JP4322497B2 - Split type gas lubricated foil bearing - Google Patents

Split type gas lubricated foil bearing Download PDF

Info

Publication number
JP4322497B2
JP4322497B2 JP2002353490A JP2002353490A JP4322497B2 JP 4322497 B2 JP4322497 B2 JP 4322497B2 JP 2002353490 A JP2002353490 A JP 2002353490A JP 2002353490 A JP2002353490 A JP 2002353490A JP 4322497 B2 JP4322497 B2 JP 4322497B2
Authority
JP
Japan
Prior art keywords
foil
bearing
top foil
bearing housing
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002353490A
Other languages
Japanese (ja)
Other versions
JP2004183830A (en
Inventor
達雄 山下
誠 三上
均 榊田
耕太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002353490A priority Critical patent/JP4322497B2/en
Publication of JP2004183830A publication Critical patent/JP2004183830A/en
Application granted granted Critical
Publication of JP4322497B2 publication Critical patent/JP4322497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、横置き型小型高速ガスタービン発電システムなどに用いられる気体潤滑式フォイル軸受に関する。
【0002】
【従来の技術】
従来の気体潤滑式フォイル軸受を図13の断面図を参照して説明する。フォイル軸受は回転軸1を支持する軸受面を構成するリング形状をしたトップフォイル2を持ち、トップフォイル2の外周側にはこれを支持するリング形状をしたバンプフォイル3が設けられている。さらにバンプフォイル3はリング形状をした軸受ハウジング4の内面とトップフォイル2に接触し、トップフォイル2を支持している。トップフォイル2とバンプフォイル3は固定部6で軸受ハウジング4に接合され、その位置を固定している。
【0003】
回転軸1が回転している時に、回転軸1は、軸表面の摩擦によって気体を巻き付けながら回転しており、トップフォイル2の軸受面との間に気体を巻き込み隙間が生じる。さらに回転軸1が回転することによりこの隙間内に気体が流れ込み、気体膜5が形成され軸受面の潤滑が行われる。すなわち回転軸1が回転すると軸受面との間にクサビ状の気体膜5を生じ、この気体膜5を介して回転軸1が支持されている。
【0004】
ところで、フォイル軸受は前述したようにリング形状となっており、回転軸の軸受部分を組立てるときには回転軸の軸受部にあらかじめ回転軸の軸長手方向からフォイル軸受を挿入し、回転軸ごと軸受を所定の位置へ固定する必要がある。したがって、回転軸の軸端部の外周直径はフォイル軸受の内周直径より小さく設計しておかなければならない。そのため回転軸の軸連結部分の伝達動力、伝達トルクに制限が生じ回転機器の基本仕様に影響を及ぼす場合がある。
【0005】
また、回転軸は停止中において、自重により大きく下方へ偏心して回転軸表面と軸受表面は接触している。回転軸が回転することにより、軸表面の摩擦による気体の巻き込みが生じ、回転軸表面と軸受表面との間に気体膜が生じるものの低速回転時では気体の巻き込み量が少なく、回転軸を支える気体膜は膜厚さが薄く気体膜による押し上げ量が少ない。そのため、回転軸中心は軸受中心から下方へ偏芯した状態で回転する。回転速度が上昇することにより、気体の巻き込み量が増加して気体膜が厚くなり、回転軸が浮上し、回転軸の中心位置は軸受の中心位置に対する偏芯が減少していく。
【0006】
横置型の小型高速ガスタービン発電システム等では、ユニットを起動するために起動モータにより駆動する。起動モータに電流を流すとモータは作動し、回転し始めるが、同時に回転軸に対して電磁吸引力が起動モータの回転子に作用する。電磁吸引力は、回転子の固定子との距離が最も近い位置に鉛直下向きに作用する。この電磁吸引力は起動モータ固定子と回転子との間隙(ギャップ)が狭い程強く作用する。前述の通り回転軸は停止時において自重により大きく下方へ偏心していることから、起動モータの固定子に対して回転子は、鉛直下方の隙間が小さくなり、起動時には鉛直方向下向きに強い電磁吸引力が回転軸に作用する。また、低速回転時では軸表面の摩擦による気体の巻き込み量が少なく、回転軸を支える気体膜は膜厚さが薄く気体膜による押し上げ量が少ない。
【0007】
したがって、起動時には回転軸が鉛直下方に大きく引き寄せられ回転摩擦が大きく発生するので、起動モータに大トルクを発生させる性能が要求される。また、フォイル表面と回転軸表面との間に焼き付きなどが生じて、ユニットが起動できなくなることがある。つまり軸受の中心と起動モータの中心が一致している状態で起動しようとすると、回転軸の支持部である軸受部において鉛直下方に回転軸が偏芯して前述のような過大な摩擦が生じ、ユニットの起動ができなくなることがある。
【0008】
【発明が解決しようとする課題】
小型高速ガスタービン発電システムは、駆動用ガスタービンと起動モータを兼ねた発電機からなり、互いの回転軸はカップリングフランジにより連結されている。各回転軸は軸受を持つが、連結用のカップリングフランジにより内側に設けられている場合が多い。したがって、従来のリング形状をしたフォイル軸受を持つ小型高速ガスタービン発電システムでは、軸受部分の組立作業は回転軸を軸受に挿入しなければならないため、回転軸の連結用カップリング外周直径は軸受の内周直径より小さくする必要がある。
【0009】
一方、カップリングフランジの外周直径等のカップリングの形状は回転軸の強度にかかわるものであり、伝達トルクを制限するパラメータとなる。さらに、カップリングの形状は互いのカップリングを連結するカップリングフランジの締結用ボルトの形状を制限する。カップリングフランジの締結用ボルトの形状が小さくなると、取付け取外しの作業性が悪くなる場合が多い。また軸受部分の点検時には回転軸ごと軸受を分解し、各回転軸端部から軸受を抜き取り内部を点検することとなり、比較的装置の分解範囲が広くなる。このように従来のリング形状をしたフォイル軸受では形状に関する問題がある。
【0010】
また、横置型の小型高速ガスタービン発電システムでは、発電効率を向上させる観点から減速装置などを介在することなく、ガスタービンの回転軸は発電機の回転子とカップリングフランジで直接連結されていることが一般的である。そして、システム起動時にガスタービンが着火するまで、着火に必要な圧縮空気をガスタービンに送り込むために、低速回転数でのクランキング運転が必要となる。
【0011】
従って、従来の技術で述べたように、起動時(停止時〜低速回転時)の回転軸の偏芯が大きい時に強く作用する電磁吸引力により、必要な起動トルクが増大してシステムを起動できなかったり、フォイルに焼き付きが発生して軸受に関する不具合が生じたりする危険性がある。
【0012】
本発明は、上記事情に鑑みてなされたもので、その課題は、フォイル軸に制約されずに動力伝達軸の形状を決めることができ、かつ起動時のトルクを低減し、軸受面の焼き付きを防止可能とした分割型気体潤滑式フォイル軸受を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の分割型気体潤滑式フォイル軸受の発明は、軸受ハウジングを円周方向に2分割し、分割した各軸受ハウジングの内周側にバンプフォイルを配置し、このバンプフォイルの内周側にトップフォイルを配置し、前記各軸受ハウジングにトップフォイルおよびバンプフォイルの一端がねじで取付けられる分割型気体潤滑式フォイル軸受において、
前記トップフォイルの固定していない側の端部の半径方向の位置を軸受ハウジング側に配置した位置調整機構により任意の位置に調整し、トップフォイルの曲率を調整し、軸受気体膜厚さおよび軸受中心位置を変化させることが可能な構成されていることを特徴とする。
【0014】
請求項1によると、フォイル軸に関して、軸受ハウジングを円周方向に2分割し、その円弧にあわせトップフォイルとバンプフォイルもそれぞれ円弧形状に分割する。各々の軸受ハウジングの内面にトップフォイルとバンプフォイルは接合固定されており、また分割したフォイル軸受は各々円弧状の独立したフォイル軸受を構成することが可能な構造である。
【0017】
また、フォイル軸受に関して、軸受ハウジングを円周方向に2分割し、その円弧に合わせトップフォイルとバンプフォイルもそれぞれ円弧状に分割する。トップフォイルとバンプフォイルは、分割した軸受ハウジングの分割部の側面に固定ねじで固定されている。分割したフォイル軸受は各々円弧状の独立した分割片を構成することが可能な構造である。
【0019】
更に、円周方向に2分割した軸受ハウジングの円周方向の側面にトップフォイルとバンプフォイルの一端を固定ねじで固定しているフォイル軸受において、軸受ハウジングのトップフォイルとバンプフォイルが固定されていない端部の外周面側から軸受の半径方向内側に向かって軸受ハウジングを貫通するトップフォイル位置調整機構を設ける。トップフォイル位置調整機構の先端は、トップフォイル及びバンプフォイルが固定されていない側の先端部分に外周側から接触しており、トップフォイルの当該先端部分を軸受の内周側に押し付けることが可能で、弾性変形範囲内でトップフォイルとバンプフォイルの先端部分の半径方向位置を任意に調整することができる。トップフォイルは曲げ方向に対して適切な剛性を持つようにあらかじめ調整してあり、固定されていない側のトップフォイルの端部をトップフォイル位置調整機構で半径方向内側に押し付けると、トップフォイルの曲率半径は小さくなる。と同時に、バンプフォイルはトップフォイルに内周側から押し付けられる。バンプフォイルもあらかじめ適切な曲げ剛性を持つように調整しておき、弾性変形範囲内でトップフォイルを支持する位置を変えることが可能である。このようにトップフォイル位置調整機構を調整することにより、回転軸の表面とフォイル軸受の表面との隙間を任意に変化させることができ、かつフォイル軸受の中心位置を変化することができる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は、本発明の第1実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、軸受ハウジング4の内周側にバンプフォイル3を配置し、バンプフォイルの内周側にトップフォイル2を配置している。トップフォイル2は回転軸1の外周面との間に適切な隙間が確保できるような直径を保ち、軸受面を形成しており回転軸1を支持している。ここで軸受ハウジング4は円周180°分の半円弧の形状をしており、2つの軸受ハウジングを組み合わせてリング状の軸受を形成する。軸受ハウジング4の内周面には同様に円周180°分の半円弧の形状をしたバンプフォイル3を配置し、その接触部分7は互いに離れないように接合する。このように半円弧形状の2つの独立したフォイル軸受の分割片を締結ねじ8で締結しリング状のフォイル軸受となる。
【0034】
分割型フォイル軸受は、まず半円弧状の下半側の分割片を装置架台の軸受支持位置に置き、その軸受面上に回転軸を置く。さらに上半側の分割片を回転軸の上からかぶせ下半側の分割片に締結してリング状の軸受を形成する。上半と下半のフォイル軸受の分割片は、軸受の水平部付近の接合部分に締結用のねじを設けておき互いに締結する。締結ねじ8は、上半側の分割片の軸受ハウジングの接合面に垂直に貫通する貫通穴9を通り下半側の分割片の軸受ハウジングの接合面に垂直にあけられたねじ穴10に入る。上半側の分割片の接合面にあけられた貫通穴9の軸受ハウジング4の外周面側の出口は斜めに貫通しており、締結ねじ8を締付けたときにねじの座面が軸受ハウジング4に斜めに接触するため、締結ねじ8の締め付け座面が確保できるように軸受ハウジング4の当該部分に座ぐり11を設けておく。このようにしてフォイル軸受を半円弧状に分割しておくことによって回転軸1を軸受に軸長手方向から挿入する必要がなくなり、回転軸1のカップリング部の形状を軸受内周直径に影響されずに決定することが可能となる。
【0035】
上述したように、本実施形態によると、回転軸端のカップリングフランジの大きさおよびカップリング部の形状をフォイル軸受の内周直径に影響されず、決定可能となり、回転軸の伝達動力を自由に選定できるようになる。さらに、カップリングフランジの締結用ボルトなどのカップリング部の構造を作業性を考慮した設計にすることができる。また、軸受部分の分解範囲が狭くなり、点検、修理作業が容易に行えるようにすることができる。
【0036】
さらに起動時にフォイル軸受中心を調整することができ、回転軸の支持位置を任意に変位させ起動モータの電磁吸引力を低減させ、起動トルクを低減し、かつ軸受面の焼き付きを防止することが可能となり、起動から負荷運転、停止までいかなる回転速度においても安定した軸受の支持状態を確保することができる。
【0037】
図2は本発明の第2実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、軸受ハウジング4の内周側にバンプフォイル3を配置し、バンプフォイル3の内周側にトップフォイル2を配置している。トップフォイル2は回転軸1の外周面との間に適切な隙間が確保できるような直径を保ち、バンプフォイル3と軸受ハウジング4に支持されて軸受面を形成している。ここで軸受ハウジング4はリング状の軸受を複数の円弧形状の軸受ハウジングに分割した分割片にする。軸受ハウジング4の内周面には同様に適切な弧角の円弧の形状をしたバンプフォイル3を配置し、その接触部分7は互いに離れないように接合する。このように適切な弧角の円弧形状をした軸受ハウジング4に同様な円弧形状をしたバンプフォイル3とトップフォイル2を接合した独立している円弧形状のフォイル軸受の分割片を互いに締結ねじ8で組み合わせてリング状のフォイル軸受に組立てる。
【0038】
フォイル軸受は、図1の第1実施形態と同様に下半側の複数のフォイル軸受を軸受けの支持位置に置き、その軸受面上に回転軸を置く。さらに上半側の複数のフォイル軸受を回転軸の上からすでに組立てた下半側の複数のフォイル軸受の上にかぶせリング状の軸受に組立てる。フォイル軸受の分割片は、円周方向端面の接合部分に締結ねじ8を設けておき互いに締結する。締結ねじ8は、一方のフォイル軸受の分割片の接合面に垂直に貫通する貫通穴9を通り他方のフォイル軸受の分割片の接合面に垂直にあけられたねじ穴10に入る。
【0039】
一方の分割片の接合面にあけられた貫通穴9の軸受ハウジングの外周面側の出口は、斜めに貫通しており、締結ねじ8を締め付けたときにねじの座面が軸受ハウジングに斜めに接触するため、締結ねじ8の締め付け座面が確保できるように軸受ハウジングの当該部分に座ぐり11を設けておく。こうして円弧状に分割された分割片を互いに連結し、装置全体を組立てるときに回転軸の下側に入る分割片と、上にかぶさる分割片を必要に応じて分けて組立てることによって回転軸を軸受に軸長手方向から挿入する必要がなくなり、回転軸のカップリング部の形状を軸受内周直径に影響されずに決定することが可能となる。本実施形態も第1実施形態と同様な効果を奏する。
【0040】
図3は、本発明の第3実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、軸受ハウジング4の内周側にバンプフォイル3を配置し、バンプフォイル3の内周側にトップフォイル2を配置している。トップフォイル2は回転軸1の外周面との間に適切な隙間が確保できるような直径を保ち、軸受面を形成しており回転軸1を支持している。ここで軸受ハウジングは円周180°分の半円弧の形状をしており、2つの軸受ハウジング4を組み合わせてリング状の軸受を形成する。バンプフォイル3とトップフォイル2は円周方向の一端に固定板12を持ち、固定板12は軸受ハウジング4の分割面の一端に固定ねじ13で固定する。トップフォイル2とバンプフォイル3の固定板12は軸受ハウジングの形に合わせて軸受支持面に対して折り曲げておく。
【0041】
固定ねじ13の取り付け部分は、上半側のフォイル軸受の分割片と下半側のフォイル軸受の分割片の締結面でもあるため、上下半の分割片を締結したときに各フォイルの固定ねじの頭部が干渉しないように一方の分割片の軸受ハウジングにあるフォイルの固定面に対面する他方の分割片の軸受ハウジングの締結面にフォイル固定用ねじの頭部が入る大きさの座ぐり部分を設けておく。上下半のフォイル軸受の分割片は第1実施形態と同様に締結ねじ8によってリング状のフォイル軸受けに組立てることができ、軸受の内周直径にかかわらず回転軸軸端部のカップリング形状を決めることが可能である。
【0042】
また、軸受ハウジング4の内周面とバンプフォイル3、バンプフォイル3とトップフォイル2の接触部分7は回転軸1を支持することにより付加される荷重で接触しているだけで接合はしない。したがって、回転軸1の振れまわりなどにより生じる振動で各接触部分7は自由に動くことが可能であり、互いにこすれあうことによって摩擦抵抗が発生し、振動の減衰効果を得ることが期待できる。さらにトップフォイル2とバンプフォイル3は固定ねじ13で軸受ハウジング4に固定しているので、トップフォイル2の軸受面に摩耗などの劣化が生じ、軸受機能が維持できなくなった場合、あるいはトップフォイル、バンプフォイル、軸受ハウジングに接触部分の摩耗が著しくなり、軸受の機能が維持できなくなった場合に、固定ねじ13を取り外し、必要なものだけを交換することによって、再び軸受の機能を回復することが可能である。本実施形態も第1実施形態と同様の効果を奏する。
【0043】
図4は本発明の第4実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、図3の第3実施形態のトップフォイルとバンプフォイルを備える半円弧に分割したフォイル軸受で、トップフォイル2の固定端と反対側の端部にトップフォイル位置調整機構14を持っている。軸受ハウジング4のトップフォイル2とバンプフォイル3の固定面と反対側の端部に軸受ハウジングの外周側から半径方向へ内周側に向けてトップフォイル位置調整ねじ穴14aを設ける。トップフォイル位置調整ねじ14bは、ねじ穴14aを貫通し、その先端はトップフォイル2の固定端と反対側の端部に接触しており、トップフォイル位置調整ねじ14bを締めこむことにより、ねじの先端は軸受ハウジング4の内周側に移動し、トップフォイル2の端部の位置を内周側に変位させることができる。トップフォイル2は曲げ方向に対して適切な剛性を確保してあり、トップフォイルの固定されていない側の端部を半径方向内側に押し付けると、トップフォイルの曲率半径は弾性変形範囲内で小さくなる。このときバンプフォイル3はトップフォイル2に内周側から押し付けられるが、バンプフォイル3も適切な曲げ剛性を持ち、弾性変形範囲内でトップフォイル2を支持する位置を変えることが可能であり、トップフォイル2により構成される軸受中心を移動することが可能となる。したがって運転状態に合わせてトップフォイル位置調整ねじ14bを調整することにより、回転軸1に対して適切な軸受中心の位置を得ることができ、安定した運転が可能となる。本実施形態も第1実施形態と同様の効果を奏する。
【0044】
図5は本発明の第5実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、図3の第3実施形態の円周180°分の半円弧に分割した軸受ハウジングの分割片の側面にトップフォイル2とバンプフォイル3の一端を固定ねじ13で固定しているフォイル軸受において、軸受ハウジング4の円周方向90°位置にあたる半円弧の中央部にトップフォイル2とバンプフォイル3の半径方向位置調整ブロック15を設ける。トップフォイル位置調整ブロック15は、先端がコの字型になっており、軸受けハウジング4の中央部に外周側からコの字をかぶせるように置く。コの字の先端は帯状のトップフォイル2の周方向の中央部を幅方向に両側から抱きかかえるように軸受面を形成している面の裏側に接合しておく。
【0045】
したがって、位置調整ブロック15を軸受の半径方向に移動することによってトップフォイル2の中央部が半径方向に移動する。トップフォイルの位置調整は、トップフォイル2と軸受ハウジング4の間に挟まれたバンプフォイル3の弾性変形範囲内で行い、かつバンプフォイル3とトップフォイル2および軸受ハウジング4の接触部が離れない範囲で行う。また位置調整ブロック15は軸受ハウジングの幅方向の両側面に固定ねじ16で固定してあり、軸受の半径方向に移動が可能なように固定部のねじ穴17は軸受の半径方向に長穴となっており、前述の位置調整範囲内の任意の位置でトップフォイル位置調整ブロック15を軸受ハウジング2の側面に固定することを可能にしている。このように運転状態に合わせてトップフォイルの位置調整ブロックを適切に調整することにより軸受中心を適切な位置に移動することができ、安定した運転が可能となる。本実施形態も第1実施形態と同様の効果を奏する。
【0046】
図6は本発明の第6実施形態の正面断面図である。
図に示すように、本実施形態のフォイル軸受は、図3の第3実施形態の円周180°分の半円弧に分割した軸受ハウジングの分割片の側面にトップフォイル2とバンプフォイル3の一端を固定ねじ18で固定しているフォイル軸受において、軸受ハウジング4の固定ねじ締め付け部を一部切り欠き、トップフォイル2とバンプフォイル3の固定ねじ18の締め付け力を調整することによりトップフォイル2とバンプフォイル3を固定している軸受ハウジング4の分割部の側面を軸受の円周方向に弾性変形させ、軸受ハウジングに対するトップフォイルとバンプフォイルの固定支持位置を変えることができる。したがって、固定ねじ18の締め付け力を調整することにより、トップフォイル2により形成されている軸受中心位置を変化させることを可能にしている。
【0047】
軸受ハウジングの分割部の側面にあるトップフォイル固定部分は、円周方向に適切な曲げ剛性を有する固定板19になっており、固定板19には固定ねじ18が貫通するための貫通穴20をあける。固定板19は固定ねじ18の締め付力を変化させたときにその板面が円周方向に任意の位置に変位するように、固定板19が固定ねじ18で締め付けられる方向に固定板19と軸受ハウジング4の円周方向の側面との間には適切な隙間21を確保してある。固定板19は軸受外周側の辺で軸受ハウジングと接合しており、軸受を正面から見ると固定板の部分は軸受ハウジングの一部が軸受の内周側に向かってコの字型にしておく。固定ねじは固定板のねじ穴を貫通し、固定板変位用の隙間を通って軸受ハウジングの円周方向の側面に締め付けられている。したがって、固定ねじ18の締め付け力を変化させると、固定板19に取り付けられているトップフォイル2とバンプフォイル3はその固定位置が円周方向に変位することができる。
【0048】
ここでこの固定位置を軸受の水平部分付近に配置すれば、固定ねじの締め付け力を調整することによりトップフォイル2とバンプフォイル3は軸受ハウジング4の鉛直下方に移動することになり、トップフォイル2により形成される軸受中心の位置を上下方向の適切な位置に調整することができ安定した運転が可能となる。本実施形態も第1実施形態と同様の効果を奏する。
【0049】
図7は本発明の第7実施形態の正面断面図であり、図8は図7のトップフォイルが重なり合う部分の拡大断面図である。
図に示すように、本実施形態のフォイル軸受は、図3の第3実施形態の180°分の半円弧に分割した軸受ハウジングの分割片の円周方向の側面にトップフォイル2とバンプフォイル3の一端を固定ねじ13で固定しているフォイル軸受において、トップフォイル2の円弧長さを180°分以上とし、軸受ハウジング4及びバンプフォイル3の円弧長さより大きくしておく。トップフォイル2とバンプフォイル3を軸受ハウジング4に固定する部分の構造は図3の第3実施形態と同様である。フォイル軸受の分割片を組立てると、トップフォイルが固定されていない側の端部は、隣の分割片のトップフォイルの固定部分に覆い被さり、軸受を分割することによってトップフォイルの軸受面が不連続になる部分を補うことができる。トップフォイル2の端部の形状は、図8に示すように、分割片同士の「トップフォイルが重なり合う部分」22をトップフォイル2の先端に向かい徐々に厚さを薄くし互いに重なり合った状態でトップフォイル1枚分の厚さになるようにしており、分割片の境界部分でトップフォイルが重なり合う部分においても連続した滑らかな軸受面が構成される。
【0050】
したがって、複数の分割片から構成されるフォイル軸受において、分割片の境界部分を無くすことができ、従来のリング状フォイル軸受と同様な機能を維持することが可能である。本実施形態も第1実施形態と同様の効果を奏する。
【0051】
図9は、本発明の第8実施形態の正面断面図であり、図10は図9のトップフォイルが重なり合う部分の拡大断面図である。
図に示すように、本実施形態のフォイル軸受は、図3の第3実施形態の円周180°分の半円弧の分割した軸受ハウジング4の分割片の円周方向の側面にトップフォイル2とバンプフォイル3の一端を固定ねじ13で固定しているフォイル軸受において、トップフォイル2の円弧長さを180°分以上とし、軸受ハウジング4及びバンプフォイル3の円弧長さより大きくしておく。トップフォイル2は軸受ハウジング4に「固定される側の端部」24を軸受ハウジングの円弧長さより長くとり、「固定されていない側の端部」23の円周方向位置を軸受ハウジングの分割面と同一位置になるように固定する。フォイル軸受の分割片を組立てると、トップフォイルの「固定される端部」24は、隣の分割片のトップフォイルの「固定されない側の端部」23に覆い被さるようになっており、軸受を分割することによって不連続になるトップフォイル2の軸受面を補うことができる。分割片同士の「トップフォイルが重なり合う部分」22は図10に示すように、トップフォイルの先端に向かい徐々に厚さを薄くし互いに重なり合った状態でトップフォイル1枚分の厚さになるようにしており、分割片の境界部分でトップフォイルが重なり合う部分においても連続した滑らかな軸受面が構成される。
【0052】
したがって、複数の分割片から構成されるフォイル軸受において、分割片の境界部分を無くすことができ、分割型フォイル軸受において、従来のリング状のフォイル軸受と同様な機能を維持することが可能である。本実施形態も第1実施形態と同様の効果を奏する。
【0053】
図11は本発明の第9実施形態の正面断面図である。
図に示すように、本実施の形態のフォイル軸受は、図3の第3実施形態の円周180°分の半円弧に分割した分割片で構成されて、分割部分に軸受面の不連続部分がある分割型フォイル軸受で、軸受ハウジング4に圧縮気体を圧入する貫通穴25を設ける。貫通穴25は分割片の間にできる「軸受の不連続部分」26に設け、軸受ハウジングの外周面側から内周面に貫通している。圧縮気体は、回転軸1の回転状態により軸受面に生じる気体膜5の圧力に合うように気体圧縮装置27で適切にその圧力を調整する。圧力を調整された気体は、気体圧縮装置27から管28によって軸受ハウジング4に導かれ、軸受ハウジング4の貫通穴25へ圧入される。圧縮された気体は貫通穴25を通り、フォイル軸受の分割片の間の軸受不連続部分を満たす。軸受の不連続部分を満たす圧縮気体は、あらかじめ回転軸1が回転したときにフォイル軸受の不連続部分に本来あるべき気体膜5の圧力に調整されているため、回転軸のまわりに連続した気体膜を作ることができ、分割型フォイル軸受において従来のリング状のフォイル軸受と同様な機能を維持することが可能である。本実施形態も第1実施形態と同様の効果を奏する。
【0054】
図12は本発明の第10実施形態のフォイル軸受のトップフォイルが重なり合う部分の拡大断面図である。
図に示すように、本実施形態のフォイル軸受は、図7の第7実施形態の円周180°分の半円弧に分割した軸受ハウジング4の分割片の円周方向の側面にトップフォイル2とバンプフォイル3の一端を固定ねじ13で固定し、トップフォイル2が「固定されていない側の端部」23を、隣の分割片のトップフォイルの「固定されている側の端部」24に覆い被さり、トップフォイルによって構成される軸受面が軸受を分割することによって不連続になる部分を補うフォイル軸受において、トップフォイルの両側端面の表面側の角部29を適切な円弧形状としている。このような構成により回転軸表面と当該角部が接触した場合においても摩擦抵抗をできるだけ低減させ、かつ回転軸1の表面あるいはトップフォイル2の表面の接触傷の発生を低減することができる。
【0055】
したがって、さまざまな運転状態において、長期間にわたり、適切な軸受気体膜の形成を確保することが可能となる。本実施形態も第1実施形態と同様の効果を奏する。
【0056】
【発明の効果】
以上説明したとおり、本発明によれば、小型高速ガスタービン発電システムにおいて、動力伝達軸の形状をフォイル軸に制約されず決めることが可能となり、また伝達動力量もフォイル軸受に制約されることはなく、さらに起動時のトルクを減少させ、かつ軸受面の焼き付きを防止することが可能になり、起動から負荷運転、停止までいかなる回転速度においても安定した運転を維持することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施形態の正面断面図。
【図2】本発明の第2実施形態の正面断面図。
【図3】本発明の第3実施形態の正面断面図。
【図4】本発明の第4実施形態の正面断面図。
【図5】本発明の第5実施形態の正面断面図。
【図6】本発明の第6実施形態の正面断面図。
【図7】本発明の第7実施形態の正面断面図。
【図8】図7のトップフォイルが重なり合う部分の拡大断面図。
【図9】本発明の第8実施形態の正面断面図。
【図10】図9のトップフォイルが重なり合う部分の拡大断面図。
【図11】本発明の第9実施形態の正面断面図。
【図12】本発明の第10実施形態のフォイル軸のトップフォイルが重なり合う部分の拡大断面図。
【図13】従来のフォイル軸受の正面断面図。
【符号の説明】
1…回転軸、2…トップフォイル、3…バンプフォイル、4…軸受ハウジング、5…気体膜、6…固定部、7…接触部分、8…締結ねじ、9…貫通穴、10…ねじ穴、11…座ぐり、12…固定板、13…固定ねじ、14…トップフォイル位置調整機構、15…位置調整ブロック、16…固定ねじ、17…ねじ穴、18…固定ねじ、19…固定板、20…貫通穴、21…隙間、22…トップフォイルが重なり合う部分、23…トップフォイルの固定されていない側の端部、24…トップフォイルの固定されている側の端部、25…貫通穴、26…軸受の不連続部分、27…気体圧縮装置、28…管、29…角部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-lubricated foil bearing used in a horizontal type small high-speed gas turbine power generation system and the like.
[0002]
[Prior art]
A conventional gas lubricated foil bearing will be described with reference to the cross-sectional view of FIG. The foil bearing has a ring-shaped top foil 2 that constitutes a bearing surface that supports the rotating shaft 1, and a ring-shaped bump foil 3 that supports the top foil 2 is provided on the outer peripheral side of the top foil 2. Further, the bump foil 3 is in contact with the inner surface of the ring-shaped bearing housing 4 and the top foil 2 to support the top foil 2. The top foil 2 and the bump foil 3 are joined to the bearing housing 4 by a fixing portion 6 to fix their positions.
[0003]
When the rotating shaft 1 is rotating, the rotating shaft 1 is rotating while winding the gas by the friction of the shaft surface, and a gas is caught between the bearing surface of the top foil 2 and a gap is generated. Further, when the rotating shaft 1 rotates, gas flows into the gap, and a gas film 5 is formed to lubricate the bearing surface. That is, when the rotary shaft 1 rotates, a wedge-shaped gas film 5 is formed between the bearing surface and the rotary shaft 1 is supported via the gas film 5.
[0004]
By the way, the foil bearing has a ring shape as described above, and when assembling the bearing portion of the rotating shaft, the foil bearing is inserted into the bearing portion of the rotating shaft from the longitudinal direction of the rotating shaft in advance, and the bearing together with the rotating shaft is predetermined. It is necessary to fix to the position. Therefore, the outer peripheral diameter of the shaft end of the rotating shaft must be designed to be smaller than the inner peripheral diameter of the foil bearing. As a result, the transmission power and transmission torque of the shaft coupling portion of the rotating shaft are limited, which may affect the basic specifications of the rotating device.
[0005]
Further, when the rotating shaft is stopped, the rotating shaft is greatly decentered downward by its own weight, and the rotating shaft surface and the bearing surface are in contact with each other. Rotation of the rotating shaft causes gas entrainment due to friction on the shaft surface, and a gas film is formed between the surface of the rotating shaft and the bearing surface, but there is less gas entrainment during low-speed rotation, and the gas that supports the rotating shaft The film is thin and the amount pushed up by the gas film is small. For this reason, the rotation shaft center rotates in a state eccentric from the bearing center downward. As the rotation speed increases, the amount of gas entrainment increases, the gas film becomes thicker, the rotation shaft rises, and the center position of the rotation shaft decreases with respect to the center position of the bearing.
[0006]
In a horizontal type small high-speed gas turbine power generation system or the like, a starter motor is used to start the unit. When a current is supplied to the starting motor, the motor operates and starts to rotate, but at the same time, an electromagnetic attractive force acts on the rotor of the starting motor with respect to the rotating shaft. The electromagnetic attractive force acts vertically downward at a position where the distance between the rotor and the stator is the closest. This electromagnetic attractive force acts more strongly as the gap (gap) between the starting motor stator and the rotor is narrower. As described above, the rotating shaft is greatly decentered downward due to its own weight at the time of stopping. Therefore, the rotor has a small vertical gap with respect to the stator of the starting motor, and a strong electromagnetic attraction force downward in the vertical direction at starting. Acts on the rotating shaft. Further, at the time of low-speed rotation, the amount of gas entrained due to friction on the shaft surface is small, and the gas film supporting the rotating shaft is thin and the amount of push-up by the gas film is small.
[0007]
Therefore, at the time of start-up, the rotating shaft is greatly drawn downward and a large amount of rotational friction is generated, so that the starter motor is required to generate a large torque. In addition, seizure or the like may occur between the foil surface and the rotating shaft surface, and the unit may not be activated. In other words, if an attempt is made to start with the center of the bearing and the center of the starter motor coinciding with each other, the rotating shaft is decentered vertically in the bearing portion that is the supporting portion of the rotating shaft, resulting in excessive friction as described above. The unit may not be able to start.
[0008]
[Problems to be solved by the invention]
The small high-speed gas turbine power generation system is composed of a generator that also serves as a driving gas turbine and a starter motor, and the respective rotating shafts are connected by a coupling flange. Although each rotating shaft has a bearing, it is often provided inside by a coupling flange for connection. Therefore, in a small high-speed gas turbine power generation system having a conventional ring-shaped foil bearing, the assembly of the bearing portion requires insertion of the rotating shaft into the bearing. It must be smaller than the inner diameter.
[0009]
On the other hand, the shape of the coupling, such as the outer diameter of the coupling flange, is related to the strength of the rotating shaft, and is a parameter that limits the transmission torque. Furthermore, the shape of the coupling limits the shape of the fastening bolt of the coupling flange that connects the couplings to each other. When the shape of the fastening bolt for the coupling flange is small, the workability of attachment / detachment often deteriorates. Further, when inspecting the bearing portion, the bearing is disassembled together with the rotating shaft, the bearing is removed from each rotating shaft end, and the inside is inspected, so that the disassembling range of the apparatus becomes relatively wide. Thus, the conventional ring-shaped foil bearing has a problem regarding the shape.
[0010]
Further, in the horizontal type small high-speed gas turbine power generation system, the rotating shaft of the gas turbine is directly connected to the generator rotor and the coupling flange without interposing a reduction gear from the viewpoint of improving the power generation efficiency. It is common. Then, until the gas turbine is ignited at the time of starting the system, the cranking operation at the low speed is required to send the compressed air necessary for the ignition to the gas turbine.
[0011]
Therefore, as described in the prior art, the electromagnetic attraction force that acts strongly when the eccentricity of the rotating shaft at startup (during stop to low speed rotation) is large can increase the required startup torque and start up the system. There is a risk that there will be no seizure of the foil, causing problems with the bearing.
[0012]
The present invention has been made in view of the above circumstances, and its problem is that the shape of the power transmission shaft can be determined without being constrained by the foil shaft, and the torque at the start-up can be reduced, and the bearing surface can be seized. It is an object of the present invention to provide a split type gas lubricated foil bearing that can be prevented.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention of the split type gas lubricated foil bearing according to claim 1 provides a bearing housing. Is divided into two in the circumferential direction, a bump foil is disposed on the inner peripheral side of each of the divided bearing housings, a top foil is disposed on the inner peripheral side of the bump foil, and the top foil and the bump foil are disposed on each bearing housing. Split type gas lubrication with one end attached with screws In foil bearings,
The position in the radial direction of the end portion of the top foil that is not fixed is adjusted to an arbitrary position by a position adjusting mechanism disposed on the bearing housing side, the curvature of the top foil is adjusted, the bearing gas film thickness and the bearing The center position can be changed It is configured.
[0014]
According to claim 1, the bearing housing is arranged circumferentially with respect to the foil shaft. 2 in the direction Divide the top foil and bump foil according to the arc. Circle Divide into arc shapes. The top foil and bump foil are joined and fixed to the inner surface of each bearing housing. Circle Constructs independent arc-shaped foil bearing To do It is a possible structure.
[0017]
For foil bearings, the bearing housing is 2 in the direction Divide the top foil and bump foil according to the arc. Circle Divide into arcs. The top foil and the bump foil are fixed to the side surface of the divided portion of the divided bearing housing with a fixing screw. Each divided foil bearing Circle Consists of arc-shaped independent pieces To do It is a possible structure.
[0019]
More , Circumference 2 in the direction Divided each Bearing housing Circle of In foil bearings where one end of the top foil and bump foil is fixed to the side surface in the circumferential direction with a fixing screw, from the outer peripheral surface side of the end of the bearing housing where the top foil and bump foil are not fixed to the inside in the radial direction of the bearing Top foil position adjustment through the bearing housing mechanism Is provided. Top foil position adjustment mechanism The tip of the top foil and the bump foil are in contact with the tip portion on the side where the top foil and the bump foil are not fixed from the outer peripheral side, and the tip portion of the top foil can be pressed against the inner peripheral side of the bearing, and is within the elastic deformation range. The radial position of the tip portions of the top foil and the bump foil can be arbitrarily adjusted. The top foil is pre-adjusted to have appropriate rigidity in the bending direction, and the top foil position is adjusted at the end of the top foil that is not fixed mechanism When pressing inward in the radial direction, the curvature radius of the top foil becomes smaller. At the same time, the bump foil is pressed against the top foil from the inner peripheral side. It is possible to adjust the bump foil in advance to have an appropriate bending rigidity, and to change the position for supporting the top foil within the elastic deformation range. In this way top foil position adjustment mechanism By adjusting this, the gap between the surface of the rotating shaft and the surface of the foil bearing can be arbitrarily changed, and the center position of the foil bearing can be changed.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front sectional view of a first embodiment of the present invention.
As shown in the drawing, in the foil bearing of the present embodiment, the bump foil 3 is disposed on the inner peripheral side of the bearing housing 4 and the top foil 2 is disposed on the inner peripheral side of the bump foil. The top foil 2 maintains a diameter so as to ensure an appropriate gap between the top foil 2 and the outer peripheral surface of the rotating shaft 1, forms a bearing surface, and supports the rotating shaft 1. Here, the bearing housing 4 has a semicircular arc shape corresponding to a circumference of 180 °, and a ring-shaped bearing is formed by combining two bearing housings. Similarly, a bump foil 3 having a semicircular arc shape corresponding to a circumference of 180 ° is arranged on the inner peripheral surface of the bearing housing 4, and the contact portions 7 are joined so as not to be separated from each other. In this way, the divided pieces of the two semicircular arc-shaped foil bearings are fastened by the fastening screws 8 to form a ring-shaped foil bearing.
[0034]
In the split-type foil bearing, first, a split piece on the lower half side of a semicircular arc is placed at a bearing support position of the apparatus base, and a rotating shaft is placed on the bearing surface. Further, a ring-shaped bearing is formed by covering the upper half of the divided piece over the rotating shaft and fastening it to the lower half of the divided piece. The split pieces of the upper and lower foil bearings are fastened to each other with a fastening screw provided at the joint near the horizontal portion of the bearing. The fastening screw 8 passes through a through hole 9 penetrating perpendicularly to the joint surface of the bearing housing of the upper half divided piece and enters a screw hole 10 formed perpendicularly to the joint surface of the bearing housing of the lower half divided piece. . The outlet on the outer peripheral surface side of the bearing housing 4 of the through hole 9 formed in the joint surface of the upper half split piece penetrates obliquely, and when the fastening screw 8 is tightened, the seat surface of the screw is the bearing housing 4. The counterbore 11 is provided in the corresponding portion of the bearing housing 4 so that a fastening seating surface of the fastening screw 8 can be secured. By dividing the foil bearing into a semicircular arc shape in this way, it becomes unnecessary to insert the rotating shaft 1 into the bearing from the longitudinal direction of the shaft, and the shape of the coupling portion of the rotating shaft 1 is influenced by the inner diameter of the bearing. It becomes possible to decide without.
[0035]
As described above, according to this embodiment, the size of the coupling flange at the end of the rotating shaft and the shape of the coupling portion can be determined without being influenced by the inner diameter of the foil bearing, and the transmission power of the rotating shaft can be freely set. Can be selected. Further, the structure of the coupling portion such as the fastening bolt of the coupling flange can be designed in consideration of workability. Further, the disassembly range of the bearing portion is narrowed, so that inspection and repair work can be easily performed.
[0036]
Furthermore, it is possible to adjust the center of the foil bearing at the time of start-up, arbitrarily displace the support position of the rotating shaft, reduce the electromagnetic attraction force of the start-up motor, reduce the start-up torque, and prevent seizure of the bearing surface Thus, a stable bearing support state can be ensured at any rotational speed from start to load operation and stop.
[0037]
FIG. 2 is a front sectional view of a second embodiment of the present invention.
As shown in the figure, in the foil bearing of this embodiment, the bump foil 3 is disposed on the inner peripheral side of the bearing housing 4, and the top foil 2 is disposed on the inner peripheral side of the bump foil 3. The top foil 2 maintains a diameter so that an appropriate gap can be secured between the outer peripheral surface of the rotary shaft 1 and is supported by the bump foil 3 and the bearing housing 4 to form a bearing surface. Here, the bearing housing 4 is a divided piece obtained by dividing a ring-shaped bearing into a plurality of arc-shaped bearing housings. Similarly, a bump foil 3 having an arc shape with an appropriate arc angle is arranged on the inner peripheral surface of the bearing housing 4, and the contact portions 7 are joined so as not to be separated from each other. In this way, the divided pieces of the independent arc-shaped foil bearing in which the bump foil 3 having the same arc shape and the top foil 2 are joined to the bearing housing 4 having the arc shape of an appropriate arc angle are joined to each other by the fastening screw 8. Combined and assembled into a ring-shaped foil bearing.
[0038]
As in the first embodiment of FIG. 1, the foil bearing has a plurality of lower half-side foil bearings placed at the support position of the bearing, and the rotating shaft is placed on the bearing surface. Further, a plurality of foil bearings on the upper half side are assembled into a ring-shaped bearing by covering the plurality of foil bearings on the lower half side already assembled from above the rotating shaft. The divided pieces of the foil bearing are fastened to each other with a fastening screw 8 provided at the joint portion of the circumferential end face. The fastening screw 8 passes through a through hole 9 penetrating perpendicularly to the joint surface of the divided piece of one foil bearing and enters a screw hole 10 formed perpendicularly to the joint surface of the divided piece of the other foil bearing.
[0039]
The outlet on the outer peripheral surface side of the bearing housing of the through hole 9 formed in the joint surface of one of the divided pieces penetrates obliquely, and when the fastening screw 8 is tightened, the seat surface of the screw is oblique to the bearing housing. For contact, a counterbore 11 is provided at the portion of the bearing housing so that a fastening seating surface of the fastening screw 8 can be secured. The segment pieces thus divided into arcs are connected to each other, and when assembling the entire device, the segment pieces that enter the lower side of the rotation shaft and the segment pieces that cover the upper part are assembled separately as necessary to support the rotation shaft. Therefore, the shape of the coupling portion of the rotating shaft can be determined without being affected by the inner diameter of the bearing. This embodiment also has the same effect as the first embodiment.
[0040]
FIG. 3 is a front sectional view of a third embodiment of the present invention.
As shown in the figure, in the foil bearing of this embodiment, the bump foil 3 is disposed on the inner peripheral side of the bearing housing 4, and the top foil 2 is disposed on the inner peripheral side of the bump foil 3. The top foil 2 maintains a diameter so as to ensure an appropriate gap between the top foil 2 and the outer peripheral surface of the rotating shaft 1, forms a bearing surface, and supports the rotating shaft 1. Here, the bearing housing has a semicircular arc shape corresponding to a circumference of 180 °, and the two bearing housings 4 are combined to form a ring-shaped bearing. The bump foil 3 and the top foil 2 have a fixing plate 12 at one end in the circumferential direction, and the fixing plate 12 is fixed to one end of the split surface of the bearing housing 4 with a fixing screw 13. The fixing plates 12 of the top foil 2 and the bump foil 3 are bent with respect to the bearing support surface according to the shape of the bearing housing.
[0041]
The mounting portion of the fixing screw 13 is also a fastening surface of the divided piece of the upper half side foil bearing and the divided piece of the lower half side foil bearing. Therefore, when the upper and lower half divided pieces are fastened, the fixing screw of each foil is fixed. To prevent the head from interfering, a counterbore portion large enough to fit the head of the foil fixing screw into the fastening surface of the bearing housing of the other divided piece facing the fixed surface of the foil in the bearing housing of one divided piece. Keep it. The split pieces of the upper and lower foil bearings can be assembled into a ring-shaped foil bearing by the fastening screw 8 as in the first embodiment, and the coupling shape of the end of the rotating shaft is determined regardless of the inner peripheral diameter of the bearing. It is possible.
[0042]
Further, the inner peripheral surface of the bearing housing 4 and the bump foil 3, and the contact portion 7 between the bump foil 3 and the top foil 2 are in contact with the load applied by supporting the rotating shaft 1, and are not joined. Therefore, each contact portion 7 can freely move due to vibration caused by the swing of the rotating shaft 1 and the like, and frictional resistance is generated by rubbing each other, so that a vibration damping effect can be expected. Further, since the top foil 2 and the bump foil 3 are fixed to the bearing housing 4 with the fixing screw 13, the bearing surface of the top foil 2 is deteriorated such as wear, and the bearing function cannot be maintained, or the top foil, When the contact portion of the bump foil and the bearing housing becomes significantly worn and the function of the bearing cannot be maintained, the function of the bearing can be restored again by removing the fixing screw 13 and replacing only the necessary ones. Is possible. This embodiment also has the same effect as the first embodiment.
[0043]
FIG. 4 is a front sectional view of a fourth embodiment of the present invention.
As shown in the figure, the foil bearing of the present embodiment is a foil bearing divided into semicircular arcs including the top foil and the bump foil of the third embodiment of FIG. 3, and the end of the top foil 2 opposite to the fixed end. The top foil position adjusting mechanism 14 is provided. A top foil position adjusting screw hole 14a is provided at the end of the bearing housing 4 opposite to the fixing surface of the top foil 2 and the bump foil 3 from the outer peripheral side of the bearing housing toward the inner peripheral side in the radial direction. The top foil position adjusting screw 14b passes through the screw hole 14a, and the tip thereof is in contact with the end opposite to the fixed end of the top foil 2, and by tightening the top foil position adjusting screw 14b, The distal end moves to the inner peripheral side of the bearing housing 4, and the position of the end portion of the top foil 2 can be displaced to the inner peripheral side. The top foil 2 has an appropriate rigidity in the bending direction, and when the end of the top foil that is not fixed is pressed inward in the radial direction, the curvature radius of the top foil becomes smaller within the elastic deformation range. . At this time, the bump foil 3 is pressed against the top foil 2 from the inner peripheral side, but the bump foil 3 also has an appropriate bending rigidity and can change the position of supporting the top foil 2 within the elastic deformation range. It becomes possible to move the bearing center constituted by the foil 2. Therefore, by adjusting the top foil position adjusting screw 14b in accordance with the operation state, an appropriate position of the bearing center with respect to the rotating shaft 1 can be obtained, and stable operation is possible. This embodiment also has the same effect as the first embodiment.
[0044]
FIG. 5 is a front sectional view of a fifth embodiment of the present invention.
As shown in the figure, the foil bearing of the present embodiment has one end of the top foil 2 and the bump foil 3 on the side surface of the divided piece of the bearing housing divided into a semicircular arc of 180 ° circumference of the third embodiment of FIG. In the foil bearing in which the fixing screw 13 is fixed, a radial position adjustment block 15 for the top foil 2 and the bump foil 3 is provided at the center of a semicircular arc corresponding to a 90 ° position in the circumferential direction of the bearing housing 4. The top foil position adjustment block 15 has a U shape at the tip, and is placed so that a U shape is put on the center portion of the bearing housing 4 from the outer peripheral side. The tip of the U-shape is joined to the back side of the surface forming the bearing surface so that the center portion in the circumferential direction of the belt-like top foil 2 is held from both sides in the width direction.
[0045]
Therefore, the center part of the top foil 2 moves in the radial direction by moving the position adjusting block 15 in the radial direction of the bearing. The position adjustment of the top foil is performed within the elastic deformation range of the bump foil 3 sandwiched between the top foil 2 and the bearing housing 4 and the contact portion between the bump foil 3 and the top foil 2 and the bearing housing 4 is not separated. To do. The position adjusting block 15 is fixed to both side surfaces of the bearing housing in the width direction by fixing screws 16, and the screw holes 17 of the fixing portion are elongated holes in the radial direction of the bearing so as to be movable in the radial direction of the bearing. Thus, the top foil position adjustment block 15 can be fixed to the side surface of the bearing housing 2 at an arbitrary position within the position adjustment range described above. Thus, the center of the bearing can be moved to an appropriate position by appropriately adjusting the position adjustment block of the top foil in accordance with the operation state, and stable operation is possible. This embodiment also has the same effect as the first embodiment.
[0046]
FIG. 6 is a front sectional view of a sixth embodiment of the present invention.
As shown in the figure, the foil bearing of the present embodiment has one end of the top foil 2 and the bump foil 3 on the side surface of the divided piece of the bearing housing divided into a semicircular arc of 180 ° circumference of the third embodiment of FIG. In the foil bearing in which the fixing screw 18 is fixed, the fixing screw tightening portion of the bearing housing 4 is partly cut out, and the top foil 2 and the bump foil 3 are adjusted by adjusting the tightening force of the fixing screw 18. The side surface of the divided portion of the bearing housing 4 to which the bump foil 3 is fixed can be elastically deformed in the circumferential direction of the bearing to change the fixing support position of the top foil and the bump foil with respect to the bearing housing. Therefore, by adjusting the tightening force of the fixing screw 18, the center position of the bearing formed by the top foil 2 can be changed.
[0047]
The top foil fixing portion on the side surface of the divided portion of the bearing housing is a fixing plate 19 having an appropriate bending rigidity in the circumferential direction. The fixing plate 19 has a through hole 20 through which the fixing screw 18 passes. I can make it. The fixing plate 19 and the fixing plate 19 in the direction in which the fixing plate 19 is tightened by the fixing screw 18 so that the plate surface is displaced to an arbitrary position in the circumferential direction when the fastening force of the fixing screw 18 is changed. An appropriate gap 21 is secured between the bearing housing 4 and the side surface in the circumferential direction. The fixed plate 19 is joined to the bearing housing at the outer peripheral side of the bearing, and when the bearing is viewed from the front, a part of the fixed plate is U-shaped toward the inner peripheral side of the bearing. . The fixing screw passes through the screw hole of the fixing plate, and is tightened to the side surface in the circumferential direction of the bearing housing through the clearance for fixing plate displacement. Therefore, when the fastening force of the fixing screw 18 is changed, the fixing positions of the top foil 2 and the bump foil 3 attached to the fixing plate 19 can be displaced in the circumferential direction.
[0048]
If this fixing position is arranged near the horizontal portion of the bearing, the top foil 2 and the bump foil 3 are moved vertically below the bearing housing 4 by adjusting the tightening force of the fixing screw. The position of the bearing center formed by the above can be adjusted to an appropriate position in the vertical direction, and stable operation is possible. This embodiment also has the same effect as the first embodiment.
[0049]
FIG. 7 is a front sectional view of a seventh embodiment of the present invention, and FIG. 8 is an enlarged sectional view of a portion where the top foils of FIG. 7 overlap.
As shown in the figure, the foil bearing of the present embodiment has a top foil 2 and a bump foil 3 on the side surface in the circumferential direction of the divided piece of the bearing housing divided into a semicircular arc of 180 ° of the third embodiment of FIG. In the foil bearing in which one end of the top foil 2 is fixed with the fixing screw 13, the arc length of the top foil 2 is set to 180 ° or more and is longer than the arc lengths of the bearing housing 4 and the bump foil 3. The structure of the portion for fixing the top foil 2 and the bump foil 3 to the bearing housing 4 is the same as that of the third embodiment of FIG. When a piece of foil bearing piece is assembled, the end on the side where the top foil is not fixed is covered with the fixed part of the top foil of the adjacent piece, and the bearing surface of the top foil is discontinuous by dividing the bearing. Can be supplemented. As shown in FIG. 8, the shape of the end portion of the top foil 2 is such that the “part where the top foil overlaps” 22 of the divided pieces gradually decreases in thickness toward the tip of the top foil 2 and overlaps each other. The thickness is equal to that of one foil, and a continuous and smooth bearing surface is formed even in a portion where the top foil overlaps at the boundary portion of the divided pieces.
[0050]
Therefore, in the foil bearing composed of a plurality of divided pieces, the boundary portion of the divided pieces can be eliminated, and the same function as that of the conventional ring-shaped foil bearing can be maintained. This embodiment also has the same effect as the first embodiment.
[0051]
FIG. 9 is a front sectional view of an eighth embodiment of the present invention, and FIG. 10 is an enlarged sectional view of a portion where the top foils of FIG. 9 overlap.
As shown in the drawing, the foil bearing of the present embodiment has the top foil 2 and the side surface in the circumferential direction of the divided piece of the bearing housing 4 divided into a semicircular arc of 180 ° in the circumference of the third embodiment of FIG. In the foil bearing in which one end of the bump foil 3 is fixed by the fixing screw 13, the arc length of the top foil 2 is set to 180 ° or more and is longer than the arc lengths of the bearing housing 4 and the bump foil 3. The top foil 2 has a “fixed side end” 24 longer than the arc length of the bearing housing 4 and the circumferential position of the “unfixed side end” 23 in the circumferential direction of the bearing housing 4. And fix it at the same position. When the divided pieces of the foil bearing are assembled, the “fixed end” 24 of the top foil covers the “unfixed end” 23 of the top foil of the adjacent divided piece. The bearing surface of the top foil 2 which becomes discontinuous by dividing can be supplemented. As shown in FIG. 10, the “overlapping portion of the top foil” 22 between the divided pieces gradually decreases in thickness toward the top of the top foil and becomes the thickness of one top foil in a state of overlapping each other. Therefore, a continuous and smooth bearing surface is formed even in the portion where the top foil overlaps at the boundary portion of the divided pieces.
[0052]
Therefore, in the foil bearing composed of a plurality of divided pieces, the boundary portion of the divided pieces can be eliminated, and the divided foil bearing can maintain the same function as the conventional ring-shaped foil bearing. . This embodiment also has the same effect as the first embodiment.
[0053]
FIG. 11 is a front sectional view of a ninth embodiment of the present invention.
As shown in the figure, the foil bearing of the present embodiment is composed of divided pieces divided into semicircular arcs corresponding to the circumference of 180 ° of the third embodiment of FIG. 3, and the discontinuous portion of the bearing surface is divided into the divided portions. A split-type foil bearing is provided with a through hole 25 into which the compressed gas is press-fitted into the bearing housing 4. The through hole 25 is provided in a “discontinuous portion of the bearing” 26 formed between the divided pieces, and penetrates from the outer peripheral surface side of the bearing housing to the inner peripheral surface. The pressure of the compressed gas is appropriately adjusted by the gas compression device 27 so as to match the pressure of the gas film 5 generated on the bearing surface due to the rotation state of the rotary shaft 1. The gas whose pressure is adjusted is guided from the gas compression device 27 to the bearing housing 4 by the pipe 28 and is press-fitted into the through hole 25 of the bearing housing 4. The compressed gas passes through the through hole 25 and fills the bearing discontinuity between the pieces of the foil bearing. The compressed gas that fills the discontinuous portion of the bearing is adjusted to the pressure of the gas film 5 that should be originally in the discontinuous portion of the foil bearing when the rotating shaft 1 rotates in advance, so that the gas continuously around the rotating shaft. A film can be formed, and a function similar to that of a conventional ring-shaped foil bearing can be maintained in the split-type foil bearing. This embodiment also has the same effect as the first embodiment.
[0054]
FIG. 12 is an enlarged cross-sectional view of a portion where the top foil of the foil bearing of the tenth embodiment of the present invention overlaps.
As shown in the figure, the foil bearing of the present embodiment has the top foil 2 and the side surface in the circumferential direction of the divided piece of the bearing housing 4 divided into a semicircular arc corresponding to the circumference of 180 ° of the seventh embodiment of FIG. One end of the bump foil 3 is fixed with a fixing screw 13, and the “end portion on the side where the top foil 2 is not fixed” 23 is changed to the “end portion on the fixed side” 24 of the top foil of the adjacent divided piece. In a foil bearing that covers and covers a portion where the bearing surface constituted by the top foil becomes discontinuous by dividing the bearing, the corners 29 on the surface side of both side end surfaces of the top foil are formed in an appropriate arc shape. With such a configuration, even when the surface of the rotating shaft and the corner are in contact, the frictional resistance can be reduced as much as possible, and the occurrence of contact flaws on the surface of the rotating shaft 1 or the surface of the top foil 2 can be reduced.
[0055]
Therefore, it is possible to ensure the formation of an appropriate bearing gas film over a long period of time in various operating conditions. This embodiment also has the same effect as the first embodiment.
[0056]
【The invention's effect】
As described above, according to the present invention, in the small high-speed gas turbine power generation system, the shape of the power transmission shaft can be determined without being restricted by the foil shaft, and the transmission power amount is also restricted by the foil bearing. In addition, it is possible to further reduce the torque at the start and prevent seizure of the bearing surface, and it is possible to maintain a stable operation at any rotational speed from start to load operation and stop. Play.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a first embodiment of the present invention.
FIG. 2 is a front sectional view of a second embodiment of the present invention.
FIG. 3 is a front sectional view of a third embodiment of the present invention.
FIG. 4 is a front sectional view of a fourth embodiment of the present invention.
FIG. 5 is a front sectional view of a fifth embodiment of the present invention.
FIG. 6 is a front sectional view of a sixth embodiment of the present invention.
FIG. 7 is a front sectional view of a seventh embodiment of the present invention.
8 is an enlarged cross-sectional view of a portion where the top foil of FIG. 7 overlaps.
FIG. 9 is a front sectional view of an eighth embodiment of the present invention.
10 is an enlarged cross-sectional view of a portion where the top foil of FIG. 9 overlaps.
FIG. 11 is a front sectional view of a ninth embodiment of the present invention.
FIG. 12 is an enlarged cross-sectional view of a portion where the top foils of the foil shaft of the tenth embodiment of the present invention overlap.
FIG. 13 is a front sectional view of a conventional foil bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotary shaft, 2 ... Top foil, 3 ... Bump foil, 4 ... Bearing housing, 5 ... Gas film, 6 ... Fixing part, 7 ... Contact part, 8 ... Fastening screw, 9 ... Through-hole, 10 ... Screw hole, DESCRIPTION OF SYMBOLS 11 ... Counterbore, 12 ... Fixing plate, 13 ... Fixing screw, 14 ... Top foil position adjustment mechanism, 15 ... Position adjustment block, 16 ... Fixing screw, 17 ... Screw hole, 18 ... Fixing screw, 19 ... Fixing plate, 20 DESCRIPTION OF SYMBOLS ... Through-hole, 21 ... Crevice, 22 ... Overlapping part of top foil, 23 ... End part on the side where the top foil is not fixed, 24 ... End part on the side where the top foil is fixed, 25 ... Through-hole, 26 ... discontinuous part of bearing, 27 ... gas compression device, 28 ... pipe, 29 ... corner.

Claims (1)

軸受ハウジングを円周方向に2分割し、分割した各軸受ハウジングの内周側にバンプフォイルを配置し、このバンプフォイルの内周側にトップフォイルを配置し、前記各軸受ハウジングにトップフォイルおよびバンプフォイルの一端がねじで取付けられる分割型気体潤滑式フォイル軸受において、
前記トップフォイルの固定していない側の端部の半径方向の位置を軸受ハウジング側に配置した位置調整機構により任意の位置に調整し、トップフォイルの曲率を調整し、軸受気体膜厚さおよび軸受中心位置を変化させることが可能な構成とすることを特徴とする分割型気体潤滑式フォイル軸受。
The bearing housing is divided into two in the circumferential direction, a bump foil is arranged on the inner peripheral side of each divided bearing housing, a top foil is arranged on the inner peripheral side of the bump foil, and the top foil and the bump are arranged on each bearing housing. In a split type gas lubricated foil bearing in which one end of the foil is attached with a screw ,
Adjusted to an arbitrary position by the position adjusting mechanism of the radial position of the end portion of the fixed non side of the top foil is disposed on the bearing housing side, by adjusting the curvature of the top foil, the bearing gas film thickness and bearing A split type gas lubricated foil bearing characterized in that the center position can be changed.
JP2002353490A 2002-12-05 2002-12-05 Split type gas lubricated foil bearing Expired - Fee Related JP4322497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353490A JP4322497B2 (en) 2002-12-05 2002-12-05 Split type gas lubricated foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353490A JP4322497B2 (en) 2002-12-05 2002-12-05 Split type gas lubricated foil bearing

Publications (2)

Publication Number Publication Date
JP2004183830A JP2004183830A (en) 2004-07-02
JP4322497B2 true JP4322497B2 (en) 2009-09-02

Family

ID=32754769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353490A Expired - Fee Related JP4322497B2 (en) 2002-12-05 2002-12-05 Split type gas lubricated foil bearing

Country Status (1)

Country Link
JP (1) JP4322497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460918A (en) * 2014-05-16 2017-02-22 得克萨斯***大学评议会 Air foil bearings having multiple pads

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070330B2 (en) * 2004-02-19 2006-07-04 R & D Dynamics Corporation Hydrodynamic fluid film bearing having a key-less foil
JP4961485B2 (en) * 2010-03-30 2012-06-27 本田技研工業株式会社 Dynamic pressure type foil type gas bearing
US9482449B2 (en) * 2011-01-14 2016-11-01 Sunpower Corporation Support for solar energy collectors
US8944687B2 (en) * 2011-08-12 2015-02-03 Ihi Corporation Radial foil bearing
KR101408718B1 (en) * 2013-01-16 2014-07-02 한국기계연구원 Metal-mesh-foil bearing having divided structure
US9157473B2 (en) 2013-01-16 2015-10-13 Korea Institute Of Machinery & Materials Thrust bearing and combo bearing
KR101409815B1 (en) * 2013-01-16 2014-06-24 한국기계연구원 Combo metal-mesh-foil bearing
KR101443036B1 (en) * 2013-04-30 2014-09-22 한국기계연구원 Divided Combo bearing including air foil thrust bearing and metal mesh foil radial bearing
KR101445063B1 (en) 2013-04-30 2014-10-01 한국기계연구원 Combo bearing including air foil thrust bearing and metal mesh foil radial bearing
CN103335019B (en) * 2013-06-14 2015-08-05 西安交通大学 A kind of bolt is fixed and is adjusted the elastic foil gas bearing of pretension
US9181977B2 (en) 2013-09-23 2015-11-10 Korea Institute Of Machinery & Materials Air-foil bearing
KR101517817B1 (en) * 2013-09-23 2015-05-06 한국기계연구원 Half-split Radial-Thrust Combo Metal Mesh Foil Bearing
KR101534639B1 (en) * 2014-03-21 2015-07-09 한국기계연구원 Radial-thrust combo metal mesh foil bearing
KR101513104B1 (en) * 2014-07-21 2015-04-17 국방과학연구소 Air foil bearing having divided structure
KR101558490B1 (en) 2015-03-20 2015-10-07 ㈜티앤이코리아 Journal Foil Air Bearing
KR102456838B1 (en) * 2017-11-21 2022-10-21 한온시스템 주식회사 Air foil journal bearing
DE102018200131A1 (en) * 2018-01-08 2019-07-11 Robert Bosch Gmbh Radial bearings for turbomachinery
DE102018208511A1 (en) * 2018-05-29 2019-12-05 Robert Bosch Gmbh foil bearings
FR3083273B1 (en) * 2018-07-02 2020-06-12 Liebherr-Aerospace Toulouse Sas DEVICE FORMING AERODYNAMIC RADIAL SHEET AND METHOD FOR MANUFACTURING SUCH A DEVICE
CN110131301A (en) * 2019-05-13 2019-08-16 大连理工大学 A kind of air hydrodynamic foil bearing paillon fixed structure of cuboid peg type
CN112594277A (en) * 2020-12-20 2021-04-02 大连理工大学人工智能大连研究院 Radial foil bearing with bearing self-adjusting function
WO2024009955A1 (en) * 2022-07-04 2024-01-11 株式会社Ihi Radial foil bearing
CN115628264B (en) * 2022-12-22 2023-02-28 天津飞旋科技股份有限公司 Foil type dynamic pressure air bearing and rotating mechanical shaft system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460918A (en) * 2014-05-16 2017-02-22 得克萨斯***大学评议会 Air foil bearings having multiple pads
US10161442B2 (en) * 2014-05-16 2018-12-25 Board Of Regents, The University Of Texas System Air foil bearings having multiple pads
CN106460918B (en) * 2014-05-16 2019-08-06 得克萨斯***大学评议会 Air bearing foil with multiple pads

Also Published As

Publication number Publication date
JP2004183830A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4322497B2 (en) Split type gas lubricated foil bearing
US7070330B2 (en) Hydrodynamic fluid film bearing having a key-less foil
WO2011024898A1 (en) Planetary bearing structure
JP5766562B2 (en) Thrust foil bearing
JP2012092969A (en) Foil bearing
JP2009270612A (en) Bearing structure of turbocharger
KR20100095237A (en) Air foil bearing
JP2011137491A (en) Tilting-pad journal bearing device
JP2007303431A (en) Thrust bearing unit, turbo compressor using the same, and assembling method of thrust bearing unit
JP6469716B2 (en) Bearing device for exhaust gas turbocharger and exhaust gas turbocharger
KR20130019218A (en) Air foil bearing having divided structure
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
KR100723040B1 (en) Bearing assembly for high speed rotary body
JP2013044394A (en) Thrust foil bearing
RU2228470C1 (en) Combined support
JP2013032797A (en) Foil bearing
JP2943544B2 (en) Gas turbine generator
JP2002054651A (en) Shaft connecting device
JP6246574B2 (en) Foil bearing unit and turbomachine
JP2007127006A (en) Two-shaft gas turbine, method of operating two-shaft gas turbine, method of controlling two-shaft gas turbine, and method of cooling two-shaft gas turbine
JPS60252186A (en) Scroll fluid machine
JP2017180830A (en) Speed increaser and centrifugal compressor
JP4351840B2 (en) Gas bearing device
JP2017180528A (en) Speed increaser and centrifugal compressor
JP4356375B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees