を移動させる方法でも良い。この方法では、一時的に阻止部材の数が増えるためにX線の光量がわずかに低下するが、飛散粒子阻止効果は低下することがない。
【0028】
また本実施の形態では、標的材料としてクリプトンガスを使用しているが、標的の材質、その形状共にこれに限るものではない。例えば、薄膜状、液滴状、微粒子状の物質を標的材料としてもよい。この場合、必要に応じて別のガス導入口を設けてバッファガスを導入する必要がある。
また本実施の形態では、X線反射光学素子として回転放物面鏡を用い、これによって平行光束を形成しているが、形成する光束はこれに限るものではない。例えば平面、回転楕円面、回転双曲面等の形状を有する反射鏡によって発散光束や集光光束を形成する場合でも本発明のような飛散粒子阻止部材を配置することが可能である。
【0029】
また、X線反射光学素子7の周囲に飛散粒子の付着を防止するカバー14を設置すれば、より効果的にX線反射光学素子への飛散粒子の付着を低減することができる。図3は、回転放物面鏡7をX線反射光学素子に用いた場合のカバー14を設置したときの例である。
更に飛散粒子阻止部材やカバーを冷却することにより飛散粒子の吸着効率を高め、飛散粒子を効率よく低減することができる。
【0030】
また、減圧容器内にプラズマ側が低圧、X線反射鏡側が高圧となるように圧力差が生じるようにする等して、反射光学素子側からプラズマ側に向かってバッファガスの流れを形成することも飛散粒子の低減には効果的である。プラズマ側に向かって気体の流れを形成するには、バッファガスの導入口をX線の反射光学素子側に設け、排気口をプラズマ側に設けるようにしてもよい。
【0031】
レーザープラズマ生成時に飛散粒子となる可能性のあるガスターゲットを用いる場合、ガスを噴出させるノズルの材料やレーザープラズマのターゲットとなる材料が鉄(Fe)やコバルト(Co)、ニッケル(Ni)等の強磁性体であった場合には、飛散粒子阻止部材を強磁性体で構成することが好ましい。このように飛散粒子阻止部材を磁化させておくことにより、飛散粒子を効率的に吸着し除去することが可能になる。
【0032】
また、前記の材料以外の材料を用い、静電力により飛散粒子を除去させることも可能である。この場合、飛散粒子阻止部材として静電吸着装置を配置することにより飛散粒子を吸着し、効果的に飛散粒子を低減することもできる。
本実施の形態ではLPXに関して説明したが、プラズマの発生方法はこれに限定されるものではない。例えば従来の技術のところで説明したDPFのような電極を備えたものにも適用可能であり、プラズマを発生させX線を輻射させるものであれば何でもよい。
【0033】
また、本実施の形態では露光装置の構成や露光方法についての詳細は、説明しなかったが、公知の構成の露光装置に適用可能であり、露光方法も公知の方法が応用可能である。
【0034】
【発明の効果】
以上のように本発明によれば、反射鏡等のX線の反射光学系を有するX線発生装置において、プラズマから発生したX線の反射鏡への入射光と、反射鏡により反射されたX線の光量とを低下させることなく、反射鏡への飛散粒子の付着を低減することが可能になる。これにより、反射鏡等の部材への飛散粒子の付着が低減されるので、安定したX線の発生を長期間持続させることが可能になる。
【0035】
また、本発明のX線発生装置を投影露光装置に用いれば、安定した投影露光が可能になり、より効率のよい露光ができる。
【図面の簡単な説明】
【図1】本発明のX線発生装置の一例を示す概略図である。
【図2】本発明のX線発生装置が有する反射光学素子近傍の概略図である。
【図3】本発明のX線発生装置が有する反射光学素子近傍の一例の概略図である。
【図4】本発明における入射光路と反射光路が形成する面を説明する概念図である。
【図5】従来の飛散粒子阻止部材による反射光の挙動を示す概念図である。
【図6】従来の飛散粒子阻止部材の一例を示す概念図である。
【図7】従来の飛散粒子阻止部材の他の一例を示す概念図である。
【符号の説明】
1・・・・・標的
2・・・・・励起用パルスレーザー光
3・・・・・プラズマ
4・・・・・飛散粒子阻止部材
5・・・・・X線
5−a・・・反射後に遮られるX線
5−b・・・反射後に遮られないX線
6・・・・・反射光学素子(多層膜反射鏡)
7・・・・・反射光学素子(多層膜回転放物面鏡)
8・・・・・アルミ薄板からなる飛散粒子素子部材
9・・・・・アルミ薄板駆動装置
10・・・・真空容器
11・・・・排気装置
12・・・・ノズル
13・・・・X線の平行光束
14・・・・カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray reduction projection exposure apparatus, an X-ray microscope, an X-ray analysis apparatus, and an X-ray generation apparatus included in these.
[0002]
[Prior art]
A laser plasma X-ray source (hereinafter referred to as LPX) is considered as one candidate for an X-ray light source (X-ray generator) having a wavelength of 13 nm or 11 nm.
In the case of using LPX, when a target is irradiated with laser light to generate X-rays, scattered particles such as a gasified substance or ionized material of the material constituting the target are generated. When such scattered particles adhere to the target peripheral member, the performance of the apparatus equipped with LPX may be adversely affected. However, there is currently no LPX in which no scattered particles are generated. Therefore, it has been proposed to prevent the generated scattered particles from reaching the peripheral members. As a method for preventing the scattered particles, a method of filling a vacuum container with an amount of buffer gas that does not cause a problem of X-ray absorption has been proposed.
[0003]
In the case of using a buffer gas, in order to enhance the effect of reducing scattered particles, it is proposed to arrange a cylindrical scattered particle blocking member 4 as shown in FIG. 6 in the optical path of generated X-rays or in the vicinity of the optical path. (JP-A-8-321395).
The method using the scattering particle blocking member 4 described here is as follows. The direction of the movement of the scattered particles is changed by colliding the scattered particles from the plasma 3 generated by irradiating the target material 1 with the excitation pulse laser beam 2 and the buffer gas molecules introduced into the container. Thereby, scattered particles are attached to the scattered particle blocking member 4. According to this method, the effect of reducing scattered particles that have hitherto reached and adhered to the surface of the target peripheral member is greatly improved.
[0004]
In addition, as shown in FIG. 7, it is also proposed to prevent the adhesion of scattered particles by arranging a plurality of plate-like blocking members 4 within the solid angle of the X-ray beam 5 to be extracted. This makes it possible to reduce scattered particles very effectively without reducing the amount of X-ray light to be extracted even when X-rays are extracted with a large solid angle.
When X-rays are used as the light source as described above, a thin film filter (for example, beryllium foil) or a transmission diffractive optical element (for example, zone plate) that cuts unnecessary wavelength ranges may be used. Even in such a case, disposing the scattered particle blocking member 4 in the X-ray optical path or in the vicinity of the optical path as shown in FIG. 7 is a very effective means for reducing scattered particles.
[0005]
In recent years, in addition to the LPX as described above, an X-ray generator using a discharge plasma has been proposed. It has been reported that a large amount of X-ray radiation is obtained when DPF (Dence Plasma Focus), which is one of these methods, is used.
In the method using the DPF, X-rays are generated as follows.
For example, a coaxial cylindrical electrode is installed in a gas atmosphere such as argon having a pressure of 0.2 Torr. A pulse voltage of about 1 kV is applied between the electrodes to generate discharge plasma. Heating is performed by accelerating ions and electrons while concentrating them on the tip of the electrode by a current flowing in the generated plasma and a magnetic field formed thereby. As a result, the electrode member at the electrode tip and the target material existing in the vicinity of the electrode are turned into plasma, and X-rays are radiated.
[0006]
In this method, it has been reported that the input electric energy is converted into X-rays at a high rate. In addition, repeated operation exceeding 1 kHz has been confirmed. For these reasons, DPF is expected to be used as an X-ray generator as well as laser plasma.
Further, the X-rays generated by LPX and DPF as described above are often used after being reflected by a reflecting optical element such as a reflecting mirror.
[0007]
[Problems to be solved by the invention]
For example, when an X-ray parallel light beam is formed, it may be reflected by a rotating parabolic mirror that is an X-ray reflecting optical element. In the case of using a transmission type optical element such as a thin film filter as described above, in order to prevent the scattered particles from adhering to the peripheral members, a plurality of scattered particle blocking members 4 may be arranged in the optical path as shown in FIG. It is very effective. However, when the generated X-rays are reflected by a reflective optical element such as a reflecting mirror and the reflected X-rays are used, the arrangement of the scattered particle element members cannot be freely set.
[0008]
The scattered particle blocking member 4 desirably has as large an area as possible in order to obtain a high scattered particle reduction effect. However, when the reflecting mirror is used, for example, if the scattering particle blocking member 4 is arranged as shown in FIG. 5, X-rays reflected on the surface of the reflecting mirror are blocked (5-a), and only a part of the reflected light is blocked. The normal reflection (5-b) cannot be performed. Therefore, the scattered particle blocking member cannot be disposed in the region through which the reflected light passes.
[0009]
In order to solve this, the reflecting mirror is enlarged, and a large scattering particle blocking member may be disposed in proportion thereto. However, in actual manufacture of an X-ray reflector, high processing accuracy and delicate control of a multilayer film are necessary, so that it is not easy to manufacture a large element. Furthermore, it is not preferable to increase the size of the optical element such as the reflective optical element in order to suppress the entire apparatus to a certain size. Therefore, the method of enlarging the reflecting mirror and enlarging the scattering particle blocking member is not a substantial solution.
[0010]
As described above, it has been desired to effectively reduce scattered particles in an X-ray generator using an X-ray generated from plasma and having an X-ray reflective optical element.
Also, in the DPF, since the electrode material and the target material are turned into plasma to generate X-rays, the substances constituting the electrode and target become scattered particles, and a reflective optical element may be used when using the generated X-rays. Since there are many, it was necessary to reduce scattered particles effectively like the laser plasma system.
[0011]
[Means for Solving the Problems]
Therefore, the present inventor has studied a method for efficiently reducing scattered particles without blocking incident laser light and reflected X-rays in an X-ray generator that includes a reflective optical element and generates X-rays from plasma. . As a result, the present inventor has found the shape and arrangement of scattered particle element members that efficiently block scattered particles without blocking laser light and X-rays.
[0012]
In view of this, the present invention provides a first aspect of "in an X-ray generator having an X-ray reflecting optical element on which X-rays generated from plasma are incident, incident light to the X-ray reflecting optical element and / or from the X-ray reflecting optical element". An X-ray generator (Claim 1) is provided, which has a scattering particle blocking member at a position parallel or substantially parallel to the surface formed by each optical path on the reflected light path. 2ndly, "it has a pulse laser beam generator which irradiates a laser beam to the target in order to generate the plasma from the target, and the target installed or supplied in the pressure-reduced container. The X-ray generator according to claim 2 (Claim 2) ". Thirdly, an “X-ray generator according to claim 1 (Claim 3) having an electrode for generating the plasma by applying a high voltage in a pulsed manner” is provided. Fourthly, “a cover for preventing scattering particles from adhering to the X-ray reflective optical element is provided at a peripheral portion of the X-ray reflective optical element so as to surround the X-ray reflective optical element. An X-ray generator (claim 4) according to claim 1, 2 or 3 is provided. Fifth, the “X-ray generator according to claim 1, 2, 3, or 4 (Claim 5), wherein the scattering particle blocking member has a thickness of 2 mm or less” is provided. Sixthly , “the scattered particle blocking member has a plurality of plates, and the plurality of plates are arranged in a radial pattern. 6. X-ray generation according to claim 1, An apparatus (claim 6) "is provided. Seventh, “having an X-ray reflecting optical element on which X-rays generated from plasma are incident, and / or the incident light on the X-ray reflecting optical element and / or the optical path of the reflected light from the X-ray reflecting optical element. An X-ray generator having a scattering particle blocking member at a position parallel or substantially parallel to the surface formed by each optical path, and a reticle holding unit on which a reticle on which the X-ray is irradiated and a pattern to be projected is formed is installed And a projection optical system that irradiates the substrate with the X-rays transmitted or reflected by the reticle (Claim 7 ). Eighth:The projection exposure apparatus according to claim 7, wherein the scattering particle blocking member has a plurality of plate members, and the plurality of plates are arranged radially”. provide. Ninth, “a step of radiating X-rays from plasma, and when the X-rays are incident on and reflected from a reflective optical element, the optical path of the incident light and the reflected light is relative to the surface formed by each optical path. A step of bringing the particles between scattering particle blocking members installed in parallel or substantially parallel positions, a step of irradiating the reticle on which the reflected X-rays are formed, and the X transmitted or reflected by the reticle There is provided a projection exposure method comprising the step of irradiating a substrate with a line (claim 9 ) .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the plate-like scattered particle blocking member such as a thin plate or a thin film is parallel or substantially parallel to the surface formed by the incident light path and the reflected light path when the X-rays generated from the plasma are reflected by the surface of the reflecting mirror. It is characterized by being arranged. For this reason, the scattering particle blocking member hardly blocks either the light beam of the incident light incident on the reflecting mirror from the plasma or the light beam of the reflected light reflected by the reflecting mirror.
[0014]
In the present invention, the “surface formed by the incident light path and the reflected light path” refers to the surface X as shown in FIG.
.
The present invention mainly relates to the generation of X-rays, but is also applicable to the generation of ultraviolet rays (extreme ultraviolet) close to the X-ray wavelength region and X-rays (soft X-ray) close to the ultraviolet region. .
[0015]
FIG. 1 shows a schematic diagram of an X-ray generator (LPX) according to the present invention.
In the present embodiment, a parallel X-ray beam generation portion of an illumination optical system in an X-ray projection exposure apparatus will be described as an example.
A nozzle 12 is disposed in the vacuum vessel 10, and krypton (Kr) gas is ejected from the nozzle 12. The krypton gas ejected into the vacuum vessel 10 expands rapidly and is cooled by adiabatic expansion, and most of the gas forms clusters.
[0016]
The excitation pulse laser beam 2 emitted from a YAG laser generator (not shown) is collected at a position about 0.5 mm from the tip of the nozzle 12. As a result, the laser beam 2 is irradiated to the clusters and gas, and plasma 3 is generated. X-rays are radiated when the plasma 3 is generated. The generated X-rays are arranged so as to have the plasma generation position at the focal point, and are reflected by the rotary parabolic mirror 7 having a Mo / Si multilayer film formed on the surface thereof, thereby forming a parallel light beam 13.
[0017]
In the present invention, an aluminum thin plate (scattering particle blocking member) 8 having a thickness of about 100 μm is disposed between the plasma and the rotating parabolic mirror 7.
In order to generate a sufficient amount of X-rays by irradiating the YAG laser (excitation pulse laser beam) 2, the density of the ejected krypton gas (cluster) needs to be high. However, since the krypton gas ejected from the nozzle 12 expands rapidly, the plasma 3 cannot be formed at a position far away from the nozzle 12. For this reason, the plasma 3 is generated in the very vicinity of about 0.5 mm from the tip of the nozzle 12. For this reason, a large number of high-speed ions forming the plasma 3 reach the surface (particularly the tip) of the nozzle 12, scraping the surface of the nozzle 12, and the material that forms the scraped nozzle 12 is scattered particles. Will be scattered around. When the scattered particles reach the rotary parabolic mirror 7 and adhere to the surface, the reflection performance deteriorates. In order to prevent this, the scattered particle blocking member 8 is installed so that the scattered particles do not reach the rotary parabolic mirror 7.
[0018]
The place where the scattering particle blocking member 8 is installed is parallel to the surface formed by the optical path of the X-ray incident on the rotary parabolic mirror 7 and the optical path of the X-ray 13 reflected by the rotary parabolic mirror 7. It is arranged to be. That is, it is installed at a position where the incident light and the reflected light on the rotary paraboloid mirror 7 are not blocked.
The krypton gas ejected from the nozzle 12 is exhausted by the exhaust device 11 attached in the vacuum vessel 10 and recovered by a krypton gas recovery device (not shown). Thereby, the pressure of the krypton gas in the vacuum vessel 10 is maintained at about 0.1 Torr.
[0019]
FIG. 2 shows a schematic view of the vicinity of the rotary parabolic mirror 7.
By disposing the scattering particle blocking member 4 made of a thin plate in the arrangement as shown in FIG. 2, the optical paths of the X-rays incident on the rotary parabolic mirror 7 and the X-rays reflected therefrom are hardly blocked. Therefore, it is possible to prevent the scattered particles scattered by the buffer gas from adhering to the rotating paraboloid mirror 7 without adversely affecting the optical path of the X-ray.
[0020]
In the present embodiment, the scattered particle blocking member 4 is substantially in a state of having a very large surface area because the surface is matted. Therefore, the adsorbing ability of scattered particles is higher.
The density at which the scattered particle blocking member 4 is arranged (how many scattered particle blocking members are arranged at what interval) is determined by the pressure of the introduced buffer gas and the scattering of the scattered particles caused thereby. It is preferable to determine appropriately depending on the degree. For example, when the degree of scattering by the buffer gas is small, the distance between the scattered particle blocking members 4 is reduced so that the scattered particle blocking member 4 can prevent the scattered particles with a high probability even when the traveling direction of the scattered particles is slightly changed. And densely arranged.
[0021]
In the case of LPX as in the present embodiment, the nozzle is preferably formed of SiC. The reason is that SiC has a high hardness and a high melting point, so that it is difficult to be scraped by high-speed ions. Furthermore, even if the material of the nozzle reaches the reflector surface even if it is scraped slightly, silicon (Si) has a high transmittance for X-rays near 13 nm, so the effect on the decrease in the amount of X-ray light is compared. Small enough.
[0022]
In the case of the apparatus as shown in FIG. 1, the scattered particle blocking member 8 may be configured to include a driving device 9 that moves while maintaining the direction of the normal line. As a result, the scattering particle blocking member 8 whose scattering particle blocking effect has been reduced by long-term use can be removed from the optical path of the X-ray by the driving device 9 and replaced with a new member. Further, since neither the incident light path nor the reflected light path in the reflecting mirror is largely blocked during the movement of the scattering particle blocking member 8, the exchange can be performed during the generation of X-rays. However, if all the scattered particle blocking members are replaced at the same time, the scattered particle blocking effect is temporarily greatly reduced. Therefore, the replacement is preferably performed sequentially.
[0023]
Further, if the generation of X-rays may be stopped, the moving mechanism of the scattered particle blocking member 8 may not be provided with the moving configuration as described above, and the scattered particle element member is moved manually. Also good.
In the present embodiment, the scattering particle blocking member 8 is formed of an aluminum plate having a thickness of 100 μm, but the thickness of the scattering particle blocking member is as thin as possible so as not to block X-rays as much as possible. It is desirable. Specifically, it is preferably 2 mm or less, and more preferably 1 mm or less.
[0024]
Further, the material of the scattered particle blocking member 8 is not limited to the aluminum used in the present embodiment. However, it must be a material that maintains a flat surface without causing deflection when placed.
In this embodiment, the scattering particle blocking member is formed in a plate shape and the thickness thereof is made substantially constant. However, if the plasma is sufficiently small, it may be thin at a portion close to the plasma and thick at a distant portion.
[0025]
In addition, the scattering particle blocking member need not be formed of the same member. For example, a part far from the plasma is composed of a relatively thick member, a part close to the plasma is composed of as thin a member as possible, and the former is supported by the latter. It may be used as a material. As described above, it is preferable that the scattering particle blocking member is thinner, but it solves the problem that the strength decreases when the scattering particle blocking member is thinned. If the tip of the scattering particle element member (the part far from the plasma) is made thick, the scattering particle element member can be supported by this part and the strength can be supplemented.
[0026]
In addition, there may be a case where a sufficient distance from the plasma to the scattered particle blocking member cannot be secured, and the blocking member is scraped to a problem level by high-speed ions forming the plasma. In such a case, it is desirable to manufacture the blocking member with a material having a high X-ray transmittance to be used in order to suppress a decrease in reflectance of the reflecting mirror caused by adhesion of the shaved material. Specifically, for example, silicon (Si), molybdenum (Mo), or a material containing these substances is used.
[0027]
In this embodiment, the scattering particle blocking member is sequentially replaced. However, as a replacement method, a new blocking plate is inserted between the scattering particle blocking members, and then the previously used members are moved. The method is fine. In this method, since the number of blocking members temporarily increases, the amount of X-rays slightly decreases, but the scattered particle blocking effect does not decrease.
[0028]
In this embodiment, krypton gas is used as the target material, but the target material and its shape are not limited to this. For example, a target material may be a thin film, liquid droplet, or fine particle substance. In this case, it is necessary to provide another gas introduction port as needed to introduce the buffer gas.
In the present embodiment, a parabolic mirror is used as the X-ray reflecting optical element to form a parallel light beam, but the formed light beam is not limited to this. For example, even when a divergent light beam or a condensed light beam is formed by a reflecting mirror having a shape such as a plane, a spheroidal surface, or a rotating hyperboloid, it is possible to dispose the scattered particle blocking member as in the present invention.
[0029]
Further, if the cover 14 for preventing the adhesion of scattered particles is provided around the X-ray reflective optical element 7, the adhesion of the scattered particles to the X-ray reflective optical element can be reduced more effectively. FIG. 3 shows an example when the cover 14 is installed when the parabolic mirror 7 is used for an X-ray reflecting optical element.
Furthermore, the scattering efficiency of scattered particles can be increased by cooling the scattered particle blocking member and the cover, and the scattered particles can be efficiently reduced.
[0030]
In addition, the flow of buffer gas may be formed from the reflective optical element side toward the plasma side by, for example, creating a pressure difference in the decompression vessel so that the plasma side is at a low pressure and the X-ray reflector side is at a high pressure. It is effective in reducing scattered particles. In order to form a gas flow toward the plasma side, a buffer gas introduction port may be provided on the X-ray reflective optical element side, and an exhaust port may be provided on the plasma side.
[0031]
When using a gas target that may become scattered particles during laser plasma generation, the material of the nozzle that ejects the gas or the target material of the laser plasma is iron (Fe), cobalt (Co), nickel (Ni), etc. When it is a ferromagnetic material, it is preferable that the scattering particle blocking member is made of a ferromagnetic material. By magnetizing the scattered particle blocking member in this way, the scattered particles can be efficiently adsorbed and removed.
[0032]
It is also possible to remove scattered particles by electrostatic force using a material other than the above materials. In this case, by disposing the electrostatic adsorption device as the scattering particle blocking member, the scattering particles can be adsorbed and the scattering particles can be effectively reduced.
In this embodiment, the LPX is described, but the plasma generation method is not limited to this. For example, the present invention can be applied to an apparatus including an electrode such as a DPF described in the related art, and any apparatus that generates plasma and radiates X-rays may be used.
[0033]
Although details of the configuration of the exposure apparatus and the exposure method have not been described in this embodiment, the present invention can be applied to an exposure apparatus having a known configuration, and a known method can be applied as the exposure method.
[0034]
【The invention's effect】
As described above, according to the present invention, in an X-ray generator having an X-ray reflecting optical system such as a reflecting mirror, the incident light to the X-ray reflecting mirror generated from plasma and the X reflected by the reflecting mirror It is possible to reduce the adhesion of scattered particles to the reflecting mirror without reducing the light amount of the line. Thereby, since the adhesion of scattered particles to a member such as a reflecting mirror is reduced, stable generation of X-rays can be sustained for a long time.
[0035]
If the X-ray generator of the present invention is used in a projection exposure apparatus, stable projection exposure can be performed, and more efficient exposure can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an X-ray generator of the present invention.
FIG. 2 is a schematic view of the vicinity of a reflective optical element included in the X-ray generator of the present invention.
FIG. 3 is a schematic view of an example of the vicinity of a reflective optical element included in the X-ray generator of the present invention.
FIG. 4 is a conceptual diagram illustrating a surface formed by an incident optical path and a reflected optical path in the present invention.
FIG. 5 is a conceptual diagram showing the behavior of reflected light by a conventional scattering particle blocking member.
FIG. 6 is a conceptual diagram showing an example of a conventional scattering particle blocking member.
FIG. 7 is a conceptual diagram showing another example of a conventional scattering particle blocking member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Target 2 ... Pulse laser beam 3 for excitation 3 ... Plasma 4 ... Scattering particle blocking member 5 ... X-ray 5-a ... Reflection X-rays 5b blocked after reflection X-rays 6b not blocked after reflection Reflective optical element (multilayer film reflector)
7: Reflective optical element (Multilayer film parabolic mirror)
8 ... Scattering particle element member 9 made of aluminum thin plate 9 ... Aluminum thin plate driving device 10 ... Vacuum container 11 ... Exhaust device 12 ... Nozzle 13 ... X Line parallel light flux 14 ... cover

Claims (9)

プラズマから発生したX線が入射するX線反射光学素子を有するX線発生装置において、前記X線反射光学素子への入射光及び/又は前記X線反射光学素子からの反射光の光路上の該各光路が形成する面に対して平行又は略平行な位置に飛散粒子阻止部材を有することを特徴とするX線発生装置。In an X-ray generator having an X-ray reflective optical element on which X-rays generated from plasma are incident, the incident light to the X-ray reflective optical element and / or the optical path of the reflected light from the X-ray reflective optical element An X-ray generation apparatus comprising a scattering particle blocking member at a position parallel or substantially parallel to a surface formed by each optical path. 減圧した容器内に設置又は供給される標的と、該標的から前記プラズマを発生させるために前記標的にレーザービームを照射するパルスレーザー光発生装置を有することを特徴とする請求項1に記載のX線発生装置。  2. The apparatus according to claim 1, further comprising: a target installed or supplied in a decompressed container; and a pulsed laser beam generator that irradiates the target with a laser beam to generate the plasma from the target. Line generator. パルス的に高電圧を印加することにより前記プラズマを発生させる電極を有することを特徴とする請求項1に記載のX線発生装置。  The X-ray generator according to claim 1, further comprising an electrode that generates the plasma by applying a high voltage in a pulsed manner. 前記X線反射光学素子への飛散粒子の付着を防止するカバーが前記X線反射光学素子を取り囲むように前記X線反射光学素子の周辺部に設置されていることを特徴とする請求項1又は2又は3に記載のX線発生装置。  The cover for preventing the adhesion of scattered particles to the X-ray reflective optical element is provided at a peripheral portion of the X-ray reflective optical element so as to surround the X-ray reflective optical element. X-ray generator as described in 2 or 3. 前記飛散粒子阻止部材の厚さは2mm以下であることを特徴とする請求項1又は2又は3又は4に記載のX線発生装置。  The X-ray generator according to claim 1, 2, 3, or 4, wherein the scattering particle blocking member has a thickness of 2 mm or less. 前記飛散粒子阻止部材は複数の板を有し、前記複数の板は放射状に配置されていることを特徴とする請求項1乃至5のいずれか1項に記載のX線発生装置。The X-ray generator according to any one of claims 1 to 5, wherein the scattered particle blocking member has a plurality of plates, and the plurality of plates are arranged radially. プラズマから発生したX線が入射するX線反射光学素子を有し、前記X線反射光学素子への入射光及び/又は前記X線反射光学素子からの反射光の光路上の該各光路が形成する面に対して平行又は略平行な位置に飛散粒子阻止部材を有するX線発生装置と、前記X線が照射され、投影するパターンが形成されたレチクルが設置されるレチクル保持部と、該レチクルを透過又は反射した前記X線を基板に照射する投影光学系を有することを特徴とする投影露光装置。  An X-ray reflective optical element on which X-rays generated from plasma are incident is formed, and each optical path on the optical path of incident light to the X-ray reflective optical element and / or reflected light from the X-ray reflective optical element is formed. An X-ray generator having a scattering particle blocking member at a position parallel or substantially parallel to the surface to be projected, a reticle holding unit on which a reticle on which a pattern to be projected is formed by being irradiated with the X-ray, and the reticle A projection exposure apparatus, comprising: a projection optical system that irradiates the substrate with the X-rays transmitted or reflected. 前記飛散粒子阻止部材は複数の板部材を有し、前記複数の板は放射状に配置されていることを特徴とする請求項7に記載の投影露光装置。The projection exposure apparatus according to claim 7, wherein the scattering particle blocking member includes a plurality of plate members, and the plurality of plates are arranged radially. プラズマからX線を輻射する工程と、該X線を反射光学素子に入射し反射させるときに、該入射光と該反射光の光路が該各光路の形成する面に対して平行又は略平行な位置に設置された飛散粒子阻止部材間にくるようにする工程と、前記反射したX線をパターンが形成されたレチクルに照射する工程と、該レチクルを透過又は反射した前記X線を基板に照射する工程を有することを特徴とする投影露光方法。  A step of radiating X-rays from the plasma, and when the X-rays are incident on and reflected from the reflective optical element, the optical paths of the incident light and the reflected light are parallel or substantially parallel to the surface formed by the optical paths. A step of bringing the particles between scattering particle blocking members installed at a position, a step of irradiating the reflected X-ray on a reticle on which a pattern is formed, and irradiating the substrate with the X-ray transmitted or reflected by the reticle A projection exposure method comprising the steps of:
JP23139499A 1999-08-18 1999-08-18 X-ray generator, projection exposure apparatus and exposure method provided with the same Expired - Lifetime JP4329177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23139499A JP4329177B2 (en) 1999-08-18 1999-08-18 X-ray generator, projection exposure apparatus and exposure method provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23139499A JP4329177B2 (en) 1999-08-18 1999-08-18 X-ray generator, projection exposure apparatus and exposure method provided with the same

Publications (3)

Publication Number Publication Date
JP2001057298A JP2001057298A (en) 2001-02-27
JP2001057298A5 JP2001057298A5 (en) 2006-07-27
JP4329177B2 true JP4329177B2 (en) 2009-09-09

Family

ID=16922927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23139499A Expired - Lifetime JP4329177B2 (en) 1999-08-18 1999-08-18 X-ray generator, projection exposure apparatus and exposure method provided with the same

Country Status (1)

Country Link
JP (1) JP4329177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158959B2 (en) 2009-02-12 2012-04-17 Gigaphoton Inc. Extreme ultraviolet light source apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3101613B2 (en) 1998-01-30 2000-10-23 キヤノン株式会社 Illumination optical device and projection exposure device
NL1008352C2 (en) 1998-02-19 1999-08-20 Stichting Tech Wetenschapp Apparatus suitable for extreme ultraviolet lithography, comprising a radiation source and a processor for processing the radiation from the radiation source, as well as a filter for suppressing unwanted atomic and microscopic particles emitted from a radiation source.
JP2003022950A (en) 2001-07-05 2003-01-24 Canon Inc Debris remover for x-ray light source and aligner comprising it
CN100476585C (en) 2002-12-23 2009-04-08 Asml荷兰有限公司 Impurity shielding with extendable slice
JP4340851B2 (en) * 2003-04-09 2009-10-07 株式会社ニコン Light source unit, illumination optical device, exposure apparatus, and exposure method
TWI237733B (en) * 2003-06-27 2005-08-11 Asml Netherlands Bv Laser produced plasma radiation system with foil trap
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
SG123770A1 (en) 2004-12-28 2006-07-26 Asml Netherlands Bv Lithographic apparatus, radiation system and filt er system
SG123767A1 (en) 2004-12-28 2006-07-26 Asml Netherlands Bv Lithographic apparatus, illumination system and filter system
JP4366358B2 (en) 2004-12-29 2009-11-18 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, illumination system, filter system, and method for cooling the support of such a filter system
DE102005015274B4 (en) * 2005-03-31 2012-02-23 Xtreme Technologies Gmbh Radiation source for generating short-wave radiation
US7397056B2 (en) 2005-07-06 2008-07-08 Asml Netherlands B.V. Lithographic apparatus, contaminant trap, and device manufacturing method
US20070115443A1 (en) * 2005-11-23 2007-05-24 Asml Netherlands B.V. Radiation system and lithographic apparatus
US7332731B2 (en) 2005-12-06 2008-02-19 Asml Netherlands, B.V. Radiation system and lithographic apparatus
US7468521B2 (en) 2005-12-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7453071B2 (en) 2006-03-29 2008-11-18 Asml Netherlands B.V. Contamination barrier and lithographic apparatus comprising same
JP4850558B2 (en) * 2006-03-31 2012-01-11 キヤノン株式会社 Light source device, exposure apparatus using the same, and device manufacturing method
US7442948B2 (en) 2006-05-15 2008-10-28 Asml Netherlands B.V. Contamination barrier and lithographic apparatus
US7839482B2 (en) * 2007-05-21 2010-11-23 Asml Netherlands B.V. Assembly comprising a radiation source, a reflector and a contaminant barrier
JP4725814B2 (en) * 2008-11-20 2011-07-13 株式会社ニコン Light source unit, illumination optical device, exposure apparatus, and exposure method
JP5355115B2 (en) * 2009-01-30 2013-11-27 株式会社東芝 Extreme ultraviolet light source device and adjustment method thereof
US9544984B2 (en) * 2013-07-22 2017-01-10 Kla-Tencor Corporation System and method for generation of extreme ultraviolet light
JP6036785B2 (en) * 2014-10-15 2016-11-30 ウシオ電機株式会社 Extreme ultraviolet light source device for foil trap and mask inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158959B2 (en) 2009-02-12 2012-04-17 Gigaphoton Inc. Extreme ultraviolet light source apparatus
US8586954B2 (en) 2009-02-12 2013-11-19 Gigaphoton Inc. Extreme ultraviolet light source apparatus
US8901524B2 (en) 2009-02-12 2014-12-02 Gigaphoton Inc. Extreme ultraviolet light source apparatus

Also Published As

Publication number Publication date
JP2001057298A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP4329177B2 (en) X-ray generator, projection exposure apparatus and exposure method provided with the same
JP2010123929A (en) Extreme ultraviolet light source apparatus
JP5001055B2 (en) Extreme ultraviolet light source device
JP4174970B2 (en) Laser-excited plasma light source, exposure apparatus, manufacturing method thereof, and device manufacturing method
EP1047288B1 (en) Plasma focus high energy photon source
JP4799620B2 (en) Radiation system and lithographic apparatus
US6590959B2 (en) High-intensity sources of short-wavelength electromagnetic radiation for microlithography and other uses
JP4320999B2 (en) X-ray generator and exposure apparatus
TWI255394B (en) Lithographic apparatus with debris suppression means and device manufacturing method
KR100737759B1 (en) Method for cleaning a surface of a component of a lithographic projection apparatus, lithographic projection apparatus, device manufacturing method and cleaning apparatus
JP4195071B2 (en) Irradiation source for lithographic projection equipment
US9678432B2 (en) Optical assembly for increasing the etendue
EP0981936A1 (en) Plasma focus high energy photon source
JP2009260019A (en) Ion recovery device of euv light generator, and its method
JP2008118158A (en) Laser generation plasma radiation system equipped with foil trap
JP2011508377A (en) Radiation source, lithographic apparatus, and device manufacturing method
JP4429302B2 (en) Electromagnetic radiation source, lithographic apparatus, device manufacturing method, and device manufactured by the manufacturing method
US8547525B2 (en) EUV radiation generation apparatus
US10871647B2 (en) Apparatus and method for prevention of contamination on collector of extreme ultraviolet light source
JP2000098098A (en) X-ray generator
WO2004090957A1 (en) Light source unit, illumination optical system, exposure apparatus and exposure method
Amano et al. Laser-plasma extreme ultraviolet source incorporating a cryogenic Xe target
JP2011504657A (en) Method for extending the operating life of a concentrator optical component arranged in an irradiation device and corresponding irradiation device
JP2000098100A (en) Soft x-ray parallel flux forming device
JP2002311200A (en) X-ray generator and exposure device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term