JP4325160B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP4325160B2
JP4325160B2 JP2002248775A JP2002248775A JP4325160B2 JP 4325160 B2 JP4325160 B2 JP 4325160B2 JP 2002248775 A JP2002248775 A JP 2002248775A JP 2002248775 A JP2002248775 A JP 2002248775A JP 4325160 B2 JP4325160 B2 JP 4325160B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
electrode
emitting device
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248775A
Other languages
Japanese (ja)
Other versions
JP2004087930A5 (en
JP2004087930A (en
Inventor
元量 山田
義一 丸月
和憲 渡邉
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2002248775A priority Critical patent/JP4325160B2/en
Publication of JP2004087930A publication Critical patent/JP2004087930A/en
Publication of JP2004087930A5 publication Critical patent/JP2004087930A5/ja
Application granted granted Critical
Publication of JP4325160B2 publication Critical patent/JP4325160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
本発明は、窒化物半導体発光素子に関し、特に光の取り出し効率を向上させるものである。
【0002】
【従来技術】
GaN系化合物半導体を用いた青色発光ダイオード(LED)や紫外LED、青〜紫色半導体レーザ(LD)が開発され、これら発光素子と蛍光体を組み合わせた白色固体発光素子は、電球や蛍光灯等の真空管式照明光源を代替する新光源として期待されている。しかし、現在でもこれらの発光素子を照明用途に使うには更に素子の高出力化を達成する必要があり、そのための研究が種々なされている。
【0003】
ところで、上記したGaN系化合物半導体は厚膜成長が基本的に難しいという特質がある。従って、一般的なGaN系化合物半導体発光素子においては、ワイヤーボンディング用の主電極から発光層までの距離が極めて短いものとならざるを得ず、他の材料系の半導体発光素子で行なわれているような電流拡散層を使っての発光の均一化(発光層全面で均一に発光が起こっているという意味での均一化)手段は通常採用することが出来ない。このため、オーミック電極を光が透過する程度の薄膜とする所謂透明電極(本件明細書内において第2のp補助電極とも呼ぶ)とし、該透明電極を素子の(p型層の)ほぼ全表面に形成し発光層全面に電流が行き渡るようにすることで均一な発光を得る等の工夫がなされている。
【0004】
上記の透明電極の採用により、発光層全面が有効に活用され素子内部における発光量はいきおい増加することになる。また、併せて転位欠陥等を抑制することで、注入されるキャリアを高い割合でフォトンに変換させることが可能となり、その結果として内部量子効率を大幅に向上させることはできる。
【0005】
【発明が解決しようとする課題】
しかしながら、光の取り出し効率の観点から当該素子構造から見た場合、様々な不都合が存在する。先ず、用途により異なってくるのであるが、ウエハーから切り出されるLEDダイのサイズは現在の汎用品として200〜400μm角である。このサイズであるとpnの両主電極の位置はエピ面に対し対角に位置する1対の隅部に形成される。ここで当然n電極はエピ面をエッチングし、n型半導体層上に形成することになる。ここで電流密度の最も高いところが当然に最もよく光るのであるが、電流密度が最も高いのは、p主電極からn電極に向かう部分である。全面電極(透明電極のことであり、本件明細書の第2のp補助電極に相当する。)を採用したとしても完全には全面に均等に電流が行き渡るわけではない。というのも電流は抵抗値が同じであれば最も短い距離を流れようとする性質があり、結果としてp主電極からn電極に向かう部分に電流が集中してしまう。よって全面電極の存在にもかかわらず、エピ周辺部は中央部に比べてあまり光らない。
【0006】
また、p主電極による光の吸収の問題が挙げられる。実装方法等にもよるが、フェイスアップ実装ではp主電極直下で発光した光は取り出すことが難しい。また、p主電極近傍で発光し、p主電極の直下に伝播してしまいそのまま吸収される問題もある。さらに、第2のp補助電極としての透明電極による光の吸収の問題も挙げられる。即ち、透明電極の光の透過率は50%程度しか無く、また透明電極はほぼ全表面に形成されることから、素子の鉛直(表面)方向から放出されるべき光の取り出し効率を悪化させる要因となっている。ところがこの問題は、透明電極によるキャリアの注入性の向上と表裏の関係にあるため、例えば透明電極の不使用等は抜本的な問題解決とはならない。
【0007】
従って本発明は、光取り出し効率を高め、外部量子効率を格段に向上させた窒化物半導体発光素子を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の窒化物半導体発光素子は、サファイアからなる基板上に、少なくともn型窒化ガリウム系化合物半導体層と、活性層と、p型窒化ガリウム系化合物半導体層(InGaAl1−X−Y、0≦X、0≦Y、X+Y≦1)が順に積層され、基板に対し積層面側に少なくともpn1対の電極が形成され、n電極がn型窒化ガリウム系化合物半導体層を一部露出させたn電極形成面上に形成され、p電極が、p主電極と、p主電極からp型窒化ガリウム系化合物半導体層全面に電流を拡散させるためのp補助電極からなる窒化物半導体発光素子において、p主電極とn電極を結ぶ線上にp主電極を囲い込む光取り出し溝が形成され、該溝が少なくともn電極形成面よりも深いことを特徴とする。例えばpn両主電極が形成されていない対角のエピ端面付近で発光した光がもう一方のエピ端面側に進行した場合、エピ端面から出射される前にほとんど透明電極等により吸収され熱に変化し、取り出すことができなかったが、その前に溝部よりエピ外部に取り出すことが可能になった。また、この構成をとることによる更なる効果としてp補助電極側に電気の拡散を促せるためp主電極直下の発光を抑制することができる。これにより発光しても効率的に取り出すことが出来なかった発光を抑制し、効率的に取り出せる部分を発光させることが出来る部分を発光させ素子全体としての発光能力を向上させることが出来る。
【0009】
さらにまた、本発明の窒化物半導体発光素子は、さらに発光面を分割する光取り出し溝を素子端面に対してほぼ垂直に付加する。溝を発光面を均等に分割するように増加させると、活性層で発光した光がどの方向に進行しても短い距離で溝部よりエピ外部に取り出すことが出来る。また溝を第1のp補助電極に対して垂直に形成することにより電流の流れを阻害することなく、全面発光させることが出来る。
【0010】
また、本発明の窒化物半導体発光素子は、前記光取り出し溝に加え、p主電極に近接して電流阻止溝が形成され、該溝が少なくともn電極形成面よりも深いことを特徴とする。このような構成を取ることにより、電流としての最短距離のp主電極中心からn電極に向かう部分を電気的に切断することになり、電流の集中を抑制し、周辺部への拡散を促進することができる。尚且つp主電極直下の発光を抑制できる。これにより周辺部分の発光が増加し、光の取り出し効率がアップする。また、素子破壊は最も電圧がかかるところで起き、結果として電流が最も流れ、最も発光する部位、即ちp主電極からn電極に向かう部分の静電破壊が起こっていたがこの構成にすることによって、電流を拡散させることが出来るため、ダイ全体として静電耐圧が向上し、素子寿命が延びる。また、このような構成を取ることにより、今まではp主電極の直下で発光した光が、n電極の方に進行した場合、エピ端面から出射される前にほとんど透明電極等により吸収され熱に変化し、取り出すことができなかったが、このようにp主電極をダイの側面と電流阻止溝で囲い込むことによって例えp主電極直下で発光したとしても光を確実に取り出すことができる。また逆に、窒化物半導体層内をp主電極方向に伝播している光は、p主電極に吸収されること無く取り出すことが出来る。
【0011】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝部の総面積が発光面に対し5〜50%である。これより少なければ効果が少なく、これよりも多くなれば逆に発光領域が減少することになり電流密度が上がり発光効率の低下と駆動電圧の上昇を招く結果になってしまう。
【0012】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝の深さが基板まで達している。本発明において基板材料は特に限定される訳ではなく、サファイアやSiC、GaN、AlN等を基板とすることができ、基板の材質によって屈折率も異なるのでどこまで溝を形成すると有効かが変わってくる。ここで各材質の屈折率はサファイア:約1.8、SiC:約2.8、GaN:約2.5、AlN:約2.2である。サファイアを基板とした場合、積層されるGaNよりも屈折率が低いため、光は優先的に屈折率の高いエピ側を導波する。よってその導波する光を溝部よりエピ外部に取り出すためには基板まで溝を形成するのが効果が大きい。
【0013】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝部が基板を貫通している。さらにまた、本発明の窒化物半導体発光素子は、前記溝部が基板を貫通している。基板にSiC等の屈折率が高いものを使用すると、優先的に基板の方を光が導波するため、基板を貫通するように溝を形成すると光の取り出し効率の向上により効果がある。また、サファイア等の屈折率の低い基板を用いた場合であっても全ての光がエピ内を導波するのではなく、当然基板内も導波し、また、エピ厚に比べて基板の厚みはかなり厚いので基板内を導波する光のトータル量は無視できない。よって基板の屈折率によらず光の取り出し効率は向上する。
【0014】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝の幅(w)が基板上の積層膜厚以上である。エピ内を導波している光は基板界面とエピ表面の間、即ちエピ厚内で導波している。よって溝幅をエピ厚以上にすることによって溝から出射された光が再度エピ内に入る確率が低減する。
【0015】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝の幅(w)と溝の深さ(d)の関係がw/d≧1である。このような構成にすることにより、溝から出射された光が再度エピ内に入る確率が低減する。
【0016】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝がテーパ角を有する。テーパ角を有することによりさらに光の取り出し効率を向上することができる。この場合の溝の幅(w)は溝の底部ではなく、最表面で定義する。
【0017】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝側面に保護膜が製膜されている。保護膜によりショート、活性層が表面にさらされないためライフの向上等が期待できる。
【0018】
さらにまた、本発明の窒化物半導体発光素子は、基板が成長面側に凹凸を有する。図6に示すような特殊加工した基板を使用するとさらに光の取り出し効率が上がる。図6においてハッチング部が凹部である。正三角形、菱形、又は正六角形の凹凸を有し、その凹凸面で光を散乱・回折・屈折させる効果がある。凹凸の段差は50nm以上で基板上に成長させる半導体層の厚さ以下の寸法であるのが重要である。この理由は少なくとも発光波長(例えば、AlGaInN系の発光層の場合、206nm〜632nm)をλとした時、λ/4以上の深さ又は段差がないと、十分に光を散乱又は回折することができない一方、凹部の深さ又は凸部の段差が基板上に成長させる半導体層の厚さを越える寸法の場合には、電流が積層構造内の横方向に流れにくくなり、発光効率が低下するからである。従って、半導体層の表面が凹状及び/又は凸状をなしてもよい。尚、十分に光を散乱又は回折させるためにはλ/4以上の深さ又は段差であることが好ましいが、λ/4n(nは半導体層の屈折率)以上の深さ又は段差であれば散乱又は回折の効果を得ることができる。
また、凹部及び/又は凸部の大きさ(即ち、凹部及び/又は凸部の構成辺となる一辺の長さ)、及び相互の間隔は、半導体中における発光波長をλとしたとき、少なくともλ/4以上の大きさであることが重要である。逆にあまりに凹凸の大きさや相互間隔が大きすぎると散乱面が減るため妥当ではない。よって0.2〜20μmが好ましい。
さらにまた、凹凸をエピ成長面に対し垂直に形成するよりも40〜50°のテーパ角を形成すればさらに取り出し効率がアップする。
【0019】
さらにまた、本発明の窒化物半導体発光素子は、前記両溝がエッチングにより形成される。エッチングが最も形成しやすく、ばらつきも少ない。
【0020】
【作用】
本発明者らは、窒化物半導体発光素子においてp主電極の直下で発光した光が有効に取り出すことが出来ていないこと、また逆に、窒化物半導体層内をp主電極方向に伝播している光はp主電極に吸収されること、pn両主電極間で最短距離部で発光出力が集中し全面に渡って均一に発光していないこと、端面から発せられる発光成分の割合が比較的大きいことを見出し、本発明を完成するに至った。即ち、請求項1記載の発明にあっては、通常の発光素子における端面発光部であるところの素子周辺部における第一の端面発光部に加え、p主電極の内側において発光領域の端面がエッチング加工により露出された第二端面発光部(光取り出し溝と電流狭窄溝)を形成することにより、当該第二端面発光部がp主電極直下で発光した光の光取り出し窓として作用し、補助電極下で発光した光がp主電極直下に伝播しp主電極により吸収されないように作用し、かつ、pn電極間での電気的短絡を防止し、よって、p主電極下部への電子の流れ込みを抑制しp主電極直下での発光を少なくし、結果としてエピ全面に渡って電流を拡散させ、エピ全面を光らせることができる。よって光の取り出し効率も向上するし、実際の発光量のトータル量そのものも向上するため、結果として外部量子効率を著しく向上することが出来る。
【0021】
【発明の実施の態様】
以下図面に基づいて、本発明の実施の形態につき説明する。図1は本発明の窒化物半導体発光素子の一実施例を示しており、図1(a)は当該窒化物半導体発光素子を積層面側から見た平面図、図1(b)はそのA−A’線断面図を示している。図において、1は基板、21はn型窒化ガリウム系化合物半導体層、22はp型窒化ガリウム系化合物半導体層、20は活性層である。以下、本発明の製造方法について詳述する。
【0022】
半導体ウエハーとして、LED(light emitting diode)となる構成の窒化物半導体層をスピネル基板上に形成させた。具体的には、スピネル基板上に、GaNのバッファー層、n型GaNのコンタクト層、n型AlGaNのクラッド層、多重量子井戸構造となるInGaNの活性層、p型GaNのキャップ層、p型AlGaNのクラッド層及びp型GaNのコンタクト層が積層されている。この半導体ウエハーのエピ面側から電流阻止溝や光取り出し溝を形成する。溝の形成方法としてはエッチング(ドライエッチングとウエットエッチングの両方を含む)が好適で、レーザ照射による光学的方法やダイサーやスクライバーなど機械的方法によっても可能である。
【0023】
(窒化物半導体ウエハー100,200,300,400,500,600)
窒化物半導体ウエハー100,200,300,400,500,600としては、基板1上に窒化物半導体2が形成されたものである。窒化物半導体2の基板1としては、サファイア、スピネル、炭化珪素、酸化亜鉛や窒化ガリウム単結晶など種々のものが挙げられるが量産性よく結晶性の良い窒化物半導体層を形成させるためにはサファイア基板、スピネル基板などが好適に用いられる。
【0024】
窒化物半導体(InGaAl1−X−YN、0≦X、0≦Y、X+Y≦1)はMOCVD法やHVPE法などにより種々形成することができる。窒化物半導体にPN接合、PIN接合、MIS接合を形成させることにより半導体素子として利用することができる。半導体の構造もホモ接合、ヘテロ接合やダブルへテロ接合など種々選択することができる。また、半導体層を量子効果が生じる程度の薄膜とした単一量子井戸構造や多重量子井戸構造とすることもできる。
【0025】
【0026】
溝を形成する順序は電極を形成する直前でも直後でも良い。電極を形成する直前に溝を形成すると第2のp補助電極形成時に溝内に電極材料が入り込まないようにマスキングする必要が生じる。また、電極を形成した直後に溝を形成すると第2のp補助電極ごと溝を形成する必要が発生し溝の形成方法方法が限定される。
【0027】
電流狭窄溝と光取り出し溝は別々に形成しても良いが別々に形成する必要も特に無く、同時に形成することで工程が簡略化できる。先行技術としてはn電極を形成するためのnコンタクト層露出時に光取り出し溝を形成している例があるが(特開2002-164574、特開2002-26386等)、本発明の効果を十分に発揮するためにはnコンタクト層露出面よりも電流狭窄溝はより深い必要があるため、同じ工程で溝を形成するのは困難である。よって溝の形成方法にもよるがnコンタクト層露出時とは別工程で行なうことが好ましい。
【0028】
【実施例】
(実施例1)
厚さ425μmであり洗浄されたサファイアを基板としてMOCVD法を利用して窒化物半導体を積層させ窒化物半導体ウエハーを形成させた。窒化物半導体は発光素子とすることが可能なよう多層膜として成膜させた。まず、510℃において原料ガスとしてNH(アンモニア)ガス、TMG(トリメチルガリウム)ガス及びキャリアガスである水素ガスを流すことにより厚さ約200オングストロームのバッファー層を形成させた。
【0029】
次に、TMGガスの流入を止めた後、反応装置の温度を1050℃に挙げ再びTMGガス、ドーパントガスとしてSiH(シラン)ガスを流すことによりn型コンタクト層として働く厚さ約6μmのGaN層を形成させた。
【0030】
活性層は、一旦、キャリアガスとNHのみとさせ反応装置の温度を800℃に保持し後、原料ガスとしてNH(アンモニア)ガス、TEGガス、TMI(トリメチルインジウム)及びキャリアガスとして窒素ガスを流すことによりアンドープGaNよりなる障壁層を200オングストロームの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニアを用いアンドープIn0.4Ga0.6Nよりなる井戸層を30オングストロームの膜厚で成長させる。そして障壁+井戸+障壁+井戸・・・・+障壁の順で障壁層を5層、井戸層を4層、交互に積層して、総膜厚1120オングストロームの多重量子井戸構造よりなる活性層20を成長させる。
【0031】
活性層上にクラッド層を形成させるためTMG、TMIの流入を停止し反応装置の温度を1050℃に保持した後、原料ガスとしてNH(アンモニア)ガス、TMA(トリメチルアルミニウム)ガス、TEGガス、ドーパントガスとしてCpMg(シクロペンタジエルマグシウム)ガス及びキャリアガスとして、窒素ガスを流しp型クラッド層として厚さ約0.1μmのGaAlN層を形成させた。
【0032】
最後に、反応装置の温度を1050℃に維持し原料ガスとしてNH(アンモニア)ガス、TMGガス、ドーパントガスとしてCpMgガス及びキャリアガスとして水素ガスを流しp型コンタクト層として厚さ約0.5μmのGaN層を形成させた。(なお、p型窒化物半導体層は400℃以上でアニール処理してある。)
このように形成された窒化物半導体2にnコンタクト層露出を行い、n型コンタクト層を露出させ、次に第2のp補助電極33を形成し、その上に第1のp補助電極32とp主電極を同時に形成する。その後n電極を形成し、保護膜を形成する。ここまでは従来と同様であり、これを350μm角のチップとして切り出したものをリファレンスAとする。
【0033】
リファレンスAをベースとして電流狭窄溝を角度を付けず垂直に基板まで形成した(図1(a))。結果、リファレンスAと比較して5%光の取り出し効率が上昇した。
【0034】
(実施例2)
実施例1に加え、図2のようにp主電極とn電極を結ぶ線上に光取り出し溝を角度を付けず垂直に基板まで形成した。結果、リファレンスAと比較して12%光の取り出し効率が上昇した。
【0035】
(実施例3)
実施例2に加え、さらに図3のように素子端面に対してほぼ垂直に光取り出し溝を角度を付けず垂直に基板まで形成した。結果、リファレンスAと比較して16%光の取り出し効率が上昇した。
【0036】
(実施例4)
実施例3は電流狭窄溝と光取り出し溝が基板のエピ成長面側に対し垂直に形成したのに対し、テーパ加工を施した。垂直面に対して50°のテーパ角を形成した。結果、リファレンスAと比較して24%光の取り出し効率が上昇した。
【0037】
(実施例5)
実施例4と同様の加工を施し、かつ、特殊加工した基板上に形成した。図6(a)に示すパターンを使用し、正三角形の1辺の長さは10μm、隣り合う間隔は4μm、凹凸の深さは0.8μm、凹凸のテーパ角は垂直方向から40°であった。結果、リファレンスAと比較して41%光の取り出し効率が上昇した。
【0038】
(実施例6)
実施例1〜5までは350μm角のチップとして切り出したものであったのに対し、以後1mm角チップを使用した実施例を挙げる。半導体層は実施例1と同様に積層し、図7に示すような電極配置にpn両電極を形成する。この状態をリファレンスBとする。このリファレンスBに対して図4に示すように網目状に電流狭窄溝や光取り出し溝を形成する。この時の溝幅は29μm、溝深さは基板まで、溝はテーパを形成せず基板に対して垂直に形成した。結果、リファレンスBと比較して40%光の取り出し効率が上昇した。
【0039】
(実施例7)
実施例6と比較して溝形成において基板に対し垂直方向にテーパ角50°を形成する以外は同様に作製した。結果、リファレンスBと比較して62%光の取り出し効率が上昇した。
【0040】
(実施例8)
実施例7と同様の加工を施し、かつ、特殊加工した基板上に形成した。図6(a)に示すパターンを使用し、正三角形の1辺の長さは25μm、隣り合う間隔は10μm、凹凸の深さは0.8μm、凹凸のテーパ角は垂直方向から40°であった。結果、リファレンスAと比較して66%光の取り出し効率が上昇した。
【0041】
【発明の効果】
本発明の窒化物発光素子は、請求項1記載の発明にあっては、通常の発光素子における端面発光部であるところの素子周辺部における第一の端面発光部に加え、p主電極の内側において発光領域の端面がエッチング加工により露出された第二端面発光部(光取り出し溝と電流狭窄溝)を形成することにより、当該第二端面発光部がp主電極直下への電子の流入を抑制し、p主電極直下での発光を抑え、第2のp補助電極下部で発光した光がp主電極直下に入り込むのを防ぐことが出来、例えp主電極直下で発光したとしても光の光取り出し窓として作用し、かつ、pn電極間での電気的短絡を防止し、結果としてエピ全面に渡って電流を拡散させ、エピ全面を光らせることができる。よって光の取り出し効率も向上するし、実際の発光量のトータル量そのものも向上するため、結果として外部量子効率を著しく向上することが出来る。
【図面の簡単な説明】
【図1】本発明の窒化物半導体発光素子の一例を示す図であって、(a)図はその模式的平面図、(b)図は(a)図のA−A’線における模式的断面図である。
【図2】本発明の窒化物半導体発光素子の他の例を示す模式的平面図である。
【図3】本発明の窒化物半導体発光素子の他の例を示す模式的平面図である。
【図4】本発明の窒化物半導体発光素子の他の例を示す模式的平面図である。
【図5】従来の窒化物半導体発光素子の例を示す模式的平面図である。
【図6】本発明の窒化物半導体発光素子に使用可能な特殊加工した基板の模式的パターンである。
【図7】従来の窒化物半導体発光素子の例を示す模式的平面図である。
【符号の説明】
1・・・基板
2・・・窒化物半導体
20・・・活性層
21・・・n型窒化ガリウム系化合物半導体
22・・・p型窒化ガリウム系化合物半導体
31・・・p主電極
32・・・第1のp補助電極
33・・・第2のp補助電極
4・・・n電極
41・・・n主電極
42・・・n補助電極
51・・・電流狭窄溝
52・・・光取り出し溝
100,200,300,400,500,600・・・窒化物半導体ウエハー
[0001]
The present invention relates to a nitride semiconductor light emitting device, and in particular, improves light extraction efficiency.
[0002]
[Prior art]
Blue light-emitting diodes (LEDs), ultraviolet LEDs, and blue-violet semiconductor lasers (LDs) using GaN-based compound semiconductors have been developed, and white solid light-emitting elements that combine these light-emitting elements and phosphors are used in light bulbs and fluorescent lamps. It is expected as a new light source to replace the vacuum tube illumination light source. However, even today, in order to use these light-emitting elements for lighting applications, it is necessary to further increase the output of the elements, and various studies have been conducted for that purpose.
[0003]
By the way, the above-described GaN-based compound semiconductor has a characteristic that thick film growth is basically difficult. Therefore, in a general GaN-based compound semiconductor light-emitting device, the distance from the main electrode for wire bonding to the light-emitting layer has to be extremely short, and is performed with a semiconductor light-emitting device of another material system. Such a means of uniforming light emission using a current diffusion layer (uniformization in the sense that light emission occurs uniformly on the entire surface of the light emitting layer) cannot be usually employed. For this reason, a so-called transparent electrode (also referred to as a second p auxiliary electrode in the present specification) that makes the ohmic electrode a thin film capable of transmitting light is used, and the transparent electrode is formed on almost the entire surface (of the p-type layer) of the element. In order to obtain uniform light emission, the current is spread over the entire surface of the light emitting layer.
[0004]
By adopting the transparent electrode, the entire surface of the light emitting layer is effectively used, and the amount of light emission inside the device is remarkably increased. In addition, by suppressing dislocation defects and the like, the injected carriers can be converted into photons at a high rate, and as a result, the internal quantum efficiency can be greatly improved.
[0005]
[Problems to be solved by the invention]
However, when viewed from the element structure from the viewpoint of light extraction efficiency, there are various disadvantages. First, the size of the LED die cut out from the wafer is 200 to 400 μm square as a current general-purpose product, depending on the application. With this size, the positions of the pn main electrodes are formed at a pair of corners located diagonally to the epi plane. Of course, the n-electrode is formed on the n-type semiconductor layer by etching the epi surface. Here, the highest current density naturally shines best, but the highest current density is in the portion from the p main electrode to the n electrode. Even if the whole surface electrode (which is a transparent electrode and corresponds to the second p auxiliary electrode in the present specification) is adopted, the current does not completely spread over the entire surface. This is because the current has the property of trying to flow through the shortest distance if the resistance value is the same, and as a result, the current is concentrated on the portion from the p main electrode to the n electrode. Therefore, despite the presence of the entire surface electrode, the peripheral portion of the epi does not shine as much as the central portion.
[0006]
Further, there is a problem of light absorption by the p main electrode. Depending on the mounting method and the like, it is difficult to take out the light emitted directly under the p main electrode in face-up mounting. There is also a problem that light is emitted in the vicinity of the p main electrode, propagates directly under the p main electrode, and is absorbed as it is. Further, there is a problem of light absorption by the transparent electrode as the second p auxiliary electrode. That is, the transmittance of light of the transparent electrode is only about 50%, and the transparent electrode is formed on almost the entire surface, which causes a deterioration in the extraction efficiency of light to be emitted from the vertical (surface) direction of the element. It has become. However, since this problem is related to the improvement in carrier injectability by the transparent electrode, the non-use of the transparent electrode, for example, does not drastically solve the problem.
[0007]
Accordingly, it is an object of the present invention to provide a nitride semiconductor light emitting device with improved light extraction efficiency and markedly improved external quantum efficiency.
[0008]
[Means for Solving the Problems]
The nitride semiconductor light-emitting device of the present invention has at least an n-type gallium nitride compound semiconductor layer, an active layer, and a p-type gallium nitride compound semiconductor layer (In X Ga Y Al 1-X-) on a substrate made of sapphire. Y , 0.ltoreq.X, 0.ltoreq.Y, X + Y.ltoreq.1) are sequentially stacked, at least a pn1 pair of electrodes are formed on the side of the stacked surface with respect to the substrate, and the n-electrode partially exposes the n-type gallium nitride compound semiconductor layer. A nitride semiconductor light emitting device formed on the n electrode forming surface, the p electrode comprising a p main electrode, and a p auxiliary electrode for diffusing current from the p main electrode to the entire surface of the p-type gallium nitride compound semiconductor layer The light extraction groove surrounding the p main electrode is formed on the line connecting the p main electrode and the n electrode, and the groove is deeper than at least the n electrode formation surface. For example, when light emitted near the diagonal epi end face where the pn main electrodes are not formed travels to the other epi end face side, it is almost absorbed by the transparent electrode etc. before being emitted from the epi end face and changes to heat. However, it could not be taken out, but before that, it became possible to take it out of the epi from the groove. Further, as a further effect by adopting this configuration, the diffusion of electricity can be promoted to the p auxiliary electrode side, so that light emission directly under the p main electrode can be suppressed. As a result, it is possible to suppress light emission that cannot be efficiently extracted even if light is emitted, and to emit light in a portion that can emit light efficiently, thereby improving the light emission capability of the entire element.
[0009]
Furthermore, in the nitride semiconductor light emitting device of the present invention, a light extraction groove for further dividing the light emitting surface is added substantially perpendicular to the device end surface. When the groove is increased so as to divide the light emitting surface evenly, the light emitted from the active layer can be taken out of the epi portion from the groove portion in a short distance no matter which direction the light travels. Further, by forming the groove perpendicular to the first p auxiliary electrode, the entire surface can emit light without hindering the flow of current.
[0010]
The nitride semiconductor light emitting device of the present invention is characterized in that, in addition to the light extraction groove, a current blocking groove is formed close to the p main electrode, and the groove is deeper than at least the n electrode formation surface. By adopting such a configuration, the portion from the center of the p main electrode with the shortest distance as the current to the n electrode is electrically cut, and the concentration of current is suppressed and diffusion to the peripheral portion is promoted. be able to. Moreover, light emission directly under the p main electrode can be suppressed. As a result, the light emission in the peripheral portion is increased and the light extraction efficiency is increased. In addition, the element breakdown occurs at the place where the voltage is most applied. As a result, the most current flows, and the most light emitting portion, that is, the electrostatic breakdown of the portion from the p main electrode to the n electrode has occurred. Since the current can be diffused, the electrostatic withstand voltage is improved as a whole die, and the device life is extended. Further, by adopting such a configuration, when the light emitted immediately below the p main electrode has traveled toward the n electrode so far, it is almost absorbed by the transparent electrode and the like before being emitted from the epi end face. However, even if light is emitted directly under the p main electrode by enclosing the p main electrode with the side surface of the die and the current blocking groove in this manner, light can be reliably extracted. Conversely, light propagating in the nitride semiconductor layer in the direction of the p main electrode can be extracted without being absorbed by the p main electrode.
[0011]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the total area of the both groove portions is 5 to 50% with respect to the light emitting surface. If it is less than this, the effect is small, and if it is more than this, the light emitting region is decreased, and the current density increases, resulting in a decrease in light emission efficiency and an increase in drive voltage.
[0012]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the depth of both grooves reaches the substrate. In the present invention, the substrate material is not particularly limited, and sapphire, SiC, GaN, AlN or the like can be used as the substrate, and the refractive index varies depending on the material of the substrate. . Here, the refractive index of each material is sapphire: about 1.8, SiC: about 2.8, GaN: about 2.5, AlN: about 2.2. When sapphire is used as the substrate, the refractive index is lower than that of the stacked GaN, so that light is preferentially guided to the epi side having a high refractive index. Therefore, in order to extract the guided light from the groove part to the outside of the epi, it is effective to form the groove to the substrate.
[0013]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the both groove portions penetrate the substrate. Furthermore, in the nitride semiconductor light emitting device of the present invention, the groove portion penetrates the substrate. If a substrate having a high refractive index, such as SiC, is used, light is preferentially guided through the substrate. Therefore, forming a groove so as to penetrate the substrate is effective in improving the light extraction efficiency. Even when a substrate with a low refractive index, such as sapphire, is used, not all light is guided in the epi, but naturally also in the substrate, and the thickness of the substrate compared to the epi thickness. Is so thick that the total amount of light guided in the substrate cannot be ignored. Therefore, the light extraction efficiency is improved regardless of the refractive index of the substrate.
[0014]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the width (w) of both the grooves is equal to or greater than the laminated film thickness on the substrate. The light guided in the epi is guided between the substrate interface and the epi surface, that is, within the epi thickness. Therefore, by setting the groove width to be equal to or greater than the epi thickness, the probability that the light emitted from the groove enters the epi again is reduced.
[0015]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the relationship between the width (w) of both the grooves and the depth (d) of the grooves is w / d ≧ 1. With such a configuration, the probability that the light emitted from the groove enters the epi again is reduced.
[0016]
Furthermore, in the nitride semiconductor light emitting device of the present invention, both the grooves have a taper angle. The light extraction efficiency can be further improved by having the taper angle. The width (w) of the groove in this case is defined not at the bottom of the groove but at the outermost surface.
[0017]
Furthermore, in the nitride semiconductor light emitting device of the present invention, a protective film is formed on the side surfaces of both the grooves. Since the protective film is short-circuited and the active layer is not exposed to the surface, an improvement in life can be expected.
[0018]
Furthermore, in the nitride semiconductor light emitting device of the present invention, the substrate has irregularities on the growth surface side. Using a specially processed substrate as shown in FIG. 6 further increases the light extraction efficiency. In FIG. 6, the hatched portion is a recess. It has regular triangle, rhombus, or regular hexagonal irregularities, and has the effect of scattering, diffracting and refracting light on the irregular surface. It is important that the uneven step has a dimension of 50 nm or more and less than the thickness of the semiconductor layer grown on the substrate. The reason is that if at least the emission wavelength (for example, 206 nm to 632 nm in the case of an AlGaInN-based light emitting layer) is λ, the light can be sufficiently scattered or diffracted if there is no depth or step of λ / 4 or more. On the other hand, if the depth of the recess or the step difference of the protrusion exceeds the thickness of the semiconductor layer grown on the substrate, the current becomes difficult to flow in the lateral direction in the stacked structure, and the luminous efficiency decreases. It is. Therefore, the surface of the semiconductor layer may be concave and / or convex. In order to sufficiently scatter or diffract light, the depth or step is preferably λ / 4 or more, but if the depth or step is λ / 4n (n is the refractive index of the semiconductor layer) or more. Scattering or diffraction effects can be obtained.
In addition, the size of the recess and / or the protrusion (that is, the length of one side that forms the side of the recess and / or the protrusion) and the interval between them are at least λ when the emission wavelength in the semiconductor is λ. It is important that the size is / 4 or more. On the other hand, if the size of the unevenness or the mutual interval is too large, the scattering surface is reduced, which is not appropriate. Therefore, 0.2-20 micrometers is preferable.
Furthermore, if the taper angle of 40 to 50 ° is formed rather than forming the irregularities perpendicular to the epitaxial growth surface, the extraction efficiency is further improved.
[0019]
Furthermore, in the nitride semiconductor light emitting device of the present invention, both the grooves are formed by etching. Etching is the easiest to form and has little variation.
[0020]
[Action]
In the nitride semiconductor light emitting device, the present inventors have not been able to effectively extract the light emitted immediately below the p main electrode, and conversely, the light propagates in the nitride semiconductor layer toward the p main electrode. Light is absorbed by the p main electrode, the light emission output is concentrated at the shortest distance between the pn main electrodes, the light is not emitted uniformly over the entire surface, and the ratio of the light emitting component emitted from the end face is relatively The present invention was found to be large and the present invention was completed. That is, according to the first aspect of the present invention, the end face of the light emitting region is etched inside the p main electrode in addition to the first end face light emitting part in the peripheral part of the element which is the end face light emitting part in the normal light emitting element. By forming the second end surface light emitting portion (light extraction groove and current confinement groove) exposed by processing, the second end surface light emitting portion functions as a light extraction window for light emitted immediately below the p main electrode, and the auxiliary electrode The light emitted below propagates directly under the p main electrode and is not absorbed by the p main electrode, and prevents an electrical short circuit between the pn electrodes, thereby preventing electrons from flowing into the lower part of the p main electrode. As a result, the light emission directly under the p main electrode can be reduced, and as a result, the current can be diffused over the entire epitaxial surface, and the entire epitaxial surface can be illuminated. Accordingly, the light extraction efficiency is improved and the total actual light emission amount itself is also improved. As a result, the external quantum efficiency can be remarkably improved.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a nitride semiconductor light emitting device according to the present invention. FIG. 1 (a) is a plan view of the nitride semiconductor light emitting device viewed from the laminated surface side, and FIG. -A 'sectional view taken on the line is shown. In the figure, 1 is a substrate, 21 is an n-type gallium nitride compound semiconductor layer, 22 is a p-type gallium nitride compound semiconductor layer, and 20 is an active layer. Hereafter, the manufacturing method of this invention is explained in full detail.
[0022]
As a semiconductor wafer, a nitride semiconductor layer configured to be an LED (light emitting diode) was formed on a spinel substrate. Specifically, on a spinel substrate, a GaN buffer layer, an n-type GaN contact layer, an n-type AlGaN cladding layer, an InGaN active layer having a multiple quantum well structure, a p-type GaN cap layer, a p-type AlGaN A clad layer and a p-type GaN contact layer are stacked. Current blocking grooves and light extraction grooves are formed from the epitaxial surface side of the semiconductor wafer. Etching (including both dry etching and wet etching) is preferable as a method for forming the groove, and it is possible to use an optical method by laser irradiation or a mechanical method such as a dicer or a scriber.
[0023]
(Nitride semiconductor wafer 100, 200, 300, 400, 500, 600)
As the nitride semiconductor wafers 100, 200, 300, 400, 500, and 600, the nitride semiconductor 2 is formed on the substrate 1. Various substrates such as sapphire, spinel, silicon carbide, zinc oxide, and gallium nitride single crystal can be used as the substrate 1 of the nitride semiconductor 2. In order to form a nitride semiconductor layer with good mass productivity and good crystallinity, sapphire A substrate, a spinel substrate or the like is preferably used.
[0024]
Nitride semiconductor (In X Ga Y Al 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) can be variously formed by a MOCVD method or HVPE method. A nitride semiconductor can be used as a semiconductor element by forming a PN junction, PIN junction, or MIS junction. Various semiconductor structures such as a homojunction, a heterojunction, and a double heterojunction can be selected. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor layer is thin enough to produce a quantum effect can be used.
[0025]
[0026]
The order of forming the grooves may be just before or after forming the electrodes. If the groove is formed immediately before the electrode is formed, it is necessary to mask the electrode material so as not to enter the groove when the second p auxiliary electrode is formed. Further, if the groove is formed immediately after the electrode is formed, it is necessary to form the groove together with the second p auxiliary electrode, and the method for forming the groove is limited.
[0027]
The current confinement groove and the light extraction groove may be formed separately, but it is not particularly necessary to form them separately, and the process can be simplified by forming them simultaneously. As a prior art, there is an example in which a light extraction groove is formed when an n contact layer for forming an n electrode is exposed (JP 2002-164574, JP 2002-26386, etc.). In order to achieve this, the current confinement groove needs to be deeper than the exposed surface of the n contact layer, so that it is difficult to form the groove in the same process. Therefore, although it depends on the formation method of the groove, it is preferable to carry out it in a separate process from the n contact layer exposure.
[0028]
【Example】
Example 1
A nitride semiconductor wafer was formed by laminating nitride semiconductors using MOCVD method with sapphire having a thickness of 425 μm and washed sapphire as a substrate. The nitride semiconductor was formed as a multilayer film so that it could be a light emitting device. First, a buffer layer having a thickness of about 200 Å was formed by flowing NH 3 (ammonia) gas, TMG (trimethyl gallium) gas, and hydrogen gas as a carrier gas at 510 ° C. as source gases.
[0029]
Next, after stopping the inflow of TMG gas, the temperature of the reactor was raised to 1050 ° C., and TMG gas and SiH 4 (silane) gas as a dopant gas were again flowed to act as an n-type contact layer of about 6 μm thick GaN Layers were formed.
[0030]
The active layer is made only with carrier gas and NH 3 and the temperature of the reactor is kept at 800 ° C., and then NH 3 (ammonia) gas, TEG gas, TMI (trimethylindium) as a source gas, and nitrogen gas as a carrier gas Then, a barrier layer made of undoped GaN is grown to a thickness of 200 angstroms, followed by a temperature of 800 ° C., and a well layer made of undoped In 0.4 Ga 0.6 N using TMG, TMI, and ammonia with a thickness of 30 angstroms. Grow with film thickness. Then, the barrier layer + well + barrier + well .... + barrier in the order of 5 barrier layers and 4 well layers are alternately stacked to form an active layer 20 having a multiple quantum well structure with a total film thickness of 1120 angstroms. Grow.
[0031]
In order to form a clad layer on the active layer, the inflow of TMG and TMI was stopped and the temperature of the reactor was kept at 1050 ° C., and then NH 3 (ammonia) gas, TMA (trimethylaluminum) gas, TEG gas, A GaAlN layer having a thickness of about 0.1 μm was formed as a p-type cladding layer by flowing nitrogen gas as a dopant gas and Cp 2 Mg (cyclopentadiermagnesium) gas and a carrier gas.
[0032]
Finally, the temperature of the reactor is maintained at 1050 ° C., and NH 3 (ammonia) gas, TMG gas, Cp 2 Mg gas as a dopant gas, and hydrogen gas as a carrier gas are allowed to flow to form a p-type contact layer with a thickness of about 0. A GaN layer having a thickness of 5 μm was formed. (The p-type nitride semiconductor layer is annealed at 400 ° C. or higher.)
The nitride semiconductor 2 thus formed is exposed to the n contact layer, the n-type contact layer is exposed, and then the second p auxiliary electrode 33 is formed, on which the first p auxiliary electrode 32 and The p main electrode is formed simultaneously. Thereafter, an n-electrode is formed and a protective film is formed. The process up to this point is the same as that of the prior art, and this is cut out as a 350 μm square chip as a reference A.
[0033]
Based on the reference A, a current confinement groove was formed up to the substrate vertically without an angle (FIG. 1A). As a result, the light extraction efficiency increased by 5% compared to Reference A.
[0034]
(Example 2)
In addition to Example 1, as shown in FIG. 2, a light extraction groove was formed vertically up to the substrate on the line connecting the p main electrode and the n electrode without forming an angle. As a result, the light extraction efficiency increased by 12% compared to Reference A.
[0035]
(Example 3)
In addition to Example 2, as shown in FIG. 3, a light extraction groove was formed substantially perpendicular to the element end face up to the substrate vertically without any angle. As a result, the light extraction efficiency increased by 16% compared to Reference A.
[0036]
(Example 4)
In Example 3, the current confinement grooves and the light extraction grooves were formed perpendicular to the epitaxial growth surface side of the substrate, but taper processing was performed. A taper angle of 50 ° was formed with respect to the vertical plane. As a result, the light extraction efficiency increased by 24% compared to Reference A.
[0037]
(Example 5)
The same processing as in Example 4 was performed, and a specially processed substrate was formed. Using the pattern shown in FIG. 6A, the length of one side of the equilateral triangle is 10 μm, the interval between adjacent sides is 4 μm, the depth of the unevenness is 0.8 μm, and the taper angle of the unevenness is 40 ° from the vertical direction. It was. As a result, 41% light extraction efficiency increased as compared with Reference A.
[0038]
(Example 6)
While Examples 1 to 5 were cut out as 350 μm square chips, examples using 1 mm square chips are given below. The semiconductor layers are stacked in the same manner as in Example 1, and both pn electrodes are formed in an electrode arrangement as shown in FIG. This state is referred to as reference B. As shown in FIG. 4, the current confinement grooves and the light extraction grooves are formed in a mesh pattern with respect to the reference B. The groove width at this time was 29 μm, the groove depth was up to the substrate, and the groove was formed perpendicular to the substrate without forming a taper. As a result, the light extraction efficiency increased by 40% compared to Reference B.
[0039]
(Example 7)
In comparison with Example 6, the groove was formed in the same manner except that a taper angle of 50 ° was formed in the direction perpendicular to the substrate. As a result, the light extraction efficiency increased by 62% compared to Reference B.
[0040]
(Example 8)
The same processing as in Example 7 was performed and formed on a specially processed substrate. Using the pattern shown in FIG. 6A, the length of one side of the equilateral triangle is 25 μm, the interval between adjacent sides is 10 μm, the depth of the unevenness is 0.8 μm, and the taper angle of the unevenness is 40 ° from the vertical direction. It was. As a result, the light extraction efficiency increased by 66% compared to Reference A.
[0041]
【The invention's effect】
According to the first aspect of the invention, the nitride light-emitting device includes an inner surface of the p main electrode in addition to the first end-surface light-emitting portion in the peripheral portion of the device, which is an end-surface light-emitting portion in a normal light-emitting device. The second end face light emitting portion (light extraction groove and current confinement groove) is formed by exposing the end face of the light emitting region by etching, thereby suppressing the inflow of electrons directly under the p main electrode. In addition, the light emission directly under the p main electrode can be suppressed, and the light emitted under the second p auxiliary electrode can be prevented from entering directly under the p main electrode. It acts as a take-out window and prevents an electrical short circuit between the pn electrodes. As a result, current can be diffused over the entire epi surface and the entire epi surface can be illuminated. Therefore, the light extraction efficiency is improved and the total actual light emission amount itself is also improved. As a result, the external quantum efficiency can be remarkably improved.
[Brief description of the drawings]
1A and 1B are diagrams showing an example of a nitride semiconductor light emitting device of the present invention, in which FIG. 1A is a schematic plan view thereof, and FIG. 1B is a schematic view taken along line AA ′ of FIG. It is sectional drawing.
FIG. 2 is a schematic plan view showing another example of the nitride semiconductor light emitting device of the present invention.
FIG. 3 is a schematic plan view showing another example of the nitride semiconductor light emitting device of the present invention.
FIG. 4 is a schematic plan view showing another example of the nitride semiconductor light emitting device of the present invention.
FIG. 5 is a schematic plan view showing an example of a conventional nitride semiconductor light emitting device.
FIG. 6 is a schematic pattern of a specially processed substrate that can be used in the nitride semiconductor light emitting device of the present invention.
FIG. 7 is a schematic plan view showing an example of a conventional nitride semiconductor light emitting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Nitride semiconductor 20 ... Active layer 21 ... n-type gallium nitride compound semiconductor 22 ... p-type gallium nitride compound semiconductor 31 ... p main electrode 32 ... First p auxiliary electrode 33 ... second p auxiliary electrode 4 ... n electrode 41 ... n main electrode 42 ... n auxiliary electrode 51 ... current confinement groove 52 ... light extraction Groove 100, 200, 300, 400, 500, 600 ... nitride semiconductor wafer

Claims (8)

サファイアからなる基板上に、少なくともn型窒化ガリウム系化合物半導体層と、活性層と、p型窒化ガリウム系化合物半導体層(InGaAl1−X−Y、0≦X、0≦Y、X+Y≦1)が順に積層され、基板に対し積層面側に少なくともpn1対の電極が形成され、n電極がn型窒化ガリウム系化合物半導体層を一部露出させたn電極形成面上に形成され、p電極が、p主電極と、p主電極からp型窒化ガリウム系化合物半導体層全面に電流を拡散させるためのp補助電極からなる窒化物半導体発光素子において、p主電極とn電極を結ぶ線上にp主電極を囲い込む光取り出し溝が形成され、該溝が少なくともn電極形成面よりも深いことを特徴とする窒化物半導体発光素子。On a substrate made of sapphire, at least an n-type gallium nitride-based compound semiconductor layer, an active layer, and a p-type gallium nitride-based compound semiconductor layer (In X Ga Y Al 1-XY , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) are sequentially stacked, at least a pn1 pair of electrodes are formed on the side of the stack surface with respect to the substrate, and the n electrode is formed on the n electrode formation surface where the n-type gallium nitride compound semiconductor layer is partially exposed. In the nitride semiconductor light emitting device in which the p electrode is composed of the p main electrode and the p auxiliary electrode for diffusing current from the p main electrode to the entire surface of the p-type gallium nitride compound semiconductor layer, the p main electrode and the n electrode are connected to each other. A nitride semiconductor light emitting device, wherein a light extraction groove is formed on the line so as to surround the p main electrode, and the groove is deeper than at least an n electrode formation surface. 前記光取り出し溝を網目状に設けることを特徴とする請求項1に記載の窒化物半導体発光素子。  2. The nitride semiconductor light emitting device according to claim 1, wherein the light extraction grooves are provided in a mesh shape. 前記光取り出し溝の深さが基板まで達している請求項1または2に記載の窒化物半導体発光素子。  The nitride semiconductor light emitting device according to claim 1, wherein a depth of the light extraction groove reaches the substrate. 前記光取り出し溝の幅(w)が基板上の積層膜厚以上である請求項1乃至3に記載の窒化物半導体発光素子。  4. The nitride semiconductor light emitting device according to claim 1, wherein a width (w) of the light extraction groove is equal to or greater than a laminated film thickness on the substrate. 前記光取り出し溝の幅(w)と溝の深さ(d)の関係がw/d≧1である請求項1乃至4に記載の窒化物半導体発光素子。  5. The nitride semiconductor light emitting device according to claim 1, wherein a relationship between a width (w) of the light extraction groove and a depth (d) of the groove is w / d ≧ 1. 前記光取り出し溝がテーパ角を有する請求項1乃至5に記載の窒化物半導体発光素子。  The nitride semiconductor light emitting device according to claim 1, wherein the light extraction groove has a taper angle. 前記光取り出し溝に保護膜が製膜されている請求項1乃至6に記載の窒化物半導体発光素子。  The nitride semiconductor light-emitting element according to claim 1, wherein a protective film is formed in the light extraction groove. 基板が成長面側に凹凸を有する請求項1乃至7に記載の窒化物半導体発光素子。  The nitride semiconductor light-emitting device according to claim 1, wherein the substrate has irregularities on the growth surface side.
JP2002248775A 2002-08-28 2002-08-28 Nitride semiconductor light emitting device Expired - Fee Related JP4325160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248775A JP4325160B2 (en) 2002-08-28 2002-08-28 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248775A JP4325160B2 (en) 2002-08-28 2002-08-28 Nitride semiconductor light emitting device

Publications (3)

Publication Number Publication Date
JP2004087930A JP2004087930A (en) 2004-03-18
JP2004087930A5 JP2004087930A5 (en) 2005-10-27
JP4325160B2 true JP4325160B2 (en) 2009-09-02

Family

ID=32056071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248775A Expired - Fee Related JP4325160B2 (en) 2002-08-28 2002-08-28 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4325160B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803648B2 (en) 2005-03-09 2010-09-28 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
KR100995804B1 (en) 2005-04-07 2010-11-22 주식회사 에피밸리 ?-nitride semiconductor light emitting device
JP4244953B2 (en) 2005-04-26 2009-03-25 住友電気工業株式会社 Light emitting device and manufacturing method thereof
TWI246210B (en) * 2005-04-28 2005-12-21 Epitech Corp Ltd Lateral current blocking light emitting diode and method for manufacturing the same
KR100597166B1 (en) * 2005-05-03 2006-07-04 삼성전기주식회사 Flip chip light emitting diode and method of manufactureing the same
JP4995432B2 (en) * 2005-05-18 2012-08-08 ローム株式会社 Semiconductor light emitting device
JP2007067257A (en) * 2005-09-01 2007-03-15 Kyocera Corp Light emitting element
JP5025199B2 (en) * 2005-09-20 2012-09-12 昭和電工株式会社 Group III nitride semiconductor light emitting device
KR100721150B1 (en) 2005-11-24 2007-05-22 삼성전기주식회사 Vertically structured gan type led device
KR20070111091A (en) * 2006-05-16 2007-11-21 삼성전기주식회사 Nitride semiconductor light emitting diode
JP5579435B2 (en) * 2007-06-15 2014-08-27 ローム株式会社 Nitride-based semiconductor device and manufacturing method thereof
KR101206523B1 (en) 2011-01-04 2012-11-30 갤럭시아포토닉스 주식회사 Light emitting diode having upper and lower fingers and light emitting diode package
JP5606403B2 (en) * 2011-06-28 2014-10-15 株式会社東芝 Semiconductor light emitting device
JP6042238B2 (en) * 2013-03-11 2016-12-14 スタンレー電気株式会社 Light emitting element
JP6165517B2 (en) * 2013-06-24 2017-07-19 スタンレー電気株式会社 Light emitting element
JP6185769B2 (en) * 2013-06-24 2017-08-23 スタンレー電気株式会社 Light emitting element

Also Published As

Publication number Publication date
JP2004087930A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
US6876009B2 (en) Nitride semiconductor device and a process of manufacturing the same
Yamada et al. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode
JP4325232B2 (en) Nitride semiconductor device
US6281524B1 (en) Semiconductor light-emitting device
US9236533B2 (en) Light emitting diode and method for manufacturing same
JP4325160B2 (en) Nitride semiconductor light emitting device
KR102007402B1 (en) Light emitting device
US9768346B2 (en) Light-emitting device
KR20110128545A (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
JP3576963B2 (en) Semiconductor light emitting device
EP2908352B1 (en) Light-emitting device
KR101445451B1 (en) Light emitting diode and method for producing the same
US6936864B2 (en) Semiconductor light emitting element
JP2004006662A (en) Gallium nitride compound semiconductor device
KR20140020028A (en) Uv light emitting device and light emitting device package
KR100661960B1 (en) Light emitting diode and manufacturing method thereof
JP2008091942A (en) Nitride semiconductor light emitting diode
JP2012009864A (en) Semiconductor light-emitting element
KR102317872B1 (en) Uv light emitting device and lighting system
KR20100137524A (en) A light emitting diode structure, a lamp device and a method of forming a light emitting diode structure
JP4360066B2 (en) Gallium nitride light emitting device
JP2008047850A (en) Nitride semiconductor light emitting diode
JP2007134443A (en) Nitride semiconductor light emitting diode
JP5543946B2 (en) Semiconductor light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees