JP4321690B2 - Axial blower - Google Patents

Axial blower Download PDF

Info

Publication number
JP4321690B2
JP4321690B2 JP26737099A JP26737099A JP4321690B2 JP 4321690 B2 JP4321690 B2 JP 4321690B2 JP 26737099 A JP26737099 A JP 26737099A JP 26737099 A JP26737099 A JP 26737099A JP 4321690 B2 JP4321690 B2 JP 4321690B2
Authority
JP
Japan
Prior art keywords
rib
streamline
blade
blower
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26737099A
Other languages
Japanese (ja)
Other versions
JP2001090692A (en
Inventor
満義 石嶋
知史 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP26737099A priority Critical patent/JP4321690B2/en
Publication of JP2001090692A publication Critical patent/JP2001090692A/en
Application granted granted Critical
Publication of JP4321690B2 publication Critical patent/JP4321690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/306Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the suction side of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば空気調和機の室外ファンや換気装置等に好適な軸流送風機に係り、特に、翼負圧面上の流れの剥離を抑制して送風性能の向上と送風音の低減とを共に図った軸流送風機に関する。
【0002】
【従来の技術】
図13は従来の軸流送風機1の翼負圧面側から見たときの正面図、図14は、その軸流送風機1の翼1枚分を図示して他の翼を省略した一部切欠正面図である。この軸流送風機1は、図示しない回転軸が中心部Oに固定される円筒状のボス部2の外周側面に、複数の翼3,3…を周方向に所定のピッチを置いて一体または一体的に形成している。各翼3は、図中矢印で示す送風機回転方向(周方向)に対して空気流の上流側端部をなす凹弧状の前縁部3aと、空気流の下流側端部をなす後縁部3bと、凸弧状の外周端部3cと、図15でも示す流体吸込側の負圧面3dと、その裏面側の正圧面3eとを有する。
【0003】
そして、各翼3の負圧面3d側の前縁部3aの厚さを後縁部よりも厚い流線形の厚肉部3fに形成すると共に、この流線形厚肉部3fの前縁部3a上に、正面形状がほぼ矩形の複数の流線形リブ4を前縁部3aの輪郭線(外形線)に沿って送風機半径方向に所定間隔を置いて列状に配設している。
【0004】
図15は図12で示すようにボス部2の中心部に固定される図示しない回転軸の軸心Oから半径方向に任意の距離r離れた部分における周方向の翼断面を示している。
【0005】
この図15に示すように各翼3の負圧面3d側の前縁部3aには、流線形厚肉部3fが形成され、しかもその流線形厚肉部3f上には複数の流線形リブ4を配設しているので、この翼負圧面3d側前縁部3aから流入した空気流れUが流線形リブ4を通風した後に縦渦列Uzになる。このために、負圧面3dから空気流れが剥離するのを抑制することができるので、後縁部3bの後方(下流)に発生する後流渦fuの幅を縮小して送風音を低減させることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の軸流送風機1では、流線形リブ4が1列しか配列されていないので、送風音低減効果が必ずしも十分ではないという課題がある。
【0007】
本発明はこのような事情を考慮してなされたもので、その目的は、翼負圧面で発生する流れの剥離をさらに低減して送風音をさらに低減することができる安価で成形性の良好な軸流送風機を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、回転軸が固定されるボス部の外周に、複数の翼を配設した軸流送風機において、上記各翼の負圧面側前縁部に、その前縁から翼後縁に向けて滑かに連なる流線形リブを、上記前縁部の輪郭線に沿ってボス部と外周端部間に所定の間隔を置いて列状に複数配設し、この流線形リブ列を送風機周方向に所定の間隔を置いて複数列設け、翼前縁側の外側流線形リブ列よりも送風機周方向内側に設けた内側流線形リブ列の各流線形リブの流入空気の通風方向を案内する通風側面を、回転軸中心Oと、翼外周と翼後縁との交点Qと、を結ぶ線分OQに対して各々の所定角度でそれぞれ傾斜させ、これらの各傾斜角を翼外周からボス部側の流線形リブに行くに従って大きくすることを特徴とする軸流送風機である。
【0009】
請求項2に係る発明は、内側流線形リブ列の各流線形リブは、その流入空気の通風方向を案内する通風側面の角度を、上記外側流線形リブ列の通風側面の角度に対して12°〜18°の範囲で傾斜させていることを特徴とする請求項1記載の軸流送風機である。
【0010】
請求項3に係る発明は、内側流線形リブ列の各流線形リブの送風機周方向に沿う長さL2を、外側流線形リブ列の各流線形リブの送風機周方向に沿う長さL1に対し、ほぼ0.8L1の長さに形成していることを特徴とする請求項1または2に記載の軸流送風機である。
【0011】
請求項4に係る発明は、内側流線形リブ列は、その流線形リブを、外側流線形リブ列の流線形リブ同士の間隙に対応する位置に配設していることを特徴とする請求項1〜3のいずれか1項に記載の軸流送風機である。
【0012】
請求項5に係る発明は、内側流線形リブ列の各流線形リブは、その送風機周方向に沿う断面の外面が円弧面をなし、その円弧外面の翼前縁側一部の円弧曲面の半径rcの方が、その反対側他部の円弧曲面の半径rdよりも大きくなるように一体に形成されていることを特徴とする請求項1〜4のいずれか1項に記載の軸流送風機である。
【0015】
請求項5に係る発明は、内側流線形リブ列の各流線形リブは、その送風機周方向に沿う断面の外面が円弧面をなし、その円弧外面の翼前縁側一部の円弧曲面の半径rcの方が、その反対側他部の円弧曲面の半径rdよりも大きくなるように一体に形成されていることを特徴とする請求項1〜4のいずれか1項に記載の軸流送風機である。
【0017】
これらの各発明によれば、軸流送風機の回転により各翼がボス部の軸心周りに回転すると、各翼の負圧面側の前縁部に、その外方から流入した空気流れが複数列の流線形リブをそれぞれ通過して縦渦列となるので、翼負圧面上で層流境界層から乱流境界層に遷移される。この乱流境界層は層流境界層よりも気流の流れの剥離が発生しにくいうえに、送風音の原因をなす後流渦の幅を狭くするので、送風音を低減することができる。しかも、上記流線形リブが通風方向に複数列あるので、上記図13等で示す流線形リブが1列しかない従来例よりも、送風音の原因をなす後流渦の幅をさらに狭くすることができる。このために、送風音をさらに低減することができる。さらに、各流線形リブは各翼に例えば樹脂モールド成型等により簡単に一体成形できるので、成形性が良好であり、製造コストを低減できる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図12に基づいて説明する。なお、これらの図中、同一または相当部分には同一符号を付している。
【0021】
図1は本発明の一実施形態に係る軸流送風機11を翼負圧面側から見たときの全体構成を示す正面図、図2はその翼1枚分を図示して他の翼を図示省略して示す一部切欠正面図である。これらの図に示すように軸流送風機11は円筒状のボス部12の外周側面に、複数の翼13,13,13を例えば周方向等分位置にて一体ないし一体的に取り付けており、例えば樹脂モールド成形等により一体に成形される。
【0022】
ボス部12は有底円筒状の本体12aの内部中心部に、図示しない駆動モータの回転軸を挿入させて固定するための小円筒状のボス12bと、このボス12bから放射状に延びてボス本体12aの内周面に一体に連結するほぼ逆Y字状の連結リブ12cとを一体に連成している。
【0023】
一方、各翼13は、空気吸込側の負圧面13aと、その裏面の送風側である正圧面13bと、図1,図2中矢印で示す送風機回転方向に対し、各翼13の空気流の上流側端部をなす凹弧状の前縁部13cと、空気流の下流側端部をなす後縁部13dと、これら前縁部13cと後縁部13dの径方向外端同士を一体に連結してなる凸弧状の外周端部13eとを一体に形成している。
【0024】
そして、各翼13は、負圧面13a側の前縁部13c上に、正面形状がほぼ長方形で前縁部13cの前縁(前端)から後縁部13d方向に向けて滑かに連なる複数の流線形リブ14を上記前縁部の輪郭線に沿ってボス12bと外周端部13e間に所定の間隔を置いて列状に配置することにより外側流線形リブ列14aを形成している。さらに、この外側流線形リブ列14aよりも送風機周方向後縁部13d側(つまり翼内面側)へ所定間隔離れた箇所において、複数の流線形リブ14を上記前縁部の輪郭線に沿ってボス12bと外周端部13e間に所定の間隔を置いて列状に配設して内側流線形リブ列14bを形成し、これら内,外側流線形リブ列14b,14aを並列に設けている。
【0025】
そして、図2に示すように内側流線形リブ列14bの各流線形リブ14は、その空気流れの通風方向を案内する通風側面14bを、その外側近傍の外側流線形リブ列14aの各流線形リブ14の通風側面14aに対して角度θで傾斜させており、その角度θとしては例えば12°〜18°の範囲に設定されている。
【0026】
また、図3に示すように内側流線形リブ列14bの各流線形リブ14の通風側面14bは、送風機回転中心、すなわちボス部12の中心Oと、翼後縁部13dの後縁と翼外周13eとの交点Qと、を結ぶ線分OQに対しても、各所定角度α,α,α…αで傾斜している。しかも、これら傾斜角度α〜αは、翼外周13eに最も近い流線形リブ14の通風側面14bの角度αからボス部12に最も近い流線形リブ14の通風側面14bの角度αnに行くに従って漸次傾斜角度が大きくなり、α=2αに設定されている。
【0027】
図4はこのように構成された軸流送風機11の翼負圧面13a側の空気流れUの状態を矢印線で示している。図5は図4で示すようにボス部2の中心から半径方向に所定距離r離れた翼13の任意箇所において送風機周方向に切断したときの翼断面と、その翼断面を流れる空気流れUの状態を示している。これらの図中、矢印線は空気の流れ方向を示し、矢印線の回転は縦渦列Uzを表している。
【0028】
これら図4,図5に示すように、上記軸流送風機11では、その前縁部13cの前縁フィレットから翼負圧面13a上に流入した空気流れUが外側流線形リブ列14aと内側流線形リブ列14bとをそれぞれ通過して、縦渦列Uzとなり、翼負圧面13a上を層流境界層から乱流境界層に遷移させる。これにより、送風音の原因をなす後流渦fzの幅を狭くして送風音を低減させることができる。
【0029】
しかも、この軸流送風機11によれば、流線形リブ14のリブ列が内,外2列14b,14aあるので、この内,外流線形リブ列14b,14aを空気流れUが通過することにより翼負圧面13a上で2重に縦渦列Uzを発生させることができる。このために、流線形リブ14が1列しかない例えば図13で示す従来の軸流送風機1よりも縦渦列Uzの発生量を増大させることができるので、送風音の原因である後流渦fzの幅をさらに狭くすることができ、その分、送風量をさらに低減することができる。なお、上記流線形リブ14bは3列以上設けてもよい。
【0030】
そして、図6に示すように上記内側流線形リブ列14bは、その各流線形リブ14の送風機周方向に沿う長手方向の長さLを、外側流線形リブ列14aの各流線形リブ14の送風機周方向に沿う長手方向の長さLよりも短かく形成し、例えば0.8Lに形成している。また、内側流線形リブ列14bの各流線形リブ14の径方向の間隔Wをほぼ等間隔に設定している。
【0031】
さらに、図7に示すように内側流線形リブ列14bの各流線形リブ14を、外側流線形リブ列14aの送風機半径方向で隣り合う流線形リブ14同士の間隙に対応する位置に配設している。
【0032】
さらにまた、図8に示すように、外側流線形リブ列14aの各流線形リブ14の前縁(図8では右端)同士を結ぶ仮想の円弧曲線15aの中心をP、その半径をraとしたときに、その中心Pと同心でかつ半径raよりも大径の半径rbの仮想の円弧曲線15b上に、内側流線形リブ列14bの各流線形リブ14の前縁が位置するように配置している。
【0033】
また、図9に示すように外側流線形リブ列14aにおける各流線形リブ14の送風機半径方向の幅Waと、内側流線形リブ列14bにおける各流線形リブ14の送風機半径方向の幅Wbとをほぼ同一幅に形成している。
【0034】
図10は内側流線形リブ列14bの各流線形リブ14を送風機周方向に沿って切断したときの円弧状断面14cを示しており、この円弧状断面14cは、その翼前縁部13c側の一部である前半部14c1の曲率半径をrc、その他部である後半部14c2の曲率半径をrdとしたときにrc>rdが成立するように形成されている。
【0035】
ところで、図11に示すように各翼13の前縁部13cの送風機半径方向に沿う翼断面の厚さhはボス部12側Zaから翼外周13e側Zbへ行くに従って漸次薄くなるように除変されている。
【0036】
一方、図12に示すように各流線形リブ14の高さは、ボス部12側Yaから翼外周13e側Ybへ行くに従って漸次高くなるように徐変されており、翼外周13eに最も近い流線形リブの高さhと、ボス部12に最も近い流線形リブ14の高さhとは、h=2hとなるように形成されている。すなわち、各流線形リブ14の高さが増して行く方向と、翼負圧面側前縁部13cの厚さを増して行く方向とが正反対であるので、この前縁部13cの厚さhを含めた断面厚さhがいずれの箇所でもほぼ等しくなる。このため、軸流送風機11の樹脂成形時による一体成形の冷却時間の短縮および肉ひけ等を防止ないし低減することができる。
【0037】
また、軸流送風機11は以上のように内側流線形リブ列14bの各流線形リブ14の長手方向の長さL、設置間隔W、設置位置、前縁の位置、幅Wb、円弧外面の曲率等をそれぞれ設定したので、縦渦列を翼負圧面13a上に安定して発生させることができ、そのために送風音をさらに低減することができる。
【0038】
【発明の効果】
以上説明したように、本発明は各翼の負圧面側前縁部に、その前縁端から滑らかに連なる流線形リブを複数列並設しているので、翼負圧面上にて空気流れの縦渦列を発生させ、流れの剥離を抑制することができ、ひいては翼後縁部後方にできる後流渦幅を小さくして送風音を低減することができる。また、各流線形リブが流線形状であるので、軸流送風機を例えば樹脂モールド成形により簡単に一体成形でき、成形性の向上と製造コスト低減とを共に図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る軸流送風機を翼負圧面側から見たときの全体構成の正面図。
【図2】図1で示す軸流送風機の内側流線形リブ列における各流線形リブの通風側面の傾斜角度を説明するための一部切欠正面図。
【図3】図1で示す軸流送風機の内側流線形リブ列における各流線形リブの傾斜角をそれぞれ変える場合の一部切欠正面図。
【図4】図1等で示す軸流送風機の翼負圧面上の空気流れの状態を示す一部切欠正面図。
【図5】図4で示す軸流送風機の翼を半径rにて送風機周方向に沿って切断したときの翼断面図。
【図6】図1等で示す軸流送風機の内側流線形リブ列における各流線形リブの長手方向長さと各リブ同士の配置間隔を示す一部切欠正面図。
【図7】図1等で示す軸流送風機における内側流線形リブ列の各流線形リブを、外側流線形リブ列の各流線形リブ同士の間隙に対応する位置に配置する場合の一部切欠正面図。
【図8】図1等で示す軸流送風機における外側流線形リブ列の各流線形リブの前縁と、内側流線形リブ列の各流線形リブの前縁の位置関係をそれぞれ示す一部切欠正面図。
【図9】図1等で示す軸流送風機における内,外側流線形リブ列の各流線形リブの幅を説明するための一部切欠正面図。
【図10】図1等で示す各流線形リブの縦断面図。
【図11】図1等で示す軸流送風機の前縁部の送風機半径方向に沿う断面図。
【図12】図1等で示すボス部と内側流線形リブ列とを送風機半径方向に沿って切断したときの断面を示す模式図。
【図13】従来の軸流送風機の負圧面側から見たときの正面図。
【図14】図13で示す従来の軸流送風機の翼1枚分を示す一部切欠正面図。
【図15】図13で示す軸流送風機の回転中心から任意の半径で翼を周方向に切断したときの翼断面図。
【符号の説明】
11 軸流送風機
12 ボス部
13 翼
13a 翼の負圧面
13c 翼の前縁部
13d 翼の後縁部
13e 翼の外周端部
14 流線形リブ
14a 外側流線形リブ列
14b 内側流線形リブ列
15a,15b 外,内側円弧曲線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an axial blower suitable for, for example, an outdoor fan or a ventilator of an air conditioner, and in particular, to improve the blowing performance and reduce the blowing sound by suppressing the separation of the flow on the blade suction surface. It relates to the axial flow blower.
[0002]
[Prior art]
FIG. 13 is a front view when viewed from the blade suction surface side of a conventional axial flow fan 1, and FIG. 14 is a partially cutaway front view illustrating one blade of the axial flow fan 1 and omitting other blades. FIG. This axial blower 1 is integrated or integrated with a plurality of blades 3, 3... At a predetermined pitch in the circumferential direction on the outer peripheral side surface of a cylindrical boss portion 2 whose rotating shaft (not shown) is fixed to the central portion O. Is formed. Each blade 3 has a concave arc-shaped front edge 3a that forms an upstream end of the air flow with respect to the fan rotation direction (circumferential direction) indicated by an arrow in the figure, and a trailing edge that forms a downstream end of the air flow. 3b, a convex arc-shaped outer peripheral end 3c, a negative pressure surface 3d on the fluid suction side also shown in FIG. 15, and a positive pressure surface 3e on the back side thereof.
[0003]
Then, the thickness of the leading edge portion 3a on the suction surface 3d side of each blade 3 is formed into a streamlined thick portion 3f thicker than the trailing edge portion, and on the leading edge portion 3a of the streamline thick portion 3f. In addition, a plurality of streamlined ribs 4 having a substantially rectangular front shape are arranged in a row at predetermined intervals in the radial direction of the blower along the outline (outline) of the front edge 3a.
[0004]
FIG. 15 shows a blade section in the circumferential direction at a portion that is separated by an arbitrary distance r in the radial direction from the axis O of the rotating shaft (not shown) fixed to the center of the boss 2 as shown in FIG.
[0005]
As shown in FIG. 15, a streamlined thick part 3f is formed on the leading edge 3a on the suction surface 3d side of each blade 3, and a plurality of streamlined ribs 4 are formed on the streamlined thick part 3f. Therefore, after the air flow U flowing in from the blade suction surface 3d side front edge portion 3a passes through the streamlined rib 4, it becomes a longitudinal vortex row Uz. For this reason, it is possible to suppress separation of the air flow from the negative pressure surface 3d. Therefore, the width of the wake vortex fu generated behind (downstream) the rear edge 3b is reduced to reduce the blowing sound. Can do.
[0006]
[Problems to be solved by the invention]
However, in such a conventional axial blower 1, since only one row of streamline ribs 4 is arranged, there is a problem that the effect of reducing the blowing noise is not always sufficient.
[0007]
The present invention has been made in consideration of such circumstances, and its purpose is to reduce the flow separation generated on the blade suction surface and to further reduce the blowing noise at a low cost and good formability. The object is to provide an axial blower.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is the axial blower in which a plurality of blades are arranged on the outer periphery of the boss portion to which the rotation shaft is fixed. The suction surface side front edge portion of each blade is moved from the front edge to the blade rear. A plurality of streamlined ribs continuously extending toward the edge are arranged in a row at a predetermined interval between the boss part and the outer peripheral end along the contour line of the front edge part. A plurality of rows are provided at predetermined intervals in the blower circumferential direction, and the flow direction of the inflow air of each streamline rib of the inner streamline rib row provided on the inner side in the blower circumferential direction than the outer streamline rib row on the blade leading edge side. The ventilation side to be guided is inclined at each predetermined angle with respect to a line segment OQ connecting the rotation axis center O and the intersection Q between the blade outer periphery and the blade trailing edge. It is an axial flow fan characterized by enlarging as it goes to the streamline rib on the boss part side .
[0009]
In the invention according to claim 2, each streamline rib of the inner streamline rib row has an angle of the ventilation side surface for guiding the ventilation direction of the inflowing air with respect to the angle of the ventilation side surface of the outer streamline rib row. 2. The axial-flow fan according to claim 1, wherein the fan is inclined in a range of from [deg.] To 18 [deg.].
[0010]
In the invention according to claim 3, the length L2 along the blower circumferential direction of each streamline rib of the inner streamline rib row is set to the length L1 along the blower circumferential direction of each streamline rib of the outer streamline rib row. The axial blower according to claim 1 or 2, wherein the axial blower is formed to have a length of approximately 0.8L1.
[0011]
Claim invention according to claim 4, inner flow linear ribs column to its streamlined ribs, characterized in that it is disposed at a position corresponding to the gap of the aerodynamic ribs between the outer flow linear rib columns It is an axial blower of any one of 1-3 .
[0012]
In the invention according to claim 5, each streamlined rib of the inner streamlined rib row has an outer surface of a cross section along the circumferential direction of the blower forming an arc surface, and a radius rc of an arc curved surface at a part of the front edge of the blade on the outer surface of the arc. The axial flow fan according to any one of claims 1 to 4, wherein the one is integrally formed so as to be larger than the radius rd of the arcuate curved surface on the other side of the opposite side. .
[0015]
In the invention according to claim 5 , each streamlined rib of the inner streamlined rib row has an outer surface of a cross section along the circumferential direction of the blower forming an arc surface, and a radius rc of an arc curved surface at a part of the front edge of the blade on the outer surface of the arc. The axial flow fan according to any one of claims 1 to 4, wherein the one is integrally formed so as to be larger than the radius rd of the arcuate curved surface on the other side of the opposite side. .
[0017]
According to each of these inventions, when each blade rotates about the axis of the boss portion by the rotation of the axial blower, a plurality of rows of air flows from the outside flow into the front edge portion on the suction surface side of each blade. Each of the streamlined ribs forms a longitudinal vortex train, so that a transition is made from the laminar boundary layer to the turbulent boundary layer on the blade suction surface. The turbulent boundary layer is less likely to cause separation of the airflow than the laminar boundary layer, and the width of the wake vortex causing the blowing sound is narrowed, so that the blowing sound can be reduced. In addition, since there are a plurality of rows of streamline ribs in the ventilation direction, the width of the wake vortex that causes the blowing sound is made narrower than the conventional example in which there are only one row of streamline ribs shown in FIG. Can do. For this reason, the blowing sound can be further reduced. Furthermore, since each streamline rib can be easily integrally formed with each blade by, for example, resin molding, the moldability is good and the manufacturing cost can be reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In these drawings, the same or corresponding parts are denoted by the same reference numerals.
[0021]
FIG. 1 is a front view showing an overall configuration of an axial blower 11 according to an embodiment of the present invention when viewed from the blade suction surface side, and FIG. 2 shows one blade and omits other blades. It is a partially cutaway front view shown. As shown in these drawings, the axial blower 11 has a plurality of blades 13, 13, 13 integrally or integrally attached to the outer peripheral side surface of a cylindrical boss portion 12, for example, at circumferentially equal positions. It is integrally formed by resin molding or the like.
[0022]
The boss part 12 has a small cylindrical boss 12b for inserting and fixing a rotating shaft of a drive motor (not shown) in the center of the bottomed cylindrical body 12a, and a boss body extending radially from the boss 12b. A substantially inverted Y-shaped connecting rib 12c that is integrally connected to the inner peripheral surface of 12a is integrally connected.
[0023]
On the other hand, each blade 13 has a negative pressure surface 13a on the air suction side, a positive pressure surface 13b on the back side of the air suction side, and the air flow of each blade 13 with respect to the fan rotation direction indicated by the arrows in FIGS. A concave arc-shaped front edge 13c that forms the upstream end, a rear edge 13d that forms the downstream end of the air flow, and the radially outer ends of the front edge 13c and the rear edge 13d are connected together. A convex arc-shaped outer peripheral end portion 13e is integrally formed.
[0024]
Each blade 13 is formed on the front edge portion 13c on the suction surface 13a side so that the front shape is substantially rectangular and is smoothly connected from the front edge (front end) of the front edge portion 13c toward the rear edge portion 13d. Outer streamlined rib rows 14a are formed by arranging the streamlined ribs 14 in a row at a predetermined interval between the boss 12b and the outer peripheral end 13e along the contour line of the front edge portion . Further, a plurality of streamline ribs 14 are arranged along the contour line of the front edge portion at a predetermined distance from the outer streamline rib row 14a to the rear circumferential edge portion 13d side (that is, the blade inner surface side). The inner streamlined rib rows 14b are formed in a row at a predetermined interval between the boss 12b and the outer peripheral end portion 13e, and the inner and outer streamlined rib rows 14b, 14a are provided in parallel.
[0025]
Each aerodynamic ribs 14 of the inner flow linear ribs column 14b as shown in FIG. 2, the ventilation side 14b 1 for guiding the airflow direction of the air flow, the flow of the outer flow linear ribs column 14a of the outer vicinity and it is inclined at an angle θ with respect to the ventilation side 14a 1 of the linear rib 14, as the angle θ is set in a range of for example 12 ° ~ 18 °.
[0026]
Further, the ventilation side 14b 1 of the inner flow linear ribs columns 14b each aerodynamic ribs 14 as shown in FIG. 3, blower rotational center, i.e. the center O of the boss portion 12, and the trailing edge of the blade trailing edge 13d wings The line segment OQ connecting the intersection point Q with the outer periphery 13e is also inclined at predetermined angles α 1 , α 2 , α 3 ... Α n . Moreover, the inclined angle alpha 1 to? N, the angle of the ventilation side 14b 1 of the ventilation side 14b 1 of the angle alpha 1 closest streamlined rib 14 to the boss 12 from the aerodynamic ribs 14 closest to the outer circumferential blade 13e .alpha.n As the angle goes to, the inclination angle gradually increases, and α n = 2α 1 is set.
[0027]
FIG. 4 shows the state of the air flow U on the blade negative pressure surface 13a side of the axial blower 11 configured as described above by an arrow line. FIG. 5 shows a blade cross section when cut in the circumferential direction of the blower at an arbitrary position of the blade 13 that is a predetermined distance r 1 in the radial direction from the center of the boss portion 2 as shown in FIG. 4 and an air flow U flowing through the blade cross section. Shows the state. In these drawings, the arrow line indicates the air flow direction, and the rotation of the arrow line indicates the vertical vortex row Uz.
[0028]
As shown in FIGS. 4 and 5, in the axial blower 11, the air flow U flowing from the front edge fillet of the front edge portion 13 c onto the blade suction surface 13 a is transferred to the outer streamline rib row 14 a and the inner streamline. Each passes through the rib row 14b to become a vertical vortex row Uz, and transitions from the laminar boundary layer to the turbulent boundary layer on the blade suction surface 13a. Thereby, the width | variety of the wake vortex fz which makes the cause of blowing sound can be narrowed, and blowing sound can be reduced.
[0029]
Moreover, according to this axial blower 11, the rib rows of the streamlined ribs 14 are the inner and outer two rows 14b, 14a, so that the air flow U passes through the inner streamlined rib rows 14b, 14a. The vertical vortex street Uz can be generated twice on the negative pressure surface 13a. For this reason, since the generation amount of the longitudinal vortex row Uz can be increased as compared with the conventional axial blower 1 shown in FIG. The width of fz can be further narrowed, and the amount of blown air can be further reduced accordingly. The streamline ribs 14b may be provided in three or more rows.
[0030]
Then, the inner flow linear ribs column 14b as shown in FIG. 6, the longitudinal length L 2 along the fan circumferential direction of the aerodynamic ribs 14, the outer flow linear rib row 14a each aerodynamic ribs 14 than the longitudinal length L 1 along the fan circumferential direction to form short, it is formed, for example, in 0.8 L 1. Further, the radial intervals W of the streamlined ribs 14 in the inner streamlined rib row 14b are set to be substantially equal.
[0031]
Further, as shown in FIG. 7, the streamline ribs 14 of the inner streamline rib row 14b are arranged at positions corresponding to the gaps between the streamline ribs 14 adjacent to each other in the blower radial direction of the outer streamline rib row 14a. ing.
[0032]
Furthermore, as shown in FIG. 8, the center of a virtual arc curve 15a connecting the leading edges (right ends in FIG. 8) of each streamline rib 14 of the outer streamline rib row 14a is P, and its radius is ra. Sometimes, the leading edge of each streamlined rib 14 of the inner streamlined rib row 14b is positioned on a virtual arc curve 15b concentric with the center P and having a radius rb larger than the radius ra. ing.
[0033]
Further, as shown in FIG. 9, the width Wa in the blower radial direction of each streamline rib 14 in the outer streamline rib row 14a and the width Wb in the blower radial direction of each streamline rib 14 in the inner streamline rib row 14b. They are formed with almost the same width.
[0034]
FIG. 10 shows an arcuate section 14c when each streamlined rib 14 of the inner streamlined rib row 14b is cut along the circumferential direction of the blower. The arcuate section 14c is formed on the blade leading edge 13c side. Rc> rd is established when the radius of curvature of the front half portion 14c1, which is a part, is rc, and the radius of curvature of the rear half portion 14c2, which is the other portion, is rd.
[0035]
By the way, as shown in FIG. 11, the thickness h 0 of the blade cross section along the blower radial direction of the leading edge portion 13c of each blade 13 is removed so as to gradually decrease from the boss portion 12 side Za to the blade outer periphery 13e side Zb. It has been changed.
[0036]
On the other hand, as shown in FIG. 12, the height of each streamlined rib 14 is gradually changed so as to gradually increase from the boss 12 side Ya toward the blade outer periphery 13e side Yb, and the flow closest to the blade outer periphery 13e. The height h 1 of the linear rib and the height h 2 of the streamline rib 14 closest to the boss portion 12 are formed so that h 1 = 2h 2 . That is, the direction in which the height of each streamline rib 14 increases and the direction in which the thickness of the blade suction surface side front edge portion 13c increases are opposite to each other, and thus the thickness h 0 of the front edge portion 13c. approximately equal at any point is cross-sectional thickness h t, including. For this reason, shortening of the cooling time of integral molding at the time of resin molding of the axial blower 11, and meat sinking can be prevented or reduced.
[0037]
As described above, the axial blower 11 has the length L 2 in the longitudinal direction, the installation interval W, the installation position, the position of the front edge, the width Wb, and the arc outer surface of each streamline rib 14 of the inner streamline rib row 14b. Since the curvature and the like are respectively set, the longitudinal vortex train can be stably generated on the blade suction surface 13a, and the blowing sound can be further reduced.
[0038]
【The invention's effect】
As described above, according to the present invention, a plurality of streamlined ribs smoothly connected from the leading edge of the blades on the suction surface side front edge portion of each blade are arranged side by side. A longitudinal vortex train can be generated to suppress the separation of the flow. As a result, the width of the wake vortex formed behind the blade trailing edge can be reduced to reduce the blowing sound. Further, since each streamline rib has a streamline shape, the axial blower can be easily integrally formed by, for example, resin molding, and both improvement in moldability and reduction in manufacturing cost can be achieved.
[Brief description of the drawings]
FIG. 1 is a front view of an overall configuration of an axial blower according to an embodiment of the present invention as viewed from a blade suction surface side.
FIG. 2 is a partially cutaway front view for explaining an inclination angle of a ventilation side surface of each streamline rib in the inner streamline rib row of the axial flow fan shown in FIG.
FIG. 3 is a partially cutaway front view in the case of changing the inclination angle of each streamline rib in the inner streamline rib row of the axial flow fan shown in FIG. 1;
4 is a partially cutaway front view showing a state of air flow on a blade suction surface of the axial blower shown in FIG. 1 and the like. FIG.
[5] blade section view taken along the fan circumferential direction at a radius r 1 wings axial blower shown in FIG.
6 is a partially cutaway front view showing the length of each streamline rib in the inner streamline rib row of the axial flow fan shown in FIG. 1 and the like, and the spacing between the ribs. FIG.
7 is a partial cutaway when each streamline rib of the inner streamline rib row in the axial blower shown in FIG. 1 and the like is arranged at a position corresponding to a gap between each streamline rib of the outer streamline rib row. Front view.
FIG. 8 is a partial notch showing the positional relationship between the front edge of each streamline rib of the outer streamline rib row and the front edge of each streamline rib of the inner streamline rib row in the axial flow fan shown in FIG. Front view.
FIG. 9 is a partially cutaway front view for explaining the width of each streamline rib of the inner and outer streamline rib rows in the axial flow fan shown in FIG. 1 and the like.
FIG. 10 is a longitudinal sectional view of each streamlined rib shown in FIG.
11 is a cross-sectional view taken along the radial direction of the blower at the front edge of the axial flow blower shown in FIG. 1 and the like.
12 is a schematic view showing a cross section when the boss portion and the inner streamline rib row shown in FIG. 1 and the like are cut along the blower radial direction. FIG.
FIG. 13 is a front view of the conventional axial blower when viewed from the negative pressure side.
14 is a partially cutaway front view showing one blade of the conventional axial fan shown in FIG.
15 is a cross-sectional view of a blade when the blade is cut in the circumferential direction at an arbitrary radius from the rotation center of the axial-flow fan shown in FIG.
[Explanation of symbols]
11 Axial flow fan 12 Boss portion 13 Blade 13a Blade suction surface 13c Blade front edge 13d Blade trailing edge 13e Blade outer peripheral end 14 Streamlined rib 14a Outer streamlined rib row 14b Inner streamlined rib row 15a, 15b Outer and inner arc curves

Claims (5)

回転軸が固定されるボス部の外周に、複数の翼を配設した軸流送風機において、
上記各翼の負圧面側前縁部に、その前縁から翼後縁に向けて滑かに連なる流線形リブを、上記前縁部の輪郭線に沿ってボス部と外周端部間に所定の間隔を置いて列状に複数配設し、この流線形リブ列を送風機周方向に所定の間隔を置いて複数列設け、
翼前縁側の外側流線形リブ列よりも送風機周方向内側に設けた内側流線形リブ列の各流線形リブの流入空気の通風方向を案内する通風側面を、回転軸中心Oと、翼外周と翼後縁との交点Qと、を結ぶ線分OQに対して各々の所定角度でそれぞれ傾斜させ、これらの各傾斜角を翼外周からボス部側の流線形リブに行くに従って大きくすることを特徴とする軸流送風機。
In the axial flow fan in which a plurality of blades are arranged on the outer periphery of the boss portion to which the rotation shaft is fixed,
A streamlined rib smoothly connected from the leading edge to the trailing edge of the blade on the suction surface side front edge of each blade is predetermined between the boss and the outer peripheral edge along the contour line of the leading edge. A plurality of the streamlined rib rows are arranged at predetermined intervals in the circumferential direction of the blower.
The ventilation side that guides the ventilation direction of the inflow air of each streamline rib of the inner streamline rib row provided inside the blower circumferential direction from the outer streamline rib row on the blade leading edge side, the rotation axis center O, the blade outer periphery, Inclined at respective predetermined angles with respect to the line segment OQ connecting the intersection point Q with the blade trailing edge, and each of these inclination angles is increased from the outer periphery of the blade toward the streamline rib on the boss portion side. An axial flow blower.
内側流線形リブ列の各流線形リブは、その流入空気の通風方向を案内する通風側面の角度を、上記外側流線形リブ列の通風側面の角度に対して12°〜18°の範囲で傾斜させていることを特徴とする請求項1記載の軸流送風機。 Each streamline rib of the inner streamline rib row is inclined at an angle of the ventilation side surface that guides the ventilation direction of the inflow air in a range of 12 ° to 18 ° with respect to the angle of the ventilation side surface of the outer streamline rib row. The axial-flow fan according to claim 1, wherein 内側流線形リブ列の各流線形リブの送風機周方向に沿う長さL2を、外側流線形リブ列の各流線形リブの送風機周方向に沿う長さL1に対し、ほぼ0.8L1の長さに形成していることを特徴とする請求項1または2に記載の軸流送風機。 The length L2 along the blower circumferential direction of each streamline rib of the inner streamline rib row is approximately 0.8L1 with respect to the length L1 along the blower circumferential direction of each streamline rib of the outer streamline rib row. The axial-flow fan according to claim 1 or 2, wherein 内側流線形リブ列は、その流線形リブを、外側流線形リブ列の流線形リブ同士の間隙に対応する位置に配設していることを特徴とする請求項1〜3のいずれか1項に記載の軸流送風機。Inner flow linear ribs columns its streamlined ribs, any one of claims 1 to 3, characterized in that it is disposed at a position corresponding to the gap of the aerodynamic ribs between the outer flow linear rib columns An axial flow blower described in 1. 内側流線形リブ列の各流線形リブは、その送風機周方向に沿う断面の外面が円弧面をなし、その円弧外面の翼前縁側一部の円弧曲面の半径rcの方が、その反対側他部の円弧曲面の半径rdよりも大きくなるように一体に形成されていることを特徴とする請求項1〜4のいずれか1項に記載の軸流送風機。Each streamline rib of the inner streamline rib row has an outer surface of a cross section along the circumferential direction of the blower forming an arc surface, and the radius rc of the arc curved surface of the blade leading edge side of the outer surface of the arc is on the opposite side. The axial-flow blower according to any one of claims 1 to 4, wherein the axial blower is integrally formed so as to be larger than a radius rd of an arc curved surface of the portion.
JP26737099A 1999-09-21 1999-09-21 Axial blower Expired - Lifetime JP4321690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26737099A JP4321690B2 (en) 1999-09-21 1999-09-21 Axial blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26737099A JP4321690B2 (en) 1999-09-21 1999-09-21 Axial blower

Publications (2)

Publication Number Publication Date
JP2001090692A JP2001090692A (en) 2001-04-03
JP4321690B2 true JP4321690B2 (en) 2009-08-26

Family

ID=17443903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26737099A Expired - Lifetime JP4321690B2 (en) 1999-09-21 1999-09-21 Axial blower

Country Status (1)

Country Link
JP (1) JP4321690B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174669A (en) * 2011-12-21 2013-06-26 格兰富控股联合股份公司 Impeller
US10539157B2 (en) 2015-04-08 2020-01-21 Horton, Inc. Fan blade surface features

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432474B2 (en) * 2003-11-27 2010-03-17 ダイキン工業株式会社 Centrifugal blower impeller and centrifugal blower provided with the impeller
JP4974605B2 (en) * 2006-08-03 2012-07-11 新明和工業株式会社 Impeller and underwater mixer
KR101483340B1 (en) * 2012-08-07 2015-01-15 엘지전자 주식회사 Fan
WO2015029245A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit
JP7071682B1 (en) * 2021-01-21 2022-05-19 ダイキン工業株式会社 Axial flow fan and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174669A (en) * 2011-12-21 2013-06-26 格兰富控股联合股份公司 Impeller
US10539157B2 (en) 2015-04-08 2020-01-21 Horton, Inc. Fan blade surface features
US10662975B2 (en) 2015-04-08 2020-05-26 Horton, Inc. Fan blade surface features

Also Published As

Publication number Publication date
JP2001090692A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4035237B2 (en) Axial blower
JP7092433B2 (en) Forward / reverse rotation fan
JP3979388B2 (en) Blower
JP4396775B2 (en) Centrifugal fan
JP4380105B2 (en) Fan guard and air conditioner for blower unit
JP5689538B2 (en) Outdoor cooling unit for vehicle air conditioner
JP2000240590A (en) Multiblade forward fan
JP2003254297A (en) Fan and shroud assembly
JP2006194235A (en) Centrifugal blower
JP5145188B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP2006194245A (en) Centrifugal blower and air conditioner with centrifugal blower
JP2008223741A (en) Centrifugal blower
JP4321690B2 (en) Axial blower
EP1210264B1 (en) Centrifugal impeller with high blade camber
JP4818310B2 (en) Axial blower
CN110914553B (en) Impeller, blower and air conditioner
JP5012836B2 (en) Centrifugal fan
JPH09195988A (en) Multiblade blower
JP4321689B2 (en) Axial blower
JP2004011423A (en) Air flow control structure of air blowing section
JP2001159396A (en) Centrifugal fan and air conditioner equipped with the same
JP2006125229A (en) Sirocco fan
JP2005075347A (en) High efficiency type air supply device for ventilation, heating and/or air conditioner for living space of vehicle
JP3607769B2 (en) Centrifugal blower
JPH08159099A (en) Axial flow fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

R150 Certificate of patent or registration of utility model

Ref document number: 4321690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term