JP4326110B2 - Method for producing Ti-Al intermetallic compound member - Google Patents

Method for producing Ti-Al intermetallic compound member Download PDF

Info

Publication number
JP4326110B2
JP4326110B2 JP2000094584A JP2000094584A JP4326110B2 JP 4326110 B2 JP4326110 B2 JP 4326110B2 JP 2000094584 A JP2000094584 A JP 2000094584A JP 2000094584 A JP2000094584 A JP 2000094584A JP 4326110 B2 JP4326110 B2 JP 4326110B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
powder
sintering
punch
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000094584A
Other languages
Japanese (ja)
Other versions
JP2001279303A5 (en
JP2001279303A (en
Inventor
満 上川
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000094584A priority Critical patent/JP4326110B2/en
Publication of JP2001279303A publication Critical patent/JP2001279303A/en
Publication of JP2001279303A5 publication Critical patent/JP2001279303A5/ja
Application granted granted Critical
Publication of JP4326110B2 publication Critical patent/JP4326110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はTi−Al金属間化合物からなる部材の製造方法に関する。
【0002】
【従来の技術】
Ti−Al金属間化合物は高温(800℃付近)での強度及び耐食性に優れ、比較的軽量であるため、航空機、ロケットまたは自動車のエンジン部品等の材料として、インコネルに代表されるNi系耐熱合金に代るものとして注目されている。
【0003】
Ti−Al金属間化合物の製造方法としては、特開平5−271823号公報、特開平5−117716号公報及び特開平11−172351号公報等が提案されている。
【0004】
特開平5−271823号公報に開示される内容は、Ti粉末とAl粉末とを混合して加圧することで成形体を形成し、この成形体をTiまたはTi合金製の容器(カプセル)に封入し、容器ごと熱間静水圧処理(HIP)するようにしたもので、容器にTiまたはTi合金を用いることで、これらを酸素及び窒素のゲッターとして作用せしめ、品質安定化を図っている。
【0005】
特開平5−117716号公報には、メカニカルアロイング法やメカニカルグライディング法によって2種以上の金属微粉末混合体を製造し、この金属微粉末混合体をプラズマ焼結法により焼結することが開示され、特に金属粉末として、Ti及びAlが挙げられている。
【0006】
また、特開平11−172351号公報には、TiとAlとをモル比で1:1に配合し、これをボールミルを用いて混合粉末とし、この混合粉末を上下の電極(パンチ)間で圧縮しながらパルス通電して焼結せしめる方法が提案されている。
【0007】
【発明が解決しようとする課題】
上述した何れの方法もTi粉末及びAl粉末からTi−Al金属間化合物を製作するまでの提案であり、いずれもTi−Al金属間化合物の形状は丸棒状であり、この丸棒素材から複雑形状の部材をどのように製造するかについては解決されていない。
【0008】
特に、Ti−Al金属間化合物は高温での強度及び耐食性に優れる反面、常温では極めて脆く、塑性加工や機械加工での形状付与が困難であるため、実用化の障害になっている。
そこで、溶解鋳造法も考えられているが、この鋳造法には真空プラズマスカル溶解装置などの極めて高価な装置が必要で、鋳型は潮解性のあるカルシア(CaO)を用いるため、取り扱いが面倒で、更に鋳造欠陥を生じやすいため、鋳造後にHIP処理が必要となり、このHIP処理中に変形する不利もある。したがって、溶解鋳造法も実際には使用することができない。
【0009】
【課題を解決するための手段】
上記課題を解決すべく本発明に係るTi−Al金属間化合物部材の製造方法は、Ti粉末とAl粉末またはAl合金粉末を混合し、この混合粉末を型内に充填した後、パンチ間で圧粉しつつ混合粉末に通電し、その際に発生する熱により焼結せしめてTi−Al金属間化合物を作製し、次いで焼結の際の熱を利用し連続してTi−Al金属間化合物に恒温鍛造を施すようにした。
【0010】
常温ではTi−Al金属間化合物は極めて脆く、形状の付与が困難であるが、通電焼結の際に発生する熱をそのまま利用し、成形型の温度をTi−Al金属間化合物の温度と略等しくした恒温鍛造(900℃〜1100℃)にてTi−Al金属間化合物を成形することで、Ti−Al金属間化合物は超塑性を示し、タービンブレードなどの複雑形状部材を簡単に製造することができる。
尚、一旦冷えてからTi−Al金属間化合物を再加熱して鍛造すると、結晶粒が粗大化し強度低下を招き、成形時に割れも生じやすくなる。
【0011】
Ti粉末はatm%で51〜52%とし、残部をAlまたはAl合金とするのが好ましい。これはTiを50%以下にすると、TiAl相の他に、脆く部材を脆化させやすいAl比率の高いTiAl2相やTiAl3相が生成されるため、Tiを51〜52%とする。この組成にすることでTi3Al相が微量ながら含まれるが、延性を阻害することはない。
【0012】
また、前記Ti−Al金属間化合物は、0.5atm%〜0.8atm%のMnを含有せしめることが可能である。このMnをAl合金の形態で供給する場合には、Mnを1.0atm%〜1.6atm%含有する形で供給すればよい。
Mnを含有せしめることで、Ti−Al金属間化合物の延性を向上せしめることができる。ただし、0.5atm%未満では添加の効果が少なく、また0.8atm%を超えるとTiAl相中にMnが固溶しきれず、Mnが単体で析出してしまう。したがって上記範囲が好ましい。
【0013】
また、通電焼結する前に、混合粉末をメカニカルアロイング法により合金化しておくことも可能である。このように合金化しておくと、通電焼結によって5μm以下の結晶粒が現れ、組織が緻密化して強度が更に向上する。
【0014】
本発明に係る製造方法が適用される部材としては、タービンブレード等が考えられるが、これ以外の薄肉耐熱用部材に本発明は広く適用される。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は加圧パターンを示すグラフ、図2〜図8は焼結から成形までの工程を説明した図である。
【0016】
原材料粉末として、平均粒径15〜40μmのTi粉末(純度99.99%以上)と平均粒径15〜40μmのAl粉末(純度99.99%以上)を用意し、Ti:Al=51:49(atm%)となるようにArガス中で混合する。Arガス中で行うのは、Ti粉末およびAl粉末とも非常に反応性に富むためである。
【0017】
混合後にメカニカルアロイング法によって合金化せしめた。尚、合金化せずに次工程に進んでもよいが、合金化することにより、組織の緻密化が図れるので、実施例ではアトライタを用いて合金化した。
【0018】
合金化の際には一旦真空雰囲気とした後に、再度5〜20%の窒素ガスを含むArガスを導入する。窒素ガスを添加することで、焼結後のTiAlの収率を向上せしめることができる。
【0019】
Ti粉末とAl粉末との混合時間は50時間行った。混合時間を30時間未満とした場合には、合金化が十分に図れず、一方100時間を超えて混合すればアモルファス化した合金が得られるが、アモルファス化する必要はないので、混合時間は30〜100時間とする。
【0020】
次いで上記の合金化した混合粉末を図2に示す焼結装置を用いて焼結せしめる。
焼結装置は2分割された半円環状のグラファイトダイス1,1をシリンダユニット2,2で進退可能とし、前進位置にあるグラファイトダイス1,1で形成される空間に下方から下パンチ3を臨ませ、グラファイトダイス1,1内面と下パンチ3上面との間で形成される凹部に前記混合粉末を充填した。
【0021】
この後、図3に示すように、上パンチ4と下パンチ3により混合粉末を圧粉する。加圧パターンは図1に示した通りである。また、上パンチ4と下パンチ3とも電極としての機能を有しており、これら上パンチ4と下パンチ3を介して混合粉末を圧粉しつつ通電することで混合粉末からなる成形体を焼結する。焼結の条件は50℃/minで950℃まで昇温し、5分間保持すると同時に、上下のパンチにより49MPa(0.5ton/cm2)で加圧し焼結した。以上の操作により図3、図4に示すような円柱状のブランク材が得られる。
【0022】
焼結条件のうち、昇温速度としては20〜80℃/minが好ましい。20℃/min未満で行うと、粒径が粗大化し、逆に80℃/minを超えると、昇温速度に反応が追従せず、未反応の部分が残留してしまうためである。
【0023】
焼結条件のうち、保持温度は900〜1100℃が好ましい。900℃未満では焼結を促進する液層が生成されず、焼結時間が非常に長くなってしまい、逆に1100℃を超えた温度では、再溶融してしまう。
【0024】
焼結条件のうち、加圧は29〜68.6MPa(0.3〜0.7ton/cm2)で行うことが好ましい。29MPa未満では成形後に密度の向上が十分に図れず、68.6MPaを超えるとダイスに働く応力が増大してダイスの寿命が低下する。
【0025】
上記の範囲で焼結を行うことで、図6(a)及び(b)に示すような、20μm程度の粒径と50μm程度の粒径が混ざり合った結晶組織が得られる。20μm程度の結晶粒は後述する恒温鍛造による超塑性加工に有効であり、50μm程度の結晶粒は靱性を向上する効果がある。
【0026】
以上の如くして、合金化した混合粉末を焼結することでTi−Al金属間化合物からなるブランク材を得たならば、図5に示すようにグラファイトダイス1,1が後退するとともに下パンチ3内に軸方向に挿入されていたノックアウトピン5によってブランク材を下パンチ3から持ち上げる。
【0027】
次いで、図7に示すように別のダイス6,6がダイス1,1とは90°異なる方向から前進し、ブランク材を円環状に囲むとともに下パンチ3の外側面に沿って下サブパンチ9が下パンチ3の上面と面一になるまで上昇する。そして、この下サブパンチ9とブランク材との間に下鍛造プレート7を挿入する。この下鍛造プレート7の上面は複雑形状をなす成形面になっている。また、下鍛造プレート7の挿入方法はブランク材を持ち上げた状態で下パンチ3と下サブパンチ9の上に下鍛造プレート7をセットするか、ブランク材をそのままにして側方から下鍛造プレート7を滑り込ませる方法のいずれでもよい。
【0028】
次いでブランク材の上に下面が複雑形状をなす成形面となった上鍛造プレート8をセットし、一方、上パンチ4の外側面に沿って下降する上サブパンチ10を設け、これら上パンチ4及び上サブパンチ10の下面を上鍛造プレート8の上面に当接せしめ、上パンチ4及び上サブパンチ10を図8に示すように下降せしめる。
【0029】
ここで、前記下鍛造プレート7及び上鍛造プレート8の温度は焼結後のブランク材の温度と等しくなるようコントロールされている。具体的には900〜1100℃の範囲となっている。この範囲はTi−Al金属間化合物の超塑性領域、即ち、異常に大きな延びを示す現象が起こる領域であり、この温度領域内で恒温鍛造(金型温度を加工する材料の超塑性温度と同一の温度にして行う鍛造)することにより、図9に示すタービンブレードのような複雑な形状の部材を得ることができる。
【0030】
【発明の効果】
以上に説明したように本発明によれば、微細で緻密な組織を持ち高温での強度及び耐食性に優れるTi−Al金属間化合物に、複雑形状を付与できるので、高効率、低騒音、高出力という相反する特性が同時に要求される航空機のジェットエンジンや発電用ガスタービンエンジンのブレード等の製造方法として極めて有用である。
【図面の簡単な説明】
【図1】加圧パターンを示すグラフ
【図2】焼結型に混合粉末を充填した状態を示す図
【図3】図2に示す状態から混合粉末を圧縮した状態を示す図
【図4】図3の状態の平断面図
【図5】焼結型のダイスが後退した状態を示す図
【図6】(a)はTi−Al金属間化合物の金属組織の模式図、(b)は(a)の一部の拡大図
【図7】焼結が終了したTi−Al金属間化合物を鍛造装置にセットした状態を示す図
【図8】Ti−Al金属間化合物の成形が完了した状態を示す図
【図9】Ti−Al金属間化合物部材の一例としてのタービンブレードを示す図
【符号の説明】
1…グラファイトダイス、2…シリンダユニット、3…下パンチ、4…上パンチ、5…ノックアウトピン、6…ダイス、7…下サブパンチ、8…下鍛造プレート、9…上鍛造プレート、10…上サブパンチ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a member made of a Ti—Al intermetallic compound.
[0002]
[Prior art]
Ti-Al intermetallic compounds are excellent in strength and corrosion resistance at high temperatures (around 800 ° C) and are relatively lightweight, so Ni-based heat-resistant alloys represented by Inconel as materials for aircraft, rocket, or automobile engine parts, etc. It has been attracting attention as an alternative.
[0003]
JP-A-5-271823, JP-A-5-117716, JP-A-11-172351 and the like have been proposed as methods for producing Ti-Al intermetallic compounds.
[0004]
Japanese Patent Laid-Open No. 5-271823 discloses that a compact is formed by mixing and pressing Ti powder and Al powder, and the compact is enclosed in a container (capsule) made of Ti or Ti alloy. The container is subjected to hot isostatic pressure treatment (HIP), and Ti or Ti alloy is used for the container, so that these act as getters for oxygen and nitrogen, thereby stabilizing the quality.
[0005]
Japanese Patent Application Laid-Open No. 5-117716 discloses that two or more metal fine powder mixtures are produced by a mechanical alloying method or a mechanical gliding method, and the metal fine powder mixture is sintered by a plasma sintering method. In particular, Ti and Al are mentioned as metal powders.
[0006]
In JP-A-11-172351, Ti and Al are mixed at a molar ratio of 1: 1 and mixed with a ball mill, and the mixed powder is compressed between upper and lower electrodes (punch). However, there has been proposed a method of sintering by applying a pulse current.
[0007]
[Problems to be solved by the invention]
Each of the above-mentioned methods is a proposal from the production of Ti powder and Al powder to the production of Ti-Al intermetallic compound. In any case, the shape of the Ti-Al intermetallic compound is a round bar shape. It is not solved how to manufacture the member.
[0008]
In particular, Ti—Al intermetallic compounds are excellent in strength and corrosion resistance at high temperatures, but are extremely brittle at room temperature and difficult to impart shapes in plastic working and machining, which is an obstacle to practical use.
Therefore, a melting casting method is also considered, but this casting method requires an extremely expensive apparatus such as a vacuum plasma skull melting apparatus, and the mold uses deliquescent calcia (CaO), which is troublesome to handle. Further, since casting defects are likely to occur, HIP processing is required after casting, and there is a disadvantage that deformation occurs during the HIP processing. Therefore, the melt casting method cannot actually be used.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the Ti-Al intermetallic compound member manufacturing method according to the present invention comprises mixing Ti powder and Al powder or Al alloy powder, filling the mixed powder into a mold, and then pressing between the punches. The mixed powder is energized while being powdered, and is sintered by the heat generated at that time to produce a Ti-Al intermetallic compound, and then the Ti-Al intermetallic compound is continuously used by utilizing the heat at the time of sintering. Constant temperature forging was applied.
[0010]
At room temperature, the Ti-Al intermetallic compound is extremely brittle and it is difficult to impart a shape, but the heat generated during the electric current sintering is used as it is, and the temperature of the mold is approximately equal to the temperature of the Ti-Al intermetallic compound. By forming a Ti-Al intermetallic compound by equal temperature forging (900 ° C to 1100 ° C), the Ti-Al intermetallic compound exhibits superplasticity, and a complicated shape member such as a turbine blade can be easily manufactured. Can do.
When the Ti-Al intermetallic compound is reheated and forged after being cooled, the crystal grains become coarse and the strength is lowered, and cracks are likely to occur during molding.
[0011]
The Ti powder is preferably 51 to 52% in atm% and the balance is Al or Al alloy. When Ti is 50% or less, in addition to the TiAl phase, a TiAl 2 phase or a TiAl 3 phase having a high Al ratio that is brittle and easily embrittles the member is generated. Therefore, Ti is set to 51 to 52%. With this composition, a small amount of Ti 3 Al phase is contained, but ductility is not inhibited.
[0012]
Further, the Ti-Al intermetallic compound can contain 0.5 atm% to 0.8 atm% of Mn. When Mn is supplied in the form of an Al alloy, Mn may be supplied in a form containing 1.0 atm% to 1.6 atm%.
Inclusion of Mn can improve the ductility of the Ti-Al intermetallic compound. However, if it is less than 0.5 atm%, the effect of addition is small, and if it exceeds 0.8 atm%, Mn cannot be completely dissolved in the TiAl phase, and Mn precipitates alone. Therefore, the above range is preferable.
[0013]
In addition, the mixed powder can be alloyed by mechanical alloying before the electric current sintering. When alloyed in this way, crystal grains of 5 μm or less appear by current sintering, the structure becomes dense, and the strength is further improved.
[0014]
The member to which the manufacturing method according to the present invention is applied may be a turbine blade or the like, but the present invention is widely applied to other thin heat-resistant members.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a graph showing a pressurizing pattern, and FIGS. 2 to 8 are diagrams illustrating steps from sintering to molding.
[0016]
As raw material powder, Ti powder (purity 99.99% or more) having an average particle diameter of 15 to 40 μm and Al powder (purity 99.99% or more) having an average particle diameter of 15 to 40 μm are prepared. Ti: Al = 51: 49 Mix in Ar gas to be (atm%). The reason why Ar gas is used is that both Ti powder and Al powder are very reactive.
[0017]
After mixing, it was alloyed by mechanical alloying. Although the process may proceed to the next step without alloying, since the structure can be densified by alloying, alloying was performed using an attritor in the examples.
[0018]
At the time of alloying, after making a vacuum atmosphere once, Ar gas containing 5 to 20% nitrogen gas is introduced again. The yield of TiAl after sintering can be improved by adding nitrogen gas.
[0019]
The mixing time of Ti powder and Al powder was 50 hours. When the mixing time is less than 30 hours, alloying cannot be sufficiently achieved. On the other hand, if the mixing time exceeds 100 hours, an amorphous alloy can be obtained, but it is not necessary to make it amorphous. ˜100 hours.
[0020]
Next, the alloyed mixed powder is sintered using a sintering apparatus shown in FIG.
The sintering apparatus enables the semi-circular graphite dies 1 and 1 divided into two parts to be advanced and retracted by the cylinder units 2 and 2, and the lower punch 3 is exposed from below to the space formed by the graphite dies 1 and 1 in the forward position. The mixed powder was filled in a recess formed between the inner surfaces of the graphite dies 1 and 1 and the upper surface of the lower punch 3.
[0021]
Thereafter, as shown in FIG. 3, the mixed powder is pressed by the upper punch 4 and the lower punch 3. The pressurization pattern is as shown in FIG. Further, both the upper punch 4 and the lower punch 3 have a function as electrodes, and a compact made of the mixed powder is baked by energizing the mixed powder through the upper punch 4 and the lower punch 3 while pressing the mixed powder. Conclude. The sintering was performed at 50 ° C./min up to 950 ° C., held for 5 minutes, and simultaneously pressed and sintered at 49 MPa (0.5 ton / cm 2 ) with upper and lower punches. By the above operation, a cylindrical blank as shown in FIGS. 3 and 4 is obtained.
[0022]
Among the sintering conditions, the heating rate is preferably 20 to 80 ° C./min. This is because if the temperature is less than 20 ° C./min, the particle size becomes coarse, whereas if it exceeds 80 ° C./min, the reaction does not follow the rate of temperature rise and an unreacted portion remains.
[0023]
Of the sintering conditions, the holding temperature is preferably 900 to 1100 ° C. If it is less than 900 ° C., a liquid layer that promotes sintering is not generated, and the sintering time becomes very long. Conversely, if the temperature exceeds 1100 ° C., re-melting occurs.
[0024]
Among the sintering conditions, the pressurization is preferably performed at 29 to 68.6 MPa (0.3 to 0.7 ton / cm 2 ). If it is less than 29 MPa, the density cannot be sufficiently improved after molding, and if it exceeds 68.6 MPa, the stress acting on the die increases and the life of the die decreases.
[0025]
By carrying out sintering in the above range, a crystal structure in which a particle size of about 20 μm and a particle size of about 50 μm are mixed as shown in FIGS. 6A and 6B can be obtained. Crystal grains of about 20 μm are effective for superplastic working by isothermal forging described later, and crystal grains of about 50 μm have the effect of improving toughness.
[0026]
As described above, when a blank material made of Ti-Al intermetallic compound is obtained by sintering the alloyed mixed powder, the graphite dies 1 and 1 move backward as shown in FIG. The blank material is lifted from the lower punch 3 by means of the knockout pin 5 that has been inserted into the shaft 3 in the axial direction.
[0027]
Next, as shown in FIG. 7, the other dies 6, 6 advance from a direction different from the dies 1, 1 by 90 °, surround the blank material in an annular shape, and the lower sub punch 9 extends along the outer surface of the lower punch 3. Ascend until it is flush with the upper surface of the lower punch 3. Then, the lower forging plate 7 is inserted between the lower sub punch 9 and the blank material. The upper surface of the lower forging plate 7 is a molding surface having a complicated shape. The lower forging plate 7 can be inserted by setting the lower forging plate 7 on the lower punch 3 and the lower sub-punch 9 with the blank material lifted, or by removing the lower forging plate 7 from the side while leaving the blank material as it is. Any of the sliding methods may be used.
[0028]
Next, an upper forging plate 8 having a molding surface whose lower surface has a complicated shape is set on the blank material, while an upper sub-punch 10 descending along the outer surface of the upper punch 4 is provided. The lower surface of the sub punch 10 is brought into contact with the upper surface of the upper forging plate 8, and the upper punch 4 and the upper sub punch 10 are lowered as shown in FIG.
[0029]
Here, the temperature of the lower forging plate 7 and the upper forging plate 8 is controlled to be equal to the temperature of the blank material after sintering. Specifically, it is the range of 900-1100 degreeC. This range is a superplastic region of Ti-Al intermetallic compound, that is, a region where a phenomenon of abnormally large elongation occurs, and constant temperature forging (the mold temperature is the same as the superplastic temperature of the material to be processed) within this temperature region. Forging performed at a temperature of 1), a member having a complicated shape such as the turbine blade shown in FIG. 9 can be obtained.
[0030]
【The invention's effect】
As described above, according to the present invention, a complex shape can be imparted to a Ti-Al intermetallic compound that has a fine and dense structure and is excellent in strength and corrosion resistance at high temperatures, so that it has high efficiency, low noise, and high output. It is extremely useful as a method for manufacturing blades for aircraft jet engines and gas turbine engines for power generation that require the contradictory characteristics.
[Brief description of the drawings]
FIG. 1 is a graph showing a pressurization pattern. FIG. 2 is a view showing a state in which a mixed powder is filled in a sintering mold. FIG. 3 is a view showing a state in which the mixed powder is compressed from the state shown in FIG. 3 is a plan sectional view of the state of FIG. 3. FIG. 5 is a view showing a state in which a sintered die is retreated. FIG. 6A is a schematic diagram of a metal structure of a Ti-Al intermetallic compound, and FIG. Fig. 7 is a partially enlarged view of a) Fig. 7 is a view showing a state where the sintered Ti-Al intermetallic compound is set in a forging device. Fig. 8 is a state where the forming of the Ti-Al intermetallic compound is completed. Fig. 9 shows a turbine blade as an example of a Ti-Al intermetallic compound member.
DESCRIPTION OF SYMBOLS 1 ... Graphite die, 2 ... Cylinder unit, 3 ... Bottom punch, 4 ... Top punch, 5 ... Knockout pin, 6 ... Die, 7 ... Bottom sub punch, 8 ... Bottom forge plate, 9 ... Top forge plate, 10 ... Top sub punch .

Claims (3)

Ti粉末とAl粉末またはAl合金粉末を混合し、この混合粉末をメカニカルアロイング法により合金化し、合金化した粉末を型内に充填した後、パンチ間で圧粉しつつ合金化した粉末に通電し、その際に発生する熱により昇温速度20〜80℃/min、圧力29〜68.6Mpaで焼結せしめてTi−Al金属間化合物を作製し、次いで焼結の際の熱を利用し連続してTi−Al金属間化合物に恒温鍛造を施すことを特徴とするTi−Al金属間化合物部材の製造方法。 Ti powder and Al powder or Al alloy powder are mixed, this mixed powder is alloyed by the mechanical alloying method, the alloyed powder is filled in the mold, and then the alloyed powder is energized while being compacted between punches. Then, the Ti-Al intermetallic compound is produced by sintering at a temperature rising rate of 20 to 80 ° C./min and a pressure of 29 to 68.6 MPa by the heat generated at that time, and then using the heat at the time of sintering. A method for producing a Ti-Al intermetallic compound member, characterized in that the Ti-Al intermetallic compound is continuously subjected to isothermal forging. 請求項1に記載のTi−Al金属間化合物部材の製造方法において、前記Ti−Al金属間化合物は、0.5atm%〜0.8atm%のMnを含有することを特徴とするTi−Al金属間化合物部材の製造方法。 The Ti-Al intermetallic compound member according to claim 1, wherein the Ti-Al intermetallic compound contains 0.5 atm% to 0.8 atm% of Mn. A method for producing an intermetallic compound member. 請求項1または請求項2に記載のTi−Al金属間化合物部材の製造方法において、前記Ti−Al金属間化合物部材は薄肉耐熱用部材であることを特徴とするTi−Al金属間化合物部材の製造方法。 3. The method for producing a Ti-Al intermetallic compound member according to claim 1 or 2, wherein the Ti-Al intermetallic compound member is a thin heat-resistant member. Production method.
JP2000094584A 2000-03-30 2000-03-30 Method for producing Ti-Al intermetallic compound member Expired - Fee Related JP4326110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094584A JP4326110B2 (en) 2000-03-30 2000-03-30 Method for producing Ti-Al intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094584A JP4326110B2 (en) 2000-03-30 2000-03-30 Method for producing Ti-Al intermetallic compound member

Publications (3)

Publication Number Publication Date
JP2001279303A JP2001279303A (en) 2001-10-10
JP2001279303A5 JP2001279303A5 (en) 2006-09-07
JP4326110B2 true JP4326110B2 (en) 2009-09-02

Family

ID=18609612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094584A Expired - Fee Related JP4326110B2 (en) 2000-03-30 2000-03-30 Method for producing Ti-Al intermetallic compound member

Country Status (1)

Country Link
JP (1) JP4326110B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947617B (en) * 2010-08-30 2012-03-21 哈尔滨工业大学 Double-chamber high-temperature forging and forming device of TiAl intermetallic compound forge piece and method thereof
FR2973265B1 (en) * 2011-03-31 2014-03-28 Centre Nat Rech Scient FLASH SINTER MANUFACTURING METHOD OF A COMPLEX SHAPE PIECE AND DEVICE FOR IMPLEMENTING SUCH A METHOD.
ES2532582T3 (en) * 2012-08-09 2015-03-30 Mtu Aero Engines Gmbh Method for manufacturing a TiAl blade crown segment for a gas turbine, as well as a corresponding blade crown segment
CN103966535A (en) * 2014-05-06 2014-08-06 西北工业大学 Beta phase nearly isothermal forging of high-damage tolerant titanium alloy TC4-DT
CN111593278B (en) * 2020-04-29 2021-10-22 西北工业大学 TiAl alloy near-isothermal forging method

Also Published As

Publication number Publication date
JP2001279303A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
US5084088A (en) High temperature alloys synthesis by electro-discharge compaction
US5284620A (en) Investment casting a titanium aluminide article having net or near-net shape
JP5889786B2 (en) Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material
US3888663A (en) Metal powder sintering process
CN110607464B (en) Hot isostatic pressing process of Ti2AlNb alloy powder
KR101237122B1 (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
US3950166A (en) Process for producing a sintered article of a titanium alloy
CN111822711B (en) High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof
CN108838404B (en) Low-cost near-net forming method for titanium alloy
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
JP4326110B2 (en) Method for producing Ti-Al intermetallic compound member
JPH03174938A (en) Method for hot forging ni base super heat-resistant alloy
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
CN1239284C (en) Method for directly preparing TiNi shape memory alloy pipe joint from element powders
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
RU2647424C1 (en) METHOD OF THE HEAT-RESISTANT ALLOYS PRODUCTION BASED ON INTERMETALLIDE Nb3Al (EMBODIMENTS)
KR100509938B1 (en) Method for fabricating TiAl intermetallic articles by metal injection molding
RU2624562C1 (en) METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM
JP3106196B1 (en) Method for producing TiAl-Ti based alloy sintered joint
CN115961166B (en) By Ti2Ni、TiNi3Method for preparing TiNi alloy by using intermediate alloy
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPS6358897B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees