JP4323444B2 - Oxygen and hydrogen generation method and apparatus used therefor - Google Patents

Oxygen and hydrogen generation method and apparatus used therefor Download PDF

Info

Publication number
JP4323444B2
JP4323444B2 JP2005059337A JP2005059337A JP4323444B2 JP 4323444 B2 JP4323444 B2 JP 4323444B2 JP 2005059337 A JP2005059337 A JP 2005059337A JP 2005059337 A JP2005059337 A JP 2005059337A JP 4323444 B2 JP4323444 B2 JP 4323444B2
Authority
JP
Japan
Prior art keywords
tank
electrolyte
magnetic
electrolytic solution
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059337A
Other languages
Japanese (ja)
Other versions
JP2006241527A (en
Inventor
晃一 森
大介 伊藤
保則 大塚
伸 山口
実雄 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2005059337A priority Critical patent/JP4323444B2/en
Publication of JP2006241527A publication Critical patent/JP2006241527A/en
Application granted granted Critical
Publication of JP4323444B2 publication Critical patent/JP4323444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電解液を電気分解して酸素と水素を発生させる酸素および水素の発生方法およびこれに用いる装置に関するものである。   The present invention relates to an oxygen and hydrogen generation method for electrolyzing an electrolytic solution to generate oxygen and hydrogen, and an apparatus used therefor.

従来から、水を電気分解して酸素と水素を発生させる酸水素ガス発生装置を用い、この装置で発生させた酸水素ガスを溶断用,ろう付け用等の燃焼ガス等として利用することがよく行われている。このような酸水素ガス発生装置では、長時間使用すると、上記電気分解を行う電解セル内でスラッジが発生するため、つぎのような問題を引き起こしている。すなわち、電解セル内の電極板にスラッジが堆積してこれら各電極板の表面積が小さくなるため、電解効率が低下し、酸水素ガスの発生量が低下する。しかも、上記各電極板間の間隔が狭いため、上記各電極板間にスラッジが溜まると、火花が飛びやすくなり、上記各電極板間で爆発がよく起こって各電極板が破損等する。しかも、フロートタイプ,光使用タイプ等の液面センサでは、スラッジにより電解液タンクの液面を正確に測定することができず、誤作動の原因となる。   Conventionally, an oxyhydrogen gas generator that generates oxygen and hydrogen by electrolyzing water is used, and the oxyhydrogen gas generated by this device is often used as a combustion gas for fusing, brazing, etc. Has been done. When such an oxyhydrogen gas generator is used for a long time, sludge is generated in the electrolysis cell that performs the electrolysis, causing the following problems. That is, since sludge is deposited on the electrode plates in the electrolytic cell and the surface area of each electrode plate is reduced, the electrolysis efficiency is reduced and the generation amount of oxyhydrogen gas is reduced. In addition, since the interval between the electrode plates is narrow, if sludge accumulates between the electrode plates, sparks are likely to fly, and explosions frequently occur between the electrode plates, causing damage to the electrode plates. In addition, the liquid level sensor such as the float type or the light use type cannot accurately measure the liquid level of the electrolyte tank by the sludge, which causes a malfunction.

そこで、通常は、電解液の通路にメッシュタイプのフィルタを設け、このフィルタで上記スラッジを除去するようにしている(例えば、特許文献1参照)。
特開2000−355782号公報
Therefore, a mesh type filter is usually provided in the electrolyte passage, and the sludge is removed with this filter (see, for example, Patent Document 1).
JP 2000-357882 A

しかしながら、上記のメッシュタイプのフィルタを設ける場合には、つぎのような問題がある。すなわち、フィルタのメッシュが早期に目詰まりし、この早期目詰まりによりフィルタの交換頻度が高くなり、ランニングコストが上がる。しかも、メッシュタイプのフィルタでは、メッシュの穴径より小さなスラッジを除去することができない。また、メッシュの穴径を小さくすると、さらに目詰まりが早くなるうえ、目詰まりしたまま使用し続けると、ポンプ等他の機器に悪影響を及ぼす。   However, when the mesh type filter is provided, there are the following problems. That is, the filter mesh is clogged at an early stage, and this early clogging increases the frequency of filter replacement, resulting in an increase in running cost. Moreover, the mesh type filter cannot remove sludge smaller than the mesh hole diameter. Further, if the mesh hole diameter is reduced, clogging is further accelerated, and if the mesh is used while clogged, it adversely affects other equipment such as a pump.

本発明は、このような事情に鑑みなされたもので、長期間にわたって目詰まりすることがなく、ランニングコストの上昇を防ぐことができ、しかも、微小なスラッジをも除去することができる酸素および水素の発生方法およびこれに用いる装置の提供をその目的とする。   The present invention has been made in view of such circumstances. Oxygen and hydrogen that can prevent clogging over a long period of time, prevent an increase in running cost, and can also remove fine sludge. It is an object of the present invention to provide a method for generating the above and an apparatus used therefor.

上記の目的を達成するため、本発明は、電解部内で電解液の電気分解により酸素および水素を発生させる酸素および水素の発生方法であって、上記電気分解時に上記電解部内のステンレス製電極板の溶出に起因して発生する磁性フェライトからなるスラッジを、上記電解部から電解液とともに導出したのち、磁気吸着手段により吸着して上記電解液から除去するようにした酸素および水素の発生方法を第1の要旨とし、電解液の電気分解により酸素と水素を発生させる電解部と、上記電気分解時に上記電解部内のステンレス製電極板の溶出に起因して発生する磁性フェライトからなり上記電解部から電解液とともに導出されたスラッジを吸着除去する磁気吸着手段とを備えた酸素および水素の発生装置を第2要旨とする。
To achieve the above object, the present invention is an oxygen and method of generating hydrogen for generating oxygen and hydrogen by electrolysis of the electrolyte solution in the electrolyte portion, stainless steel plate of the electrolytic portion during said electrolysis A method for generating oxygen and hydrogen in which sludge composed of magnetic ferrite generated due to elution of copper is led out together with the electrolytic solution from the electrolytic section and then adsorbed by a magnetic adsorption means to be removed from the electrolytic solution. a first gist, the electrolytic unit to generate oxygen and hydrogen by electrolysis of the electrolytic solution from the electrolytic unit of a magnetic ferrite caused by the dissolution of the stainless steel plate of the electrolytic portion during the electrolysis A second gist of the present invention is an oxygen and hydrogen generator equipped with magnetic adsorption means for adsorbing and removing sludge derived together with the electrolyte.

すなわち、本発明者らは、長期間にわたって目詰まりすることがなく、ランニングコストの上昇を防ぐことができ、しかも、微小なスラッジをも除去することができる酸素および水素の発生方法を得るための研究の過程で、電解部内に発生するスラッジは、電解部内での電気分解時に、電解部内に所定の間隔で多数配設されるステンレス製電極板の溶出に起因して発生する磁性フェライト等が堆積等してできたスラッジ(以下、「磁性スラッジ」という)を含んでおり、しかも、この磁性スラッジが、上記電解部内に発生するスラッジの大部分を占めている(上記電解部内に発生するスラッジ中、磁性スラッジが99.5重量%程度を占めている)ことを突き止め、一連の研究を重ねた。その結果、強磁性体は磁石に吸着されることから、磁石等を備えた磁気吸着手段を用いて磁性スラッジを除去することにより、電解部内に発生するスラッジを殆ど除去することができることを着想し、本発明に到達した。
That is, the present inventors have obtained a method for generating oxygen and hydrogen that can prevent clogging over a long period of time, prevent an increase in running cost, and can also remove fine sludge. in the course of research, sludge generated in the electrolytic portion, upon electrolysis of the electrolytic section, magnetic ferrite or the like caused by the elution of a large number arranged by Luz stainless steel electrode plates at a predetermined interval in the electrolyte portion is It includes sludge produced by deposition (hereinafter referred to as “magnetic sludge”), and this magnetic sludge occupies most of the sludge generated in the electrolysis section (sludge generated in the electrolysis section). Among them, magnetic sludge accounted for about 99.5% by weight) and repeated a series of studies. As a result, since the ferromagnetic material is attracted to the magnet, it is conceived that the sludge generated in the electrolysis part can be almost removed by removing the magnetic sludge using a magnetic attracting means equipped with a magnet or the like. The present invention has been reached.

すなわち、本発明の酸素および水素の発生方法は、電解部内で発生する磁性スラッジを、上記電解部から電解液とともに導出したのち、磁気吸着手段により吸着して上記電解液から除去するようにしているため、上記電解部から導出した電解液中の磁性スラッジを上記磁気吸着手段により吸着除去することができる。したがって、本発明の発生方法では、これを長時間使用しても、電解部内に多数配設されたステンレス製電極板に磁性スラッジが殆ど堆積することがなく、良好な電解効率を維持し、酸素,水素のガス発生量が低下することがない。しかも、上記各ステンレス製電極板間に磁性スラッジが殆ど溜まることがなく、上記各ステンレス製電極板間で爆発が起こって各ステンレス製電極板が破損等することがない。しかも、電解液を溜めるタンク内に磁性スラッジが殆ど溜まらないため、フロートタイプ,光使用タイプ等の液面センサを用い、タンクの液面を正確に測定することができ、誤作動が起こらない。しかも、磁気吸着手段として、メッシュ構造でないものを用いることにより、早期に目詰まりすることを防ぐことができる。このため、磁気吸着手段の交換頻度が低く、ランニングコストの上昇を防ぐことができるうえ、ポンプ等他の機器に悪影響を及ぼすこともない。しかも、磁気吸着手段の磁性を利用して磁性スラッジを吸着除去しているため、メッシュタイプのフィルタでは除去することができない、微小な磁性スラッジをも除去することができる。また、本発明の酸素および水素の発生装置によっても、上記優れた効果を奏する。
That is, in the method for generating oxygen and hydrogen according to the present invention, magnetic sludge generated in the electrolysis unit is led out together with the electrolyte from the electrolysis unit, and then adsorbed by a magnetic adsorption means and removed from the electrolyte. Therefore, the magnetic sludge in the electrolytic solution led out from the electrolysis unit can be adsorbed and removed by the magnetic adsorption means. Accordingly, the generation method of the present invention, the use of this long, without magnetic sludge is hardly deposited on the stainless steel electrode plates disposed number in the electrolyte portion, to maintain good electrolysis efficiency, Oxygen and hydrogen gas generation does not decrease. Moreover, the above-mentioned stainless steel electrode plates without magnetic sludge hardly accumulates, each stainless steel electrode plates in explosion occurred the stainless steel electrode plate is not damaged and the like. In addition, since magnetic sludge hardly accumulates in the tank in which the electrolyte is stored, the liquid level in the tank can be accurately measured using a liquid level sensor such as a float type or a light use type, and no malfunction occurs. Moreover, it is possible to prevent clogging at an early stage by using a magnetic adsorption means that does not have a mesh structure. For this reason, the replacement frequency of the magnetic attraction means is low, the increase in running cost can be prevented, and other devices such as a pump are not adversely affected. Moreover, since the magnetic sludge is attracted and removed using the magnetism of the magnetic attracting means, it is possible to remove even the minute magnetic sludge that cannot be removed by the mesh type filter. The oxygen and hydrogen generator of the present invention also exhibits the above excellent effects.

また、上記発生装置において、電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路とを備え、上記タンク内に磁気吸着手段を配設していると、上記タンク内で、上記磁気吸着手段内を通過する電解液中の磁性スラッジだけでなく、上記磁気吸着手段の近傍に滞留する電解液中の磁性スラッジをも上記磁気吸着手段で吸着除去することができる。   The generator includes a tank that stores the electrolytic solution, a supply path that supplies the electrolytic solution in the tank to the electrolytic unit, and a return path that extracts the electrolytic solution from the electrolytic unit and returns it to the tank. When the magnetic adsorption means is disposed in the tank, not only the magnetic sludge in the electrolytic solution passing through the magnetic adsorption means but also the electrolytic solution staying in the vicinity of the magnetic adsorption means in the tank. The magnetic sludge inside can also be removed by adsorption by the magnetic adsorption means.

特に、上記タンクの底部に供給路の電解液取出口を穿設し、この電解液取出口の近傍部分に上記磁気吸着手段を配設していると、上記タンク中に滞留する多量の電解液中の磁性スラッジがその自重でタンクの底部に沈降しながら、供給路の電解液取出口に向かって流動するため、多量の磁性スラッジを含んだ電解液が上記磁気吸着手段を通り、上記磁気吸着手段で多量の磁性スラッジを吸着除去することができる。   In particular, a large amount of electrolyte staying in the tank is obtained when an electrolyte outlet for the supply passage is formed in the bottom of the tank, and the magnetic adsorption means is disposed in the vicinity of the electrolyte outlet. Since the magnetic sludge inside sinks to the bottom of the tank by its own weight and flows toward the electrolyte outlet of the supply path, the electrolyte containing a large amount of magnetic sludge passes through the magnetic adsorption means, and the magnetic adsorption A large amount of magnetic sludge can be adsorbed and removed by the means.

また、上記発生装置において、電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路と、上記タンク内の電解液を取り出して上記タンク内に戻す循環路とを設け、この循環路に磁気吸着手段を配設していると、上記戻し路の電解液戻し口からタンク内に電解液とともに流入した酸素と水素は、気泡となってタンク内の電解液中を上昇するため、上記循環路には、酸素と水素が流入することがなく、これら酸素と水素が磁気吸着手段内に溜まって爆発等する危険がない。しかも、循環路に磁気吸着手段を配設しているため、循環路から磁気吸着手段を取り外しやすく、磁気吸着手段の交換が容易である。   Further, in the above generator, a tank for storing an electrolytic solution, a supply path for supplying the electrolytic solution in the tank to the electrolytic section, a return path for extracting the electrolytic solution from the electrolytic section and returning it to the tank, A circulation path for taking out the electrolytic solution in the tank and returning it to the tank is provided, and when a magnetic adsorption means is provided in the circulation path, the electrolytic solution flows into the tank from the electrolytic solution return port of the return path. Oxygen and hydrogen are bubbled and rise in the electrolyte in the tank. Therefore, oxygen and hydrogen do not flow into the circulation path, and these oxygen and hydrogen accumulate in the magnetic adsorption means and explode. There is no danger of equality. In addition, since the magnetic adsorption means is disposed in the circulation path, it is easy to remove the magnetic adsorption means from the circulation path, and the magnetic adsorption means can be easily replaced.

また、本発明の水素発生装置において、電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路とを備え、上記供給路と戻し路の少なくとも一方に磁気吸着手段を配設していると、上記電解部に導入しもしくは上記電解部から導出する全ての電解液を磁気吸着手段に通して磁性スラッジを吸着除去することが可能となり、吸着除去効果が大幅に向上する。   Further, in the hydrogen generator of the present invention, a tank for storing the electrolytic solution, a supply path for supplying the electrolytic solution in the tank to the electrolytic section, and a return path for extracting the electrolytic solution from the electrolytic section and returning it to the tank And at least one of the supply path and the return path is provided with a magnetic adsorption means, all the electrolyte solution introduced into the electrolysis section or led out from the electrolysis section is passed through the magnetic adsorption section and magnetized. The sludge can be removed by adsorption, and the adsorption removal effect is greatly improved.

しかも、供給路と戻し路の少なくとも一方に磁気吸着手段を配設しているため、上記一方から磁気吸着手段を取り外しやすく、磁気吸着手段の交換が容易である。   In addition, since the magnetic attracting means is disposed in at least one of the supply path and the return path, the magnetic attracting means can be easily removed from the one and the magnetic attracting means can be easily replaced.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の酸素および水素の発生装置の一実施の形態を示している。この実施の形態では、上記発生装置として、酸素と水素を酸水素混合ガスとして取り出す酸水素ガス発生装置を用いている。図において、1は電解液2(この実施の形態では、電解液2としてアルカリ水溶液が用いられる)を溜める電解液タンクであり、この電解液タンク1に設けた液面計(図示せず)により、電解液2の液面を常に一定レベルに保もち、これにより、上記電解液タンク1の内部に収容される電解液2の量を常に一定に保持するようにしている。3は上記電解液タンク1に補給水(純水等の水)を補給する補給管であり、上記液面計で検知した電解液2の液面が上記一定レベルより低い場合には、電解液タンク1に補給水を補給して電解液2の液面を上記一定レベルに保持する作用する。   FIG. 1 shows an embodiment of the oxygen and hydrogen generator of the present invention. In this embodiment, an oxyhydrogen gas generator that extracts oxygen and hydrogen as an oxyhydrogen mixed gas is used as the generator. In the figure, reference numeral 1 denotes an electrolytic solution tank for storing an electrolytic solution 2 (in this embodiment, an alkaline aqueous solution is used as the electrolytic solution 2). A liquid level gauge (not shown) provided in the electrolytic solution tank 1 is used. The liquid level of the electrolytic solution 2 is always kept at a constant level, so that the amount of the electrolytic solution 2 accommodated in the electrolytic solution tank 1 is always kept constant. Reference numeral 3 denotes a replenishment pipe for replenishing the electrolytic solution tank 1 with replenishment water (pure water or the like). When the liquid level of the electrolytic solution 2 detected by the level gauge is lower than the predetermined level, the electrolytic solution The tank 1 is replenished with replenishing water to keep the liquid level of the electrolyte 2 at the above-mentioned constant level.

4はポンプであり、このポンプ4により、上記電解液タンク1内の電解液2を供給管5に取り出して電解セル(電解部)6内へ導入し、この電解セル6を経由させたのち戻し管7に導出して電解液タンク1に戻すようにしている。上記電解セル6には、その内部に多数のステンレス製電極板(図示せず)が所定の間隔をあけて並設されており、これら各ステンレス製電極板に通電することにより、上記供給管5により導入した(すなわち、上記各ステンレス製電極板間に存在する)電解液2の一部を電気分解して酸素と水素を発生させ、これらを混合ガス(酸水素ガス)として電解液2とともに戻し管7に導出する作用をする。また、上記電解セル6の内部では、上記電気分解時に鉄分(上記各ステンレス製電極板の構成金属)が電解液2中に溶出することに起因して、強磁性体のフェライトからなる磁性スラッジが発生しており(この磁性スラッジで、電解液2中のスラッジの99.5重量%程度を占めている)、この磁性スラッジを含むスラッジが電解液2とともに戻し管7を経由して電解液タンク1に流入し、電解液タンク1内で底部に沈降する。
Reference numeral 4 denotes a pump. By this pump 4, the electrolytic solution 2 in the electrolytic solution tank 1 is taken out into the supply pipe 5 and introduced into the electrolytic cell (electrolytic part) 6, and then returned through the electrolytic cell 6. It is led out to the pipe 7 and returned to the electrolyte tank 1. In the electrolytic cell 6, inside a large number of stainless steel electrode plate (not shown) are arranged at a predetermined interval, by energizing the respective stainless steel electrode plates, the supply It was introduced by the pipe 5 (i.e., present in each stainless steel electrode plates) part of the electrolyte 2 electrolysis to generate oxygen and hydrogen and electrolyte them as a mixed gas (oxyhydrogen gas) 2 and the return pipe 7. Further, in the interior of the electrolytic cell 6, due to the iron when said electrolysis (constituent metals of each stainless steel electrode plate) is eluted into the electrolytic solution 2, magnetic sludge consisting of ferrite ferromagnetic (This magnetic sludge occupies about 99.5% by weight of the sludge in the electrolytic solution 2), and the sludge containing this magnetic sludge passes through the return pipe 7 together with the electrolytic solution 2 to the electrolytic solution. It flows into the tank 1 and settles to the bottom in the electrolyte tank 1.

8は上記電解液タンク1の上部空間に液化石油ガスを送給する送給管で、9は上記電解液タンク1の上部空間に溜まる酸水素混合ガスを導出する導出管で、10は上記導出管9に設けた熱交換器であり、上記導出管9に導出した酸水素混合ガスの温度を空冷により所定の温度にまで降下させる作用をする。11は上記熱交換器10を経由した酸水素混合ガス中の水分を除去する水分除去タンクで、12は上記水分除去タンク11で水分除去した酸水素混合ガスを製品燃焼ガスとして取り出す製品取出管である。13は開閉弁13a付き放出管であり、上記水分除去タンク11に溜めた排水を外部に放出する作用をする。   8 is a feed pipe for feeding liquefied petroleum gas to the upper space of the electrolyte tank 1, 9 is a lead pipe for leading out the oxyhydrogen mixed gas accumulated in the upper space of the electrolyte tank 1, and 10 is the lead-out pipe. It is a heat exchanger provided in the pipe 9 and acts to lower the temperature of the oxyhydrogen mixed gas led out to the outlet pipe 9 to a predetermined temperature by air cooling. Reference numeral 11 denotes a moisture removal tank that removes moisture in the oxyhydrogen mixed gas that has passed through the heat exchanger 10, and reference numeral 12 denotes a product take-out pipe that takes out the oxyhydrogen mixed gas from which moisture has been removed in the moisture removal tank 11 as product combustion gas. is there. Reference numeral 13 denotes a discharge pipe with an on-off valve 13a, which acts to discharge the waste water stored in the moisture removal tank 11 to the outside.

15はポンプであり、このポンプ15により上記電解液タンク1内の電解液2を電解液タンク1の下部(上記戻し管7の電解液戻し口7aより下側部分であり、この実施の形態では、電解液タンク1の底部)から循環管16に取り出し、この循環管16において、磁性スラッジを吸着して除去する磁気フィルタ(磁気吸着手段)17を経由させたのち、電解液タンク1の下部(上記戻し管7の電解液戻し口7aより下側部分)に戻すようにしている。   Reference numeral 15 denotes a pump. The pump 15 allows the electrolyte 2 in the electrolyte tank 1 to be placed under the electrolyte tank 1 (a part below the electrolyte return port 7a of the return pipe 7; in this embodiment, The bottom of the electrolyte tank 1 is taken out from the bottom of the electrolyte tank 1 and passed through a magnetic filter (magnetic adsorption means) 17 that adsorbs and removes magnetic sludge in the circulation pipe 16. The return pipe 7 is returned to the lower part of the electrolyte return port 7a.

上記磁気フィルタ17は、図2および図3に示すように、円筒形状のケース(筒状ケース)21と、このケース21の下部周壁に固定されたL字形状の入口管22と、上記ケース21の上部周壁から突設された出口管23と、上記ケース21の上面開口を蓋する蓋体24と、上記ケース21の内部に配設され上記蓋体24に溶接等により一体的に固定されたフィルタ本体25とで構成されており、上記蓋体24がケース21の上面開口部に固定ボルト等の固定手段(図示せず)により着脱自在に固定されている。また、上記入口管22は、そのL字形状の横管22aの一端部が上記ケース21の下部周壁から外側に突出して上記循環管16のうち、電解液タンク1の底部から延びる部分(上記磁気フィルタ17の上流側部分)16aに連結し、上記出口管23は、上記循環管16のうち、ポンプ15に連結する部分(上記磁気フィルタ17の下流側部分)16bに連結している。   As shown in FIGS. 2 and 3, the magnetic filter 17 includes a cylindrical case (cylindrical case) 21, an L-shaped inlet pipe 22 fixed to the lower peripheral wall of the case 21, and the case 21. The outlet pipe 23 projecting from the upper peripheral wall of the casing 21, the lid body 24 covering the upper surface opening of the case 21, and disposed inside the case 21 and integrally fixed to the lid body 24 by welding or the like. The lid body 24 is detachably fixed to the upper surface opening of the case 21 by a fixing means (not shown) such as a fixing bolt. In addition, the inlet pipe 22 has an end portion of the L-shaped horizontal pipe 22a that protrudes outward from the lower peripheral wall of the case 21 and extends from the bottom of the electrolyte tank 1 in the circulation pipe 16 (the magnetic field). The outlet pipe 23 is connected to a part of the circulation pipe 16 connected to the pump 15 (downstream part of the magnetic filter 17) 16b.

上記フィルタ本体25は、上記蓋体24の下面に溶接等により一体的に固定され上記蓋体24の下面から垂下する4本のねじ棒26(これら各ねじ棒26は、仮想円弧上に等間隔をあけて配設されている)と、円環状平板体からなる上下一対の固定板27,28と、円環状平板体からなり上記各ねじ棒26の内側に収まる大きさに形成された多数枚の磁石板29とを備えている。上記両固定板27,28には、その内周部に、半円弧状に切欠き形成された4つの切欠部27a,28aが等間隔をあけて形成されており(図4参照)、これら各切欠部27a,28aに上記各ねじ棒26の外側過半部分が挿通されている(図5参照)。また、上記各ねじ棒26の内側に上記各磁石板29が、その外周部を上記各ねじ棒26に近接させた状態で、上下方向に所定間隔で配設されており、上記各磁石板29に対応する上記各ねじ棒26の部分にそれぞれ上下一対のナット30a,30bがねじ止めされているとともに、これら両ナット30a,30bの内側部分で上記各磁石板29の外周部が挟持されて支受,固定されている(図5参照)。   The filter main body 25 is integrally fixed to the lower surface of the lid body 24 by welding or the like, and four screw rods 26 hanging from the lower surface of the lid body 24 (the screw rods 26 are equally spaced on a virtual arc. And a pair of upper and lower fixed plates 27 and 28 made of an annular flat plate, and a large number of pieces made of an annular flat plate and having a size that fits inside each screw rod 26 The magnet plate 29 is provided. The two fixing plates 27 and 28 are formed with four notches 27a and 28a formed in a semicircular arc shape at equal intervals on the inner peripheral portions thereof (see FIG. 4). The outer majority of each screw rod 26 is inserted into the notches 27a and 28a (see FIG. 5). The magnet plates 29 are arranged inside the screw rods 26 at predetermined intervals in the vertical direction with their outer peripheral portions being close to the screw rods 26. A pair of upper and lower nuts 30a, 30b are screwed to the respective screw rods 26 corresponding to the above, and the outer peripheral portions of the respective magnet plates 29 are sandwiched and supported by inner portions of the nuts 30a, 30b. It is received and fixed (see FIG. 5).

また、上記各ねじ棒26には、最下段の磁石板29の下側に下側固定板27が、また最上段の磁石板29の上側に上側固定板28が上下一対のナット31a,31bで固定されており(図5参照)、上記下側固定板27の内部空間に、上記入口管22のL字形状の縦管22bの上端開口部が位置決めされている。また、上記上側固定板28が、上記出口管23のすぐ下側に位置決めされている。   Each screw rod 26 has a lower fixing plate 27 below the lowermost magnet plate 29 and an upper fixing plate 28 above the uppermost magnet plate 29 with a pair of upper and lower nuts 31a and 31b. The upper end opening of the L-shaped vertical tube 22b of the inlet tube 22 is positioned in the internal space of the lower fixed plate 27 (see FIG. 5). The upper fixing plate 28 is positioned just below the outlet pipe 23.

上記の構成において、電解液タンク1に収容された電解液2を供給管5で取り出して電解セル6に供給し、ここで電解液2の一部を電気分解して酸水素混合ガスを発生させたのち電解液2とともに戻し管7に導出し、電解液タンク1に戻す。このとき、上記電気分解時に発生した磁性スラッジを、他のスラッジとともに電解液2中に混合させた状態で戻し管7に導出し、電解液タンク1に戻す。この電解液タンク1では、酸水素混合ガスと電解液2とが気液分離し、酸水素混合ガスは気泡となって電解液2を上昇し、上記電解液タンク1の上部空間に溜められる。そして、ここに溜めた酸水素混合ガスを、送給管8により送給される液化石油ガスと混合させ、熱交換器10,水分除去タンク11を経由させたのち製品取出管12から製品燃料ガスとして取り出す。   In the above configuration, the electrolytic solution 2 accommodated in the electrolytic solution tank 1 is taken out by the supply pipe 5 and supplied to the electrolytic cell 6, where a part of the electrolytic solution 2 is electrolyzed to generate an oxyhydrogen mixed gas. After that, it is led out together with the electrolytic solution 2 to the return pipe 7 and returned to the electrolytic solution tank 1. At this time, the magnetic sludge generated during the electrolysis is led out to the return pipe 7 in a state mixed with the other sludge in the electrolytic solution 2 and returned to the electrolytic solution tank 1. In the electrolytic solution tank 1, the oxyhydrogen mixed gas and the electrolytic solution 2 are separated into gas and liquid, and the oxyhydrogen mixed gas becomes bubbles and rises in the electrolytic solution 2, and is stored in the upper space of the electrolytic solution tank 1. Then, the oxyhydrogen mixed gas stored here is mixed with the liquefied petroleum gas fed by the feed pipe 8, passed through the heat exchanger 10 and the moisture removal tank 11, and then the product fuel gas from the product take-out pipe 12. Take out as.

一方、上記電解液タンク1に流入した(磁性スラッジを含む)スラッジは、上記電解液タンク1の下部(上記戻し管7の電解液戻し口7aより下側部分)側に沈降する(この電解液タンク1の下部に溜まる電解液2には、酸水素混合ガスの気泡が混入していない)。そして、この(磁性スラッジを含む)スラッジを含む電解液2を循環管16に導入し、この循環管16において、電解液2を磁気フィルタ17の各磁石板29の中央孔29a(図5参照)に通し、各磁石板29の磁気により電解液2の磁性スラッジを各磁石板29の表面に吸着させて電解液2から除去し、電解液タンク1に戻す。   On the other hand, the sludge that flows into the electrolyte tank 1 (including magnetic sludge) settles to the lower part of the electrolyte tank 1 (the lower part of the return pipe 7 from the electrolyte return port 7a) (this electrolyte solution). The electrolytic solution 2 accumulated in the lower part of the tank 1 is not mixed with bubbles of oxyhydrogen gas). Then, the electrolytic solution 2 containing the sludge (including magnetic sludge) is introduced into the circulation pipe 16, and the electrolytic solution 2 is introduced into the central hole 29 a of each magnet plate 29 of the magnetic filter 17 (see FIG. 5). The magnetic sludge of the electrolyte solution 2 is adsorbed on the surface of each magnet plate 29 by the magnetism of each magnet plate 29, removed from the electrolyte solution 2, and returned to the electrolyte solution tank 1.

例えば、電解液2中からスラッジを除去する場合に、メッシュタイプのフィルタ(穴径20μm)を用いると、全体の約60重量%程度のスラッジしか除去することができないのに対し、この実施の形態の磁気フィルタ17において、磁束密度400mTの磁石板29を20枚用いることにより、合計で95重量%のスラッジ(すべて磁性スラッジ)を各磁石板29に吸着,除去することができる。   For example, when removing sludge from the electrolyte 2, if a mesh type filter (hole diameter 20 μm) is used, only about 60% by weight of sludge can be removed. In the magnetic filter 17, by using 20 magnet plates 29 having a magnetic flux density of 400 mT, a total of 95% by weight of sludge (all magnetic sludge) can be adsorbed to and removed from each magnet plate 29.

上記のように、この実施の形態では、磁気フィルタ17を用いて電解液2中の磁性スラッジを吸着除去しているため、上記水素発生装置を長時間使用しても、電解セル6内に多数並設されたステンレス製電極板に磁性スラッジが殆ど付着することがなく、良好な電解効率を維持し、酸水素ガスの発生量が低下することがない。しかも、上記各ステンレス製電極板間に磁性スラッジが殆ど溜まることがなく、上記各ステンレス製電極板間で爆発が起こって各ステンレス製電極板が破損等することがない。しかも、電解液2を溜める電解液タンク1内に磁性スラッジが殆ど溜まらないため、液面センサ(フロートタイプ,光使用タイプ等)を用い、上記タンクの液面を正確に測定することができ、誤作動が起こらない。しかも、磁気フィルタ17では、磁石板29の磁性により磁性スラッジを吸着除去するため、微小な磁性スラッジをも除去することができる。しかも、磁気フィルタ17を通過する電解液2中には酸水素混合ガスの気泡が混入していないため、磁気フィルタ17のケース21内に上記気泡が溜って爆発するということもなく、安全である。しかも、磁気フィルタ17は、メッシュ構造のフィルタと比べ、電解液2の通路が広く、長期間にわたって目詰まりすることがない。したがって、磁気フィルタ17の交換頻度が低くなり、ランニングコストの上昇を防ぐことができるうえ、目詰まりしたまま使用し続けることもなく、上記両ポンプ4,15等他の機器に悪影響を及ぼすことがない。しかも、磁気フィルタ17の各磁石板29は半永久品であるため、コストをかけずにフィルタ性能を回復させることができる。しかも、筒状ケース21内に複数本のねじ棒26を配設し、各ねじ棒26にねじ止めしたナット30a,30b,31a,31bで各磁石板29,両固定板27,28を固定だけの簡単構造であり、清掃が簡単である。しかも、上記磁気フィルタ17の蓋体24にフィルタ本体25を一体的に固定しているため、蓋体24を取り外すだけでフィルタ本体25を取り外すことができ、交換作業が容易になる。 As described above, in this embodiment, the magnetic sludge in the electrolytic solution 2 is adsorbed and removed using the magnetic filter 17, so that even if the hydrogen generator is used for a long time, a large number of them are present in the electrolytic cell 6. without magnetic sludge in juxtaposed stainless steel electrode plate is hardly adhered, and maintain good electrolysis efficiency, the amount of oxyhydrogen gas is not lowered. Moreover, the above-mentioned stainless steel electrode plates without magnetic sludge hardly accumulates, each stainless steel electrode plates in explosion occurred the stainless steel electrode plate is not damaged and the like. Moreover, since almost no magnetic sludge accumulates in the electrolyte tank 1 that stores the electrolyte 2, the liquid level in the tank can be accurately measured using a liquid level sensor (float type, light use type, etc.) No malfunction occurs. In addition, since the magnetic filter 17 attracts and removes the magnetic sludge by the magnetism of the magnet plate 29, it is possible to remove even the minute magnetic sludge. Moreover, since the oxyhydrogen mixed gas bubbles are not mixed in the electrolyte solution 2 passing through the magnetic filter 17, the bubbles do not accumulate and explode in the case 21 of the magnetic filter 17, which is safe. . Moreover, the magnetic filter 17 has a wider passage for the electrolytic solution 2 than a mesh structure filter, and does not clog over a long period of time. Accordingly, the replacement frequency of the magnetic filter 17 is reduced, and an increase in running cost can be prevented. Further, the use of the magnetic filter 17 without clogging continues, and other devices such as the pumps 4 and 15 are adversely affected. Absent. Moreover, since each magnet plate 29 of the magnetic filter 17 is a semi-permanent product, the filter performance can be recovered without cost. In addition, a plurality of screw rods 26 are arranged in the cylindrical case 21, and the magnet plates 29 and the fixing plates 27, 28 are only fixed by the nuts 30a, 30b, 31a, 31b screwed to the screw rods 26. Simple structure and easy to clean. In addition, since the filter body 25 is integrally fixed to the lid body 24 of the magnetic filter 17, the filter body 25 can be removed simply by removing the lid body 24, and the replacement work is facilitated.

図6は本発明の酸素および水素の発生装置の他の実施の形態を示している。この実施の形態では、上記実施の形態において、戻し管7に磁気フィルタ17を設けている。したがって、この実施の形態では、電解液タンク1に循環管16を設けていない。それ以外の部分は上記実施の形態と同様であり、同様の部分には同じ符号を付している。   FIG. 6 shows another embodiment of the oxygen and hydrogen generator of the present invention. In this embodiment, the magnetic filter 17 is provided in the return pipe 7 in the above embodiment. Therefore, in this embodiment, the circulation pipe 16 is not provided in the electrolytic solution tank 1. Other parts are the same as those in the above embodiment, and the same reference numerals are given to the same parts.

この実施の形態でも、上記実施の形態と同様の作用・効果を奏する。しかも、戻し管7に磁気フィルタ17を配設しているため、電解セル6から導出した全ての電解液2を磁気フィルタ17に通して磁性スラッジ等を除去することが可能となり、吸着除去効果が大幅に向上する。しかも、戻し管7に磁気フィルタ17を配設しているため、戻し管7から磁気フィルタ17を取り外しやすく、磁気フィルタ17の交換が容易である。   This embodiment also has the same operations and effects as the above embodiment. In addition, since the magnetic filter 17 is disposed in the return pipe 7, it is possible to remove all the electrolyte 2 derived from the electrolytic cell 6 through the magnetic filter 17 and remove magnetic sludge, etc. Greatly improved. In addition, since the magnetic filter 17 is disposed on the return pipe 7, the magnetic filter 17 can be easily removed from the return pipe 7 and the magnetic filter 17 can be easily replaced.

図7は本発明の酸素および水素の発生装置のさらに他の実施の形態を示している。この実施の形態では、図1に示す実施の形態において、電解液タンク1の底部から、供給管5に連結する出口管33を延ばし、電解液タンク1の下部(上記戻し管7の電解液戻し口7aより下側部分)に磁気フィルタ17のフィルタ本体25を配設している(図8参照)。したがって、この実施の形態でも、上記電解液タンク1に循環管16を設けていない。   FIG. 7 shows still another embodiment of the oxygen and hydrogen generator of the present invention. In this embodiment, in the embodiment shown in FIG. 1, the outlet pipe 33 connected to the supply pipe 5 is extended from the bottom of the electrolyte tank 1, and the lower part of the electrolyte tank 1 (the electrolyte return of the return pipe 7 is returned). A filter main body 25 of the magnetic filter 17 is disposed on the lower side of the opening 7a (see FIG. 8). Therefore, also in this embodiment, the electrolytic solution tank 1 is not provided with the circulation pipe 16.

より詳しく説明すると、上記フィルタ本体25は、4本(図8では、4本のうち2本は隠れて見えない)のねじ棒26(これら各ねじ棒26は、仮想円弧上に等間隔をあけて配設されている)と、円環状平板体からなる上下一対の固定板27,28と、円環状平板体からなり上記各ねじ棒26の内側に収まる大きさに形成された多数枚の磁石板29とを備えている(図3および図5参照)。上記両固定板27,28には、その内周部に、半円弧状に切欠き形成された4つの切欠部27a,28aが等間隔をあけて形成されており(図4参照)、これら各切欠部27a,28aに上記各ねじ棒26の外側過半部分が挿通されている(図5参照)。また、上記各ねじ棒26の内側に上記各磁石板29が、その外周部を上記各ねじ棒26に近接させた状態で、上下方向に所定間隔で配設されており、上記各磁石板29に対応する上記各ねじ棒26の部分にそれぞれ上下一対のナット30a,30bがねじ止めされているとともに、これら両ナット30a,30bの内側部分で上記各磁石板29の外周部が挟持されて支受,固定されている(図5参照)。   More specifically, the filter body 25 has four screw rods 26 (two of the four are hidden and not visible in FIG. 8) (the screw rods 26 are equally spaced on a virtual arc). And a pair of upper and lower fixed plates 27 and 28 made of an annular flat plate, and a plurality of magnets made of an annular flat plate and having a size that fits inside each screw rod 26 And a plate 29 (see FIGS. 3 and 5). The two fixing plates 27 and 28 are formed with four notches 27a and 28a formed in a semicircular arc shape at equal intervals on the inner peripheral portions thereof (see FIG. 4). The outer majority of each screw rod 26 is inserted into the notches 27a and 28a (see FIG. 5). The magnet plates 29 are arranged inside the screw rods 26 at predetermined intervals in the vertical direction with their outer peripheral portions being close to the screw rods 26. A pair of upper and lower nuts 30a, 30b are screwed to the respective screw rods 26 corresponding to the above, and the outer peripheral portions of the respective magnet plates 29 are sandwiched and supported by the inner portions of these nuts 30a, 30b. It is received and fixed (see FIG. 5).

また、上記各ねじ棒26には、その下端部に、最下段の磁石板29の下側に下側固定板27が、また、その上端部に、最上段の磁石板29の上側に上側固定板28が上下一対のナット31a,31bで固定されており(図5参照)、上記上側固定板28に吊り上げ用フック34が固定されている。図8において、37は上記電解液タンク1に天蓋36をボルト止めする複数本(図8では、2本しか図示せず)のボルトで、38は送給管8に連結する接続管である。   Each screw rod 26 has a lower fixing plate 27 below the lowermost magnet plate 29 at its lower end, and an upper fixing at the upper end of the uppermost magnet plate 29 at its upper end. The plate 28 is fixed by a pair of upper and lower nuts 31a and 31b (see FIG. 5), and a lifting hook 34 is fixed to the upper fixing plate 28. In FIG. 8, reference numeral 37 denotes a plurality of bolts (only two are shown in FIG. 8) that bolt the canopy 36 to the electrolyte tank 1, and reference numeral 38 denotes a connection pipe connected to the feed pipe 8.

このような磁気フィルタ17のフィルタ本体25は、各磁石板29の中央孔29aが上記出口管33の上側に位置決めされた状態で、上記電解液タンク1の底壁35上に載置,固定されている。また、上記磁気フィルタ17を電解液タンク1から取り出す場合には、上記電解液タンク1の天蓋36を取り外し、吊り上げ用フック34とともにフィルタ本体25を持ち上げ、上記電解液タンク1の上面開口部から取り出すようにする。   The filter body 25 of the magnetic filter 17 is placed and fixed on the bottom wall 35 of the electrolyte tank 1 with the center hole 29a of each magnet plate 29 positioned above the outlet pipe 33. ing. Further, when taking out the magnetic filter 17 from the electrolyte tank 1, the canopy 36 of the electrolyte tank 1 is removed, the filter body 25 is lifted together with the lifting hook 34, and taken out from the upper surface opening of the electrolyte tank 1. Like that.

また、上記電解液タンク1内では、ここに留まる多量の電解液2がポンプ4のポンプ作用により出口管33側に吸引され、磁気フィルタ17を通過して出口管33に流入している。一方、上記電解液2中の(磁性スラッジを含む)スラッジはその自重で上記電解液タンク11の底部に沈降しながら、上記電解液2とともに磁気フィルタ17を通過し、この通過の際に、電解液2中の磁性スラッジが磁気フィルタ17の各磁石板29に吸着されて付着し、電解液2から除去される。それ以外の部分は、図1に示す実施の形態と同様であり、同様の部分には同じ符号を付している。   Further, in the electrolytic solution tank 1, a large amount of the electrolytic solution 2 remaining here is sucked to the outlet pipe 33 side by the pump action of the pump 4, passes through the magnetic filter 17, and flows into the outlet pipe 33. On the other hand, sludge (including magnetic sludge) in the electrolytic solution 2 passes through the magnetic filter 17 together with the electrolytic solution 2 while sinking to the bottom of the electrolytic solution tank 11 by its own weight. The magnetic sludge in the liquid 2 is adsorbed and attached to each magnet plate 29 of the magnetic filter 17 and is removed from the electrolytic solution 2. Other parts are the same as those in the embodiment shown in FIG. 1, and the same reference numerals are given to the same parts.

この実施の形態でも、図1に示す実施の形態と同様の作用・効果を奏する。しかも、電解液タンク1内では、ここに溜まる多量の電解液2中の磁性スラッジがその自重で電解液タンク1の底部に沈降しながら、電解液2とともに磁気フィルタ17に流入して、ここで吸着除去されるため、この磁気フィルタ17で多量の磁性スラッジを吸着除去することができる。   This embodiment also has the same operations and effects as the embodiment shown in FIG. Moreover, in the electrolytic solution tank 1, a large amount of magnetic sludge in the electrolytic solution 2 collected here flows into the magnetic filter 17 together with the electrolytic solution 2 while sinking to the bottom of the electrolytic solution tank 1 by its own weight. Since it is adsorbed and removed, a large amount of magnetic sludge can be adsorbed and removed by this magnetic filter 17.

なお、上記各実施の形態では、酸素と水素を酸水素混合ガスとして取り出しているが、これに限定するものではなく、酸素と水素を別々に取り出してもよい。また、上記各実施の形態では、水素発生装置として、酸水素ガス発生装置を用いているが、水等の電解液の電気分解により酸素と水素を発生させる電解セル6等の電解部を備えた水素発生装置であれば、どのようなものでも用いることができる。   In each of the above embodiments, oxygen and hydrogen are taken out as an oxyhydrogen mixed gas. However, the present invention is not limited to this, and oxygen and hydrogen may be taken out separately. In each of the above embodiments, an oxyhydrogen gas generator is used as the hydrogen generator, but an electrolysis unit such as an electrolysis cell 6 that generates oxygen and hydrogen by electrolysis of an electrolyte such as water is provided. Any hydrogen generator can be used.

また、上記各実施の形態では、フィルタ本体25の各ねじ棒26に各磁石板29を上下一対のナット30a,30bで支受,固定しているが、上側のナット30bを省略し、下側のナット30a上に各磁石板29を載置して下側のナット30aだけで支受するようにしてもよい。また、上記各実施の形態では、上記各ねじ棒26の内側に各磁石板29を配設しているが、上記各ねじ棒26を各磁石板29の内周部に近接させて(すなわち、各磁石板29の中央孔29aの外周部に)配設し(すなわち、上記各ねじ棒26の外側に、上記各ねじ棒26を取り囲むようにして各磁石板29を配設し)、上記各ねじ棒26にねじ止めした上下一対のナット30a,30bの外側部分で各磁石板29の内周部を挟持して支受,固定するようにしてもよい。この場合にも、上側のナット30bを省略することができる。また、上記各磁石板29として永久磁石を用いているが、電磁磁石を用いてもよい。   Further, in each of the above embodiments, each magnet plate 29 is supported and fixed to each screw rod 26 of the filter body 25 by a pair of upper and lower nuts 30a, 30b, but the upper nut 30b is omitted and the lower side. Alternatively, each magnet plate 29 may be placed on the nut 30a and supported only by the lower nut 30a. In each of the above embodiments, each magnet plate 29 is disposed inside each screw rod 26. However, each screw rod 26 is placed close to the inner peripheral portion of each magnet plate 29 (that is, (That is, on the outer periphery of the central hole 29a of each magnet plate 29) (that is, each magnet plate 29 is disposed outside each screw rod 26 so as to surround each screw rod 26). The inner peripheral portion of each magnet plate 29 may be clamped and supported by the outer portions of a pair of upper and lower nuts 30a and 30b screwed to the screw rod 26. Also in this case, the upper nut 30b can be omitted. Moreover, although the permanent magnet is used as each said magnet plate 29, you may use an electromagnetic magnet.

また、図7および図8に示す実施の形態において、磁気フィルタ17を電解液タンク1の上部(上記戻し管7の電解液戻し口7aより上側部分)に配設してもよい。また、上記各実施の形態において、非磁性のスラッジや夾雑物を除去するために、磁気フィルタ17とともにメッシュタイプのフィルタを併用してもよい。   Further, in the embodiment shown in FIGS. 7 and 8, the magnetic filter 17 may be disposed on the upper part of the electrolytic solution tank 1 (upper part from the electrolytic solution return port 7a of the return pipe 7). In each of the above embodiments, a mesh type filter may be used in combination with the magnetic filter 17 in order to remove nonmagnetic sludge and impurities.

本発明の水素発生装置の一実施の形態を示す構成図である。It is a block diagram which shows one Embodiment of the hydrogen generator of this invention. 磁気フィルタの断面図である。It is sectional drawing of a magnetic filter. 上記磁気フィルタの要部の断面図である。It is sectional drawing of the principal part of the said magnetic filter. 固定板の平面図である。It is a top view of a fixed board. フィルタ本体の要部の断面図である。It is sectional drawing of the principal part of a filter main body. 本発明の水素発生装置の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the hydrogen generator of this invention. 本発明の水素発生装置のさらに他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the hydrogen generator of this invention. 電解液タンクの説明図である。It is explanatory drawing of an electrolyte solution tank.

2 電極液
6 電解セル
17 磁気フィルタ
2 Electrode solution 6 Electrolysis cell 17 Magnetic filter

Claims (7)

電解部内で電解液の電気分解により酸素および水素を発生させる酸素および水素の発生方法であって、上記電気分解時に上記電解部内のステンレス製電極板の溶出に起因して発生する磁性フェライトからなるスラッジを、上記電解部から電解液とともに導出したのち、磁気吸着手段により吸着して上記電解液から除去するようにしたことを特徴とする酸素および水素の発生方法。 A method of generating oxygen and hydrogen to generate oxygen and hydrogen by electrolysis of the electrolyte solution in the electrolyte portion, made of a magnetic ferrite caused by the dissolution of the stainless steel plate of the electrolytic portion during the electrolysis A method for generating oxygen and hydrogen, wherein the sludge is led out together with the electrolytic solution from the electrolytic section and then adsorbed by a magnetic adsorption means to be removed from the electrolytic solution. 電解液の電気分解により酸素と水素を発生させる電解部と、上記電気分解時に上記電解部内のステンレス製電極板の溶出に起因して発生する磁性フェライトからなり上記電解部から電解液とともに導出されたスラッジを吸着除去する磁気吸着手段とを備えたことを特徴とする酸素および水素の発生装置。 An electrolytic unit for generating oxygen and hydrogen by electrolysis of the electrolytic solution, are derived with the electrolyte solution from the electrolyte part of a magnetic ferrite caused by the dissolution of the stainless steel plate of the electrolytic portion during the electrolysis And an oxygen and hydrogen generator comprising a magnetic adsorption means for adsorbing and removing sludge. 電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路とを備え、上記タンク内に磁気吸着手段を配設した請求項2記載の酸素および水素の発生装置。   A tank for storing the electrolyte, a supply path for supplying the electrolyte in the tank to the electrolysis unit, and a return path for extracting the electrolyte from the electrolysis unit and returning it to the tank, and magnetically adsorbing the tank The oxygen and hydrogen generator according to claim 2, wherein means are provided. 上記タンクの下部に供給路の電解液取出口を穿設し、この電解液取出口の近傍部分に上記磁気吸着手段を配設した請求項3記載の酸素および水素の発生装置。   4. The oxygen and hydrogen generator according to claim 3, wherein an electrolyte outlet for the supply passage is formed in a lower portion of the tank, and the magnetic adsorption means is disposed in the vicinity of the electrolyte outlet. 電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路と、上記タンク内の電解液を取り出して上記タンク内に戻す循環路とを設け、この循環路に磁気吸着手段を配設した請求項2記載の酸素および水素の発生装置。   A tank for storing the electrolytic solution, a supply path for supplying the electrolytic solution in the tank to the electrolytic unit, a return path for extracting the electrolytic solution from the electrolytic unit and returning it to the tank, and taking out the electrolytic solution in the tank The oxygen and hydrogen generator according to claim 2, further comprising a circulation path that returns to the tank, and a magnetic adsorption means is disposed in the circulation path. 電解液を収容するタンクと、このタンク内の電解液を電解部に供給する供給路と、上記電解部から電解液を導出して上記タンクに戻す戻し路とを備え、上記供給路と戻し路の少なくとも一方に磁気吸着手段を配設した請求項2記載の酸素および水素の発生装置。   A tank for storing the electrolyte, a supply path for supplying the electrolyte in the tank to the electrolysis unit, and a return path for extracting the electrolyte from the electrolysis unit and returning it to the tank, the supply path and the return path 3. The oxygen and hydrogen generator according to claim 2, wherein a magnetic adsorption means is disposed on at least one of the above. 上記磁気吸着手段が、円環状平板体の磁石板を複数同軸的に所定間隔で配設させた構成を有し、上記磁石板の中央孔が、上記スラッジを含む電解液の通路になっており、その電解液が上記磁石板の中央孔を通る際に上記スラッジを上記磁石板の表面に吸着させるようになっている請求項2〜6のいずれか一項に記載の酸素および水素の発生装置。   The magnetic attraction means has a configuration in which a plurality of annular plate magnet plates are arranged coaxially at a predetermined interval, and a central hole of the magnet plate is a passage for an electrolyte solution containing the sludge. The oxygen and hydrogen generator according to any one of claims 2 to 6, wherein the sludge is adsorbed on the surface of the magnet plate when the electrolyte passes through the central hole of the magnet plate. .
JP2005059337A 2005-03-03 2005-03-03 Oxygen and hydrogen generation method and apparatus used therefor Expired - Fee Related JP4323444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059337A JP4323444B2 (en) 2005-03-03 2005-03-03 Oxygen and hydrogen generation method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059337A JP4323444B2 (en) 2005-03-03 2005-03-03 Oxygen and hydrogen generation method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2006241527A JP2006241527A (en) 2006-09-14
JP4323444B2 true JP4323444B2 (en) 2009-09-02

Family

ID=37048219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059337A Expired - Fee Related JP4323444B2 (en) 2005-03-03 2005-03-03 Oxygen and hydrogen generation method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4323444B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2912213B1 (en) * 2013-02-01 2018-07-18 Serge V. Monros Oxy-hydrogen on-demand fuel system for internal combustion engines
JP6231296B2 (en) * 2013-05-16 2017-11-15 エア・ウォーター株式会社 Gas dehumidification apparatus and method
JP7446647B1 (en) 2022-08-26 2024-03-11 T・D・S株式会社 Oxyhydrogen mixed gas generator and oxyhydrogen mixed gas generation method

Also Published As

Publication number Publication date
JP2006241527A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US20070163877A1 (en) Apparatus and method for generating hydrogen from water
JP4323444B2 (en) Oxygen and hydrogen generation method and apparatus used therefor
KR20070056054A (en) Purification device, insert and method of purifying a liquid
CN101342515A (en) Electromagnetic type powder magnetic separator
WO2011152221A1 (en) Device for supplying electrolyte solution
CN201641610U (en) Electromagnetic water heater
CN102297115A (en) Automatic blowdown device for air compressor
KR100950093B1 (en) Apparatus for filtering and softening supply water and boiler comprising the same
KR20070003308A (en) Ionized cooling water system
JP5455942B2 (en) Ozone liquid generator, water purifier and cleaning method thereof
KR20090030555A (en) Brown's gas generator having forced circulated water cooling system
KR20110083812A (en) Magnetic separator
CN107098446A (en) A kind of magnetic adsorption type water treatment facilities
JP2006305466A (en) Metal powder capturing apparatus, capturing method of metal powder, production apparatus of metal powder and production method of metal powder
JP2013128890A (en) Oil-water separator and drain water purification system
CN217526566U (en) Circulating water filtering device
CN207091072U (en) A kind of magnetic adsorption type water treatment facilities
CN109311708A (en) Tourmaline processing unit and cooling water recirculation system with the tourmaline processing unit
US354853A (en) Samuel g
KR20130065400A (en) Apparatus for purification of condenser wastewater of thermal power plant using superconducting magnetic separator
KR100545296B1 (en) The filter and purifier water tank using the same
CN203725257U (en) Novel magnetic fuel gas filter
US20050279687A1 (en) Pressurized gas-water mixing device
CN213435012U (en) Fluid iron remover
CN213327166U (en) Machining effluent treatment plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees