JP4320844B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4320844B2
JP4320844B2 JP15587999A JP15587999A JP4320844B2 JP 4320844 B2 JP4320844 B2 JP 4320844B2 JP 15587999 A JP15587999 A JP 15587999A JP 15587999 A JP15587999 A JP 15587999A JP 4320844 B2 JP4320844 B2 JP 4320844B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
stage compression
compression operation
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15587999A
Other languages
Japanese (ja)
Other versions
JP2000346474A (en
Inventor
知宏 藪
泰 山下
義和 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15587999A priority Critical patent/JP4320844B2/en
Publication of JP2000346474A publication Critical patent/JP2000346474A/en
Application granted granted Critical
Publication of JP4320844B2 publication Critical patent/JP4320844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2段圧縮運転と単段圧縮運転とが可能な2段圧縮機構を備えた冷凍装置に関し、特に、単段圧縮運転時における停止側圧縮機での冷媒の滞留防止対策に係るものである。
【0002】
【従来の技術】
従来より、例えば特開平4−80545号公報に示されているように、蒸発圧力が低くて高圧縮比の運転が要求される冷凍装置では、2段圧縮式冷凍サイクルが採用されている。この公報に記載された2段圧縮式冷凍サイクルの圧縮機構は、2台の圧縮機から構成され、一方の圧縮機のみを使用する単段圧縮運転と、両方の圧縮機を直列に使用する2段圧縮運転とを切り換えることができるように構成されている。
【0003】
図4に、この種の2段圧縮式冷凍サイクルが適用された従来の空気調和装置の冷媒回路の一例を示している。この冷媒回路は、二段圧縮機構(1) と、四路切換弁(2) と、室内熱交換器(3) と、第1電子膨張弁(4) と、気液分離器(5) と、第2電子膨張弁(6) と、室外熱交換器(7) とが直列に接続された構成であり、圧縮機構(1) は、下段側の第1圧縮機(8) と上段側の第2圧縮機(9) とから構成されている。
【0004】
第2圧縮機(9) の吸入側配管(12)と吐出側配管(13)とは、電磁弁(16)を介して互いに接続されており、この電磁弁(16)の開閉状態を切り換えることで、両圧縮機(8,9) を使用する2段圧縮運転と、第1圧縮機(8) のみを使用する単段圧縮運転とを選択することができるようになっている。
【0005】
なお、(17)はガスインジェクション動作を行うためのインジェクション通路である。このインジェクション通路(17)は、2段圧縮による暖房運転時等に気液分離器(5) 内の中間圧冷媒を圧縮機構(1) に戻すことにより暖房能力を高めるものとして、従来より用いられているものである。
【0006】
この空気調和装置において、例えば単段圧縮による暖房運転を行う場合、ガスインジェクションは行わず、電磁弁(16)を「開」に設定して第1圧縮機(8) を動作させ、第2圧縮機(9) は停止させる。そして、第1圧縮機(8) から吐出された冷媒が冷媒回路内を循環し、その際に室内熱交換器(3) で室内空気を加熱することにより、室内が暖房される。
【0007】
【発明が解決しようとする課題】
しかし、図示の構成では、電磁弁(16)を開いて単段圧縮運転を行っているときには、第2圧縮機(9) の吸入側と吐出側が高圧になるため、第2圧縮機(9) に冷媒が流入して滞留する。このため、第2圧縮機(9) の中に液冷媒が溜まってしまい、該第2圧縮機(9) の再起動ができなくなったり、系内の冷媒量が不足したりすることがあった。また、第2圧縮機(9) を再起動した場合でも、冷凍機油が第2圧縮機(9) 内の液冷媒に溶け込んで該冷媒と共に流出してしまい、第2圧縮機(9) 内の冷凍機油が不足し、潤滑不良などの不具合が生じることもあった。
【0008】
本発明は、このような問題点に鑑みて創案されたものであり、その目的とするところは、2段圧縮機構を備えた冷凍装置において、単段圧縮運転時に停止側の圧縮機に冷媒が溜まり込むのを防止し、上述した種々の問題が発生しないようにすることである。
【0009】
【課題を解決するための手段】
本発明は、単段圧縮運転時に停止側圧縮機(9) に冷媒を流入させないようにして、溜まり込みを防ぐようにしたものである。
【0010】
具体的に、本発明が講じた解決手段は、2段圧縮運転と単段圧縮運転とが可能な2段圧縮機構(1) を備えた冷凍装置を前提としている。そして、単段圧縮運転時に停止側圧縮機(9) への冷媒の流入を防止する冷媒流入防止手段(14,15,21)を備えている。
【0011】
上記構成において、冷媒流入防止手段(14,15,21)は、単段圧縮運転時の停止側圧縮機(9) の吸入側配管(12)と吐出側配管(13)にそれぞれ設けられた開閉弁(14,15) により構成することができる。また、冷媒流入防止手段(14,15,21)は、単段圧縮運転時の停止側圧縮機(9) の吸入側配管(12)に設けた開閉弁(14)と、吐出側配管(13)に、該停止側圧縮機(9) に流入する方向への冷媒の流通を禁止するように設けた逆止弁(21)とから構成してもよい。
【0012】
そして、この構成においては、単段圧縮運転時の停止側圧縮機(9) と、冷媒回路の低圧ガス配管(23)とを、冷媒吸引通路(22)により接続し、該冷媒吸引通路(22)には減圧機構(24)を設けている。この減圧機構(24)には、キャピラリチューブを使用することができる。
【0013】
−作用−
上記解決手段では、冷媒流入防止手段(14,15,21)を設けたことにより、単段圧縮運転時に、停止側圧縮機(9) に冷媒が流入しない。具体的には、停止側圧縮機(9) の吸入側配管(12)と吐出側配管(13)にいずれも開閉弁(14,15) を設けた場合には両開閉弁(14,15) を閉じ、吐出側のみを逆止弁(21)とした場合は吸入側の開閉弁(14)を閉じることで、停止側圧縮機(9) への冷媒の流入を防止できる。
【0014】
そして、上記冷媒吸引通路(22)を設けることにより、単段圧縮運転時に開閉弁(14,15) または逆止弁(21)に漏れがあって停止側圧縮機(9) 内に冷媒が流入した場合でも、その冷媒を、キャピラリチューブ等の減圧機構(24)を介して低圧ガス配管(23)から動作側圧縮機に吸引できる。
【0015】
【発明の効果】
このように、上記解決手段によれば、単段圧縮運転時の停止側圧縮機(9) に液冷媒が溜まらないので、該停止側圧縮機(9) の再起動ができなくなったり、系内の冷媒量が不足したりすることを防止できる。また、単段圧縮運転時の停止側圧縮機(9) を2段圧縮運転の再開時に再起動した場合に、冷凍機油が冷媒と共に流出することもなくなるので、該圧縮機(9) 内の冷凍機油が不足し、潤滑不良が生じるような不具合も防止できる。
【0016】
そして、冷媒吸引通路(22)を設けているので、開閉弁(14,15) や逆止弁(21)に漏れが生じて冷媒が停止側圧縮機(9) に流入した場合でも、該停止側圧縮機(9) に液冷媒が溜まるのを防止できるから、上述したような問題の発生を確実に防止することができる。
【0017】
【発明の参考技術1】
以下、本発明の参考技術1を図面に基づいて詳細に説明する。
【0018】
図1は、本発明に係る冷凍装置の参考技術1としての空気調和装置の冷媒回路図である。この冷媒回路は、二段圧縮機構(1) と、四路切換弁(2) と、室内熱交換器(3) と、第1電子膨張弁(4) と、気液分離器(5) と、第2電子膨張弁(6) と、室外熱交換器(7) とから構成され、圧縮機構(1) は、下段側の第1圧縮機(8) と上段側の第2圧縮機(9) とから構成されている。
【0019】
具体的には、第1圧縮機(8) の吐出側が後述の第1電磁弁(14)とアキュムレータ(10)を介して第2圧縮機(9) の吸入側に接続され、第2圧縮機(9) の吐出側は、第2電磁弁(15)(後述する)、四路切換弁(2) 、室内熱交換器(3)、第1電子膨張弁(4) 、気液分離器(5) 、第2電子膨張弁(6)、室外熱交換器(7) 、四路切換弁(2) 、そしてアキュムレータ(11)を介して、第1圧縮機(9) の吸入側に接続されている。
【0020】
第2圧縮機(9) の吸入側配管(12)と吐出側配管(13)には、単段圧縮運転時に該第2圧縮機(9) への冷媒の流入を防止する冷媒流入防止手段として、第1,第2電磁弁(開閉弁)(14,15) が設けられている。また、該吸入側配管(12)と吐出側配管(13)は、両電磁弁(14,15) の反第2圧縮機(9) 側の部分が、第3電磁弁(16)を介して互いに接続されている。そして、この第3電磁弁(16)の開閉状態を切り換えることにより、2段圧縮運転と単段圧縮運転とを切り換えることが可能に構成されている。
【0021】
参考技術1の冷媒回路は、二段圧縮運転時に、必要に応じてガスインジェクションを行えるように構成されている。このため、気液分離器(5) のガス出口と、第2圧縮機(9) の吸入側配管(12)との間に、2段圧縮運転のときに気液分離器(5) 内のガス冷媒を第2圧縮機(9) に送るインジェクション通路(17)が接続され、該インジェクション通路(17)には第4電磁弁(18)が設けられている。さらに、上記室内熱交換器(3) と第1電子膨張弁(4) の間と、インジェクション通路(17)の第4電磁弁(18)の上流側との間に、冷媒の一部をインジェクション通路(17) に導入する液冷媒導入通路(19)が接続され、該液冷媒導入通路(19)には第3電子膨張弁(20)が設けられている。
【0022】
なお、室内熱交換器(3) 及び室外熱交換器(7) は、いずれも空気熱交換器であり、それぞれ、図示しない室内ユニット及び室外ユニットに設けられている。そして、室内ユニットには室内熱交換器(3) に空気を供給する室内ファン(図示せず)が設けられ、室外ユニットには室外熱交換器(7) に空気を供給する室外ファン(図示せず)が設けられている。なお、室内熱交換器(3) は、複数台(図では2台のみ示している)が並列に接続されている。
【0023】
−運転動作−
次に、この空気調和装置の運転動作について説明する。
【0024】
この空気調和装置は、四路切換弁(2) を切り換えることにより、暖房運転または冷房運転を任意に選択して行うことができ、暖房運転では四路切換弁(2) は図の実線側に設定され、冷房運転では破線側に設定される。また、2段圧縮運転を行う場合は、第1電磁弁(14)と第2電磁弁(15)が開かれて第3電磁弁(16)が閉鎖され、両圧縮機(8,9) が直列に使用される一方、単段圧縮運転を行う場合は第1電磁弁(14)と第2電磁弁(15)が閉鎖されて第3電磁弁(16)が開かれ、第1圧縮機(8) のみが使用される。さらに、2段圧縮運転時にガスインジェクション動作を行うときは、インジェクション通路(17)の第4電磁弁(18)が開かれ、ガスインジェクション動作を行わないときには該第4電磁弁(18)は閉鎖される。
【0025】
以下に、この空気調和装置の運転状態として、まず、2段圧縮でインジェクション通路(17)を開いて暖房運転する状態について説明する。このとき、図示しない制御手段により、四路切換弁(2) や各電磁弁(14,15,16,18) が上述のように制御されるのに加えて、各電子膨張弁(4,6,20)の開度が調節され、気液分離器(5) 内の冷媒圧力が所定の中間圧力に設定されるとともに、圧縮機構(1) の吐出側及び吸入側の冷媒圧力が、所定の高圧及び低圧に制御される。
【0026】
この状態で、圧縮機構(1) において2段圧縮されたガス冷媒は、四路切換弁(2) を経た後、室内熱交換器(3) に流入する。室内熱交換器(3) において、高温高圧のガス冷媒は室内空気と熱交換して凝縮し、室内空気を加熱する。凝縮した液冷媒は、第1電子膨張弁(4) を通過する際に減圧され、一部が膨張して中間圧の気液二相冷媒となる。気液二相冷媒は気液分離器(5) に流入し、ガス冷媒と液冷媒とに分離される。液冷媒は気液分離器(5) を流出した後、第2電子膨張弁(6) を通過して低圧の二相冷媒となり、室外熱交換器(7) に流入する。そして、室外熱交換器(7) において、二相冷媒は室外空気と熱交換して蒸発し、蒸発したガス冷媒は、四路切換弁(2) を通過した後、アキュムレータ(11)を経て第1圧縮機(1) に吸入される。
【0027】
一方、気液分離器(5) 内のガス冷媒は、インジェクション通路(17)から第4電磁弁(18)を経て、第2圧縮機(9) に吸入される。その際、室内熱交換器(3) を通過した後の液冷媒の一部が液冷媒導入通路(19)に吸引され、第3電子膨張弁(20)を通って減圧された後にインジェクション通路(17)のガス冷媒と混合して蒸発し、第2圧縮機(9) に吸入される。このガスインジェクション動作により、室内熱交換器(3) を流れるガス冷媒の循環量が増大し、暖房能力が向上する。
【0028】
次に、単段圧縮による暖房運転について説明する。
【0029】
この場合、第3電磁弁(16)が開かれる一方、第1電磁弁(14)と第2電磁弁(15)は閉じられる。また、ガスインジェクション通路(17)と液冷媒導入通路(19)は使用されないので、第4電磁弁(18)と第3電子膨張弁(20)は共に閉鎖される。そして、第1電子膨張弁(4) は全開に設定され、第2電子膨張弁(6) は液冷媒を所定の低圧に減圧するように所定の開度に制御される。
【0030】
この状態において、第1圧縮機(8) で圧縮されたガス冷媒は、第3電磁弁(16)と四路切換弁(2) を通って室内熱交換器(3) に流入する。そして、冷媒は該室内熱交換器(3) で室内空気と熱交換して凝縮し、その際に室内空気を加熱する。凝縮した液冷媒は、第1電子膨張弁(4) と気液分離器(5) を通過した後、第2電子膨張弁(6) により低圧の二相冷媒となり、室外熱交換器(7) に流入する。そして、室外熱交換器(7) において、二相冷媒は室外空気と熱交換して蒸発し、蒸発したガス冷媒は、四路切換弁(2) を通過した後、アキュムレータ(11)を経て第1圧縮機(8) に吸入され、以上のサイクルが繰り返される。
【0031】
なお、インジェクション通路(17)を閉じて行う二段圧縮運転や、暖房運転とは逆サイクルで行う冷房運転について、冷媒循環動作の説明は省略する。
【0032】
参考技術1の効果−
参考技術によれば、単段圧縮運転時に第1電磁弁(14)と第2電磁弁(15)が閉じられるので、第1圧縮機(8) から吐出された冷媒が第2圧縮機(9) には流入しない。このため、単段圧縮運転時の停止側圧縮機である第2圧縮機(9) 内に液冷媒が溜まらないので、第2圧縮機(9) の再起動ができなくなったり、系内の冷媒量が不足したりすることを防止できる。また、第2圧縮機内に冷媒が溜まらないことから、該第2圧縮機(9) の再起動時に冷凍機油が流出することもなく、第2圧縮機(9) の潤滑不良等の不具合も防止できる。
【0033】
【発明の参考技術2】
本発明の参考技術2は、図2に示すように、第2圧縮機(9) の吐出側配管(13)に、上記第2電磁弁(15)に代えて逆止弁(21)を設けたものである。この逆止弁(21)は、第2圧縮機(9) から流出する方向への冷媒の流通を許容する一方、該第2圧縮機(9) に流入する方向への冷媒の流通は禁止するように構成されている。その他の部分については、参考技術1と同様に構成されているので、ここでは説明を省略する。
【0034】
−運転動作−
参考技術2において、2段圧縮運転時には、第1電磁弁(14)を開き、第3電磁弁(16)を閉じて両圧縮機(8,9) を起動する。そうすると、冷媒が第1圧縮機(8) 、第2圧縮機(9) の順に圧縮された後、冷媒回路内を循環して第1圧縮機(8) に戻るサイクルが参考技術1と同様に行われて、室内空気が温度調節される。
【0035】
また、単段圧縮運転時には、第1電磁弁(14)を閉じ、第3電磁弁(16)を開いて、第1圧縮機(8) を起動し、第2圧縮機(9) を停止する。そうすると、第1圧縮機(8) から吐出された冷媒が冷媒回路内を循環して該第1圧縮機(8) に戻るサイクルが参考技術1と同様に行われ、同様に室内空気が温度調節される。
【0036】
参考技術2の効果−
参考技術2の構成においても、単段圧縮運転時に第1圧縮機(8) から吐出された冷媒が第2圧縮機(9) に流入しないため、第2圧縮機(9) 内に液冷媒が溜まるのを防止できる。したがって、第2圧縮機(9) の再起動ができなくなったり、系内の冷媒量が不足したりすることを防止でき、かつ、第2圧縮機(9) を再起動した場合に冷凍機油が冷媒と共に流出することもないので、第2圧縮機(9) 内の冷凍機油が不足する不具合も防止できる。
【0037】
また、本参考技術2では第2圧縮機(9) の吐出側に逆止弁(21)を用いているので、この逆止弁(21)に関する開閉制御は不要となる。しかも電磁弁(15,16,18)の個数を参考技術1よりも低減できるので、該電磁弁(15,16,18)を開閉制御するための電気回路等の構成を簡素化できる。
【0038】
【発明の実施の形態】
本発明の実施形態は、参考技術2の冷媒回路に、冷媒吸引通路(22)を設けたものである。この冷媒吸引通路(22)は、単段圧縮運転時の停止側圧縮機である第2圧縮機(9) と、冷媒回路の低圧ガス配管(23)とに接続されている。そして、この冷媒吸引通路(22)には、減圧機構としてキャピラリチューブ(24)が設けられていると共に、該冷媒吸引通路(22)内の冷媒の流通を制御するための第5電磁弁(25)が設けられている。
【0039】
−運転動作−
この実施形態では、2段圧縮運転時は、冷媒吸引通路(22)の第5電磁弁(25)は閉じられ、他の電磁弁(14,16,18)や電子膨張弁(4,6,20)は参考技術2と同様に制御される。上記第5電磁弁(25)が閉じられていて、冷媒吸引通路(22)が閉鎖しているので、2段圧縮運転時の冷媒循環動作は参考技術2と同じように行われる。
【0040】
一方、単段圧縮運転時は、冷媒吸引通路(22)の第5電磁弁(25)を開いたうえで、他の電磁弁(14,16,18)や電子膨張弁(4,6,20)が参考技術2と同様に制御される。このとき、冷媒は、基本的には参考技術2と同様に冷媒回路内を循環し、室内の暖房や冷房が行われる。本実施形態では冷媒吸引通路(22)を設けているので、第1電磁弁(14)または逆止弁(21)から冷媒が漏れて第2圧縮機(9) 内に流入した場合でも、その冷媒が、キャピラリチューブ(24)を介して第1圧縮機(8) に吸引される。その際、第2圧縮機(9) 内の冷媒はキャピラリチューブ(24)を通過して低圧ガス冷媒と混合し、ガス化してから該圧縮機(8) に吸引されるため、第1圧縮機(8) へ液冷媒が戻ることはない。
【0041】
実施形態の効果−
実施形態によれば、冷媒吸引通路(21)を設けたことにより、第2圧縮機(9) に液冷媒が溜まるのをより確実に防止できるから、参考技術2の効果をさらに高めることができる。
【0042】
【発明のその他の実施の形態】
本発明は、上記実施形態について、以下のような構成としてもよい。
【0043】
例えば、上記実施形態では暖房運転と冷房運転とを切り換え可能な空気調和装置について説明したが、暖房専用機あるいは冷房専用機としてもよい。また、上記実施形態は、本発明を空気調和装置に適用したものであるが、本発明は、空気調和装置以外の冷凍装置であっても適用することができる。
【0044】
また、上記冷媒回路の構成は単なる一例であって、上記実施形態に限定されるものではない。例えば、ガスインジェクション機構あるいは液冷媒導入通路は必ずしも設けなくてよいし、圧縮機構(1) の運転を単段と二段に切り換えるための具体的な回路構成なども適宜変更してよい。さらに、冷房運転は常時単段圧縮で行い、暖房運転のみを単段圧縮と2段圧縮とを切り換えながら行うようにしてもよい。
【0045】
さらに、実施形態の冷媒吸引通路(22)は、参考技術2の冷媒回路に対して設けたものであるが、参考技術1の冷媒回路に設けてもよい。
【0046】
なお、参考技術1においては、第2圧縮機(9) への液溜まりを防止できる一方、第1,第2電磁弁(14,15) を開閉するタイミングを制御すれば単段圧縮運転時に第2圧縮機(9) 内に所定量の冷媒を溜めることも可能となるため、余剰冷媒を保持して系内の冷媒流量を調整することもできる。
【図面の簡単な説明】
【図1】 本発明の参考技術1に係る空気調和装置の冷媒回路図である。
【図2】 本発明の参考技術2に係る空気調和装置の冷媒回路図である。
【図3】 本発明の実施形態に係る空気調和装置の冷媒回路図である。
【図4】 従来の空気調和装置の冷媒回路図である。
【符号の説明】
(1) 二段圧縮機構
(2) 四路切換弁
(3) 室内熱交換器
(4) 第1電子膨張弁
(5) 気液分離器
(6) 第2電子膨張弁
(7) 室外熱交換器
(8) 第1圧縮機
(9) 第2圧縮機
(10) アキュムレータ
(11) アキュムレータ
(12) 吸入側配管
(13) 吐出側配管
(14) 第1電磁弁(開閉弁)
(15) 第2電磁弁(開閉弁)
(16) 第3電磁弁(開閉弁)
(17) インジェクション通路
(18) 第4電磁弁
(19) 液冷媒導入通路
(20) 第3電子膨張弁
(21) 逆止弁
(22) 冷媒吸引通路
(23) 低圧ガス配管
(24) キャピラリチューブ(減圧機構)
(25) 第5電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus having a two-stage compression mechanism capable of two-stage compression operation and single-stage compression operation, and particularly relates to measures for preventing refrigerant stagnation in a stop-side compressor during single-stage compression operation. It is.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as shown in, for example, Japanese Patent Laid-Open No. 4-80545, a two-stage compression refrigeration cycle is employed in a refrigeration apparatus that requires a low evaporation pressure and requires a high compression ratio operation. The compression mechanism of the two-stage compression refrigeration cycle described in this publication is composed of two compressors, a single-stage compression operation that uses only one compressor, and two compressors that use both compressors in series. The stage compression operation can be switched.
[0003]
FIG. 4 shows an example of a refrigerant circuit of a conventional air conditioner to which this type of two-stage compression refrigeration cycle is applied. The refrigerant circuit includes a two-stage compression mechanism (1), a four-way switching valve (2), an indoor heat exchanger (3), a first electronic expansion valve (4), a gas-liquid separator (5), The second electronic expansion valve (6) and the outdoor heat exchanger (7) are connected in series, and the compression mechanism (1) is composed of a lower first compressor (8) and an upper stage side. And a second compressor (9).
[0004]
The suction side pipe (12) and the discharge side pipe (13) of the second compressor (9) are connected to each other via a solenoid valve (16), and the open / close state of the solenoid valve (16) is switched. Thus, a two-stage compression operation using both compressors (8, 9) and a single-stage compression operation using only the first compressor (8) can be selected.
[0005]
Incidentally, (17) is an injection passage for performing a gas injection operation. This injection passage (17) has been conventionally used to increase the heating capacity by returning the intermediate pressure refrigerant in the gas-liquid separator (5) to the compression mechanism (1) during heating operation by two-stage compression. It is what.
[0006]
In this air conditioner, for example, when performing heating operation by single-stage compression, gas injection is not performed, the solenoid valve (16) is set to “open”, the first compressor (8) is operated, and the second compression is performed. The machine (9) is stopped. And the refrigerant | coolant discharged from the 1st compressor (8) circulates through the inside of a refrigerant circuit, and indoors are heated by heating indoor air in an indoor heat exchanger (3) in that case.
[0007]
[Problems to be solved by the invention]
However, in the configuration shown in the figure, when the solenoid valve (16) is opened and the single-stage compression operation is performed, the suction side and the discharge side of the second compressor (9) are at high pressure, so the second compressor (9) The refrigerant flows into and stays. As a result, liquid refrigerant may accumulate in the second compressor (9), making it impossible to restart the second compressor (9), or the amount of refrigerant in the system may be insufficient. . Even when the second compressor (9) is restarted, the refrigeration oil dissolves in the liquid refrigerant in the second compressor (9) and flows out together with the refrigerant, so that the second compressor (9) Insufficient refrigeration oil may cause problems such as poor lubrication.
[0008]
The present invention has been made in view of such problems, and an object of the present invention is to provide a refrigerant in the compressor on the stop side during single-stage compression operation in a refrigeration apparatus having a two-stage compression mechanism. It is to prevent the accumulation and prevent the various problems described above from occurring.
[0009]
[Means for Solving the Problems]
In the present invention, the refrigerant is prevented from flowing into the stop-side compressor (9) during the single-stage compression operation so as to prevent accumulation.
[0010]
Specifically, the solution provided by the present invention is premised on a refrigeration apparatus including a two-stage compression mechanism (1) capable of two-stage compression operation and single-stage compression operation. And the refrigerant | coolant inflow prevention means (14,15,21) which prevents inflow of the refrigerant | coolant to a stop side compressor (9) at the time of single stage compression operation is provided.
[0011]
In the above-described configuration, the refrigerant inflow prevention means (14, 15, 21) is an open / close provided in the suction side pipe (12) and the discharge side pipe (13) of the stop side compressor (9) during single-stage compression operation. It can be constituted by a valve (14, 15). The refrigerant inflow prevention means (14, 15, 21) includes an on-off valve (14) provided in the suction side pipe (12) of the stop side compressor (9) during the single-stage compression operation, and a discharge side pipe (13 ) And a check valve (21) provided so as to prohibit the flow of the refrigerant in the direction of flowing into the stop-side compressor (9).
[0012]
In this configuration, the stop-side compressor (9) during the single-stage compression operation and the low-pressure gas pipe (23) of the refrigerant circuit are connected by the refrigerant suction passage (22), and the refrigerant suction passage (22 ) Is provided with a pressure reducing mechanism (24) . A capillary tube can be used for this decompression mechanism (24).
[0013]
-Action-
In the above solution, since the refrigerant inflow prevention means (14, 15, 21) is provided, the refrigerant does not flow into the stop side compressor (9) during the single-stage compression operation. Specifically, if both the intake-side piping (12) and the discharge-side piping (13) of the stop-side compressor (9) are provided with on-off valves (14, 15), both on-off valves (14, 15) When the check valve (21) is used only on the discharge side, the refrigerant on the stop side compressor (9) can be prevented from flowing by closing the on-off valve (14).
[0014]
By providing the refrigerant suction passage (22), the single-stage-off valve during the compression operation (14, 15) or a check valve (21) there is a leak in the by stopping compressor (9) in the refrigerant flows Even in this case, the refrigerant can be sucked from the low-pressure gas pipe (23) to the operation side compressor via the pressure reducing mechanism (24) such as a capillary tube.
[0015]
【The invention's effect】
Thus, according to the above solution, since the liquid refrigerant does not accumulate in the stop side compressor (9) during the single-stage compression operation, the stop side compressor (9) cannot be restarted, It is possible to prevent the refrigerant amount from being insufficient. In addition, when the stop side compressor (9) in the single-stage compression operation is restarted when the two-stage compression operation is restarted, the refrigeration oil will not flow out together with the refrigerant. Problems such as lack of machine oil and poor lubrication can be prevented.
[0016]
Since the refrigerant suction passage (22) is provided, even if leakage occurs in the on-off valve (14, 15) or the check valve (21) and the refrigerant flows into the stop side compressor (9), the stoppage is stopped. Since the liquid refrigerant can be prevented from accumulating in the side compressor (9), it is possible to reliably prevent the above-described problem from occurring.
[0017]
[Reference Technology 1]
Hereinafter, Reference Technique 1 of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus as Reference Technology 1 for a refrigeration apparatus according to the present invention. The refrigerant circuit includes a two-stage compression mechanism (1), a four-way switching valve (2), an indoor heat exchanger (3), a first electronic expansion valve (4), a gas-liquid separator (5), The second electronic expansion valve (6) and the outdoor heat exchanger (7). The compression mechanism (1) includes a lower first compressor (8) and an upper second compressor (9). ).
[0019]
Specifically, the discharge side of the first compressor (8) is connected to the suction side of the second compressor (9) via a first solenoid valve (14) and an accumulator (10) which will be described later, and the second compressor The discharge side of (9) includes a second solenoid valve (15) (described later), a four-way switching valve (2), an indoor heat exchanger (3), a first electronic expansion valve (4), a gas-liquid separator ( 5) The second electronic expansion valve (6), the outdoor heat exchanger (7), the four-way switching valve (2), and the accumulator (11) are connected to the suction side of the first compressor (9). ing.
[0020]
The suction side pipe (12) and the discharge side pipe (13) of the second compressor (9) serve as refrigerant inflow prevention means for preventing the refrigerant from flowing into the second compressor (9) during single-stage compression operation. The first and second solenoid valves (open / close valves) (14, 15) are provided. In addition, the suction side pipe (12) and the discharge side pipe (13) are configured so that the part on the side opposite to the second compressor (9) of both solenoid valves (14, 15) is connected via the third solenoid valve (16). Are connected to each other. The second solenoid valve (16) can be switched between a two-stage compression operation and a single-stage compression operation by switching the open / close state of the third solenoid valve (16).
[0021]
The refrigerant circuit of the present reference technique 1 is configured to perform gas injection as necessary during the two-stage compression operation. Therefore, between the gas outlet of the gas-liquid separator (5) and the suction side pipe (12) of the second compressor (9), the gas-liquid separator (5) An injection passage (17) for sending the gas refrigerant to the second compressor (9) is connected, and a fourth electromagnetic valve (18) is provided in the injection passage (17). Further, a part of the refrigerant is injected between the indoor heat exchanger (3) and the first electronic expansion valve (4) and the upstream side of the fourth electromagnetic valve (18) of the injection passage (17). A liquid refrigerant introduction passage (19) to be introduced into the passage (17) is connected, and a third electronic expansion valve (20) is provided in the liquid refrigerant introduction passage (19).
[0022]
The indoor heat exchanger (3) and the outdoor heat exchanger (7) are both air heat exchangers, and are provided in an indoor unit and an outdoor unit (not shown), respectively. The indoor unit is provided with an indoor fan (not shown) for supplying air to the indoor heat exchanger (3), and the outdoor unit (not shown) for supplying air to the outdoor heat exchanger (7) is provided in the outdoor unit. Z). Note that a plurality of indoor heat exchangers (3) (only two are shown in the figure) are connected in parallel.
[0023]
-Driving action-
Next, the operation of the air conditioner will be described.
[0024]
This air conditioner can be operated by arbitrarily selecting heating operation or cooling operation by switching the four-way switching valve (2), and in the heating operation, the four-way switching valve (2) is on the solid line side of the figure. It is set and is set to the broken line side in the cooling operation. When performing the two-stage compression operation, the first solenoid valve (14) and the second solenoid valve (15) are opened, the third solenoid valve (16) is closed, and both compressors (8, 9) are turned on. In the case of single-stage compression operation, the first solenoid valve (14) and the second solenoid valve (15) are closed, the third solenoid valve (16) is opened, and the first compressor ( Only 8) is used. Further, when the gas injection operation is performed during the two-stage compression operation, the fourth solenoid valve (18) of the injection passage (17) is opened, and when the gas injection operation is not performed, the fourth solenoid valve (18) is closed. The
[0025]
Hereinafter, as an operation state of the air conditioner, a state where the heating operation is performed by opening the injection passage (17) by two-stage compression will be described. At this time, in addition to the four-way switching valve (2) and the electromagnetic valves (14, 15, 16, 18) being controlled as described above by control means (not shown), the electronic expansion valves (4, 6 , 20) is adjusted, the refrigerant pressure in the gas-liquid separator (5) is set to a predetermined intermediate pressure, and the refrigerant pressure on the discharge side and the suction side of the compression mechanism (1) is set to a predetermined level. Controlled to high and low pressure.
[0026]
In this state, the gas refrigerant compressed in two stages in the compression mechanism (1) passes through the four-way switching valve (2) and then flows into the indoor heat exchanger (3). In the indoor heat exchanger (3), the high-temperature and high-pressure gas refrigerant exchanges heat with the indoor air and condenses to heat the indoor air. The condensed liquid refrigerant is depressurized when passing through the first electronic expansion valve (4), and a part of the refrigerant expands to become an intermediate-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the gas-liquid separator (5) and is separated into a gas refrigerant and a liquid refrigerant. The liquid refrigerant flows out of the gas-liquid separator (5), passes through the second electronic expansion valve (6), becomes a low-pressure two-phase refrigerant, and flows into the outdoor heat exchanger (7). In the outdoor heat exchanger (7), the two-phase refrigerant exchanges heat with the outdoor air and evaporates, and the evaporated gas refrigerant passes through the four-way switching valve (2) and then passes through the accumulator (11). It is sucked into 1 compressor (1).
[0027]
On the other hand, the gas refrigerant in the gas-liquid separator (5) is sucked into the second compressor (9) from the injection passage (17) through the fourth electromagnetic valve (18). At that time, a part of the liquid refrigerant after passing through the indoor heat exchanger (3) is sucked into the liquid refrigerant introduction passage (19), depressurized through the third electronic expansion valve (20), and then injected into the injection passage ( Evaporates after mixing with the gas refrigerant of 17) and is sucked into the second compressor (9). By this gas injection operation, the circulation amount of the gas refrigerant flowing through the indoor heat exchanger (3) is increased, and the heating capacity is improved.
[0028]
Next, heating operation by single-stage compression will be described.
[0029]
In this case, the third solenoid valve (16) is opened, while the first solenoid valve (14) and the second solenoid valve (15) are closed. Further, since the gas injection passage (17) and the liquid refrigerant introduction passage (19) are not used, both the fourth electromagnetic valve (18) and the third electronic expansion valve (20) are closed. The first electronic expansion valve (4) is set to fully open, and the second electronic expansion valve (6) is controlled to a predetermined opening so as to reduce the liquid refrigerant to a predetermined low pressure.
[0030]
In this state, the gas refrigerant compressed by the first compressor (8) flows into the indoor heat exchanger (3) through the third electromagnetic valve (16) and the four-way switching valve (2). The refrigerant exchanges heat with the indoor air in the indoor heat exchanger (3) to condense, and heats the indoor air at that time. The condensed liquid refrigerant passes through the first electronic expansion valve (4) and the gas-liquid separator (5) and then becomes a low-pressure two-phase refrigerant by the second electronic expansion valve (6), and becomes an outdoor heat exchanger (7). Flow into. In the outdoor heat exchanger (7), the two-phase refrigerant exchanges heat with the outdoor air and evaporates, and the evaporated gas refrigerant passes through the four-way switching valve (2) and then passes through the accumulator (11). The air is sucked into one compressor (8), and the above cycle is repeated.
[0031]
In addition, description of refrigerant | coolant circulation operation | movement is abbreviate | omitted about the two-stage compression operation performed by closing an injection channel | path (17), and the cooling operation performed in a cycle opposite to heating operation.
[0032]
-Effects of Reference Technology 1-
According to this reference technique , the first solenoid valve (14) and the second solenoid valve (15) are closed during the single-stage compression operation, so that the refrigerant discharged from the first compressor (8) is transferred to the second compressor ( It does not flow into 9). For this reason, liquid refrigerant does not accumulate in the second compressor (9), which is a stop-side compressor during single-stage compression operation, so that the second compressor (9) cannot be restarted or the refrigerant in the system It can be prevented that the amount is insufficient. In addition, since the refrigerant does not accumulate in the second compressor, the refrigerating machine oil does not flow out when the second compressor (9) is restarted, and problems such as poor lubrication of the second compressor (9) are prevented. it can.
[0033]
[Reference Technology 2]
As shown in FIG. 2, the reference technique 2 of the present invention is provided with a check valve (21) instead of the second solenoid valve (15) in the discharge side pipe (13) of the second compressor (9). It is a thing. The check valve (21) allows the refrigerant to flow in the direction of flowing out of the second compressor (9), but prohibits the flow of the refrigerant in the direction of flowing into the second compressor (9). It is configured as follows. The other parts are configured in the same manner as in the reference technique 1, and the description thereof is omitted here.
[0034]
-Driving action-
In the second reference technique, during the two-stage compression operation, the first solenoid valve (14) is opened, the third solenoid valve (16) is closed, and both compressors (8, 9) are started. Then, after the refrigerant is compressed in the order of the first compressor (8) and the second compressor (9), the cycle returning to the first compressor (8) after circulating in the refrigerant circuit is the same as in Reference Technique 1. This is done to regulate the temperature of the room air.
[0035]
During single-stage compression operation, the first solenoid valve (14) is closed, the third solenoid valve (16) is opened, the first compressor (8) is started, and the second compressor (9) is stopped. . Then, a cycle in which the refrigerant discharged from the first compressor (8) circulates in the refrigerant circuit and returns to the first compressor (8) is performed in the same manner as in Reference Technique 1, and the temperature of the indoor air is similarly adjusted. Is done.
[0036]
-Effect of Reference Technology 2-
Also in the configuration of Reference Technology 2 , since the refrigerant discharged from the first compressor (8) does not flow into the second compressor (9) during the single-stage compression operation, the liquid refrigerant enters the second compressor (9). Can be prevented from accumulating. Therefore, it is possible to prevent the second compressor (9) from being restarted or the amount of refrigerant in the system from being insufficient, and when the second compressor (9) is restarted, the refrigerating machine oil is Since it does not flow out together with the refrigerant, it is possible to prevent a problem that the refrigerating machine oil in the second compressor (9) is insufficient.
[0037]
Further, in Reference Technology 2 , since the check valve (21) is used on the discharge side of the second compressor (9), the opening / closing control for the check valve (21) is not required. Moreover, since the number of electromagnetic valves ( 15 , 16, 18) can be reduced as compared with the reference technique 1 , the configuration of an electric circuit or the like for controlling the opening / closing of the electromagnetic valves ( 15 , 16, 18) can be simplified.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention, the refrigerant circuit of the reference technology 2, is provided with a refrigerant suction passage (22). The refrigerant suction passage (22) is connected to a second compressor (9) that is a stop-side compressor during single-stage compression operation, and a low-pressure gas pipe (23) of the refrigerant circuit. The refrigerant suction passage (22) is provided with a capillary tube (24) as a pressure reducing mechanism, and a fifth electromagnetic valve (25 for controlling the flow of the refrigerant in the refrigerant suction passage (22)). ) Is provided.
[0039]
-Driving action-
In this embodiment , during the two-stage compression operation, the fifth solenoid valve (25) of the refrigerant suction passage (22) is closed, and the other solenoid valves (14, 16, 18) and the electronic expansion valves (4, 6, 20) is controlled in the same way as in Reference Technique 2 . Since the fifth solenoid valve (25) is closed and the refrigerant suction passage (22) is closed, the refrigerant circulation operation during the two-stage compression operation is performed in the same manner as in the reference technique 2 .
[0040]
On the other hand, during the single-stage compression operation, after opening the fifth solenoid valve (25) of the refrigerant suction passage (22), the other solenoid valve (14, 16, 18) and the electronic expansion valve (4, 6, 20 ) Is controlled in the same manner as in Reference Technique 2 . At this time, the refrigerant circulates in the refrigerant circuit basically in the same manner as in the reference technique 2, and indoor heating and cooling are performed. In this embodiment , since the refrigerant suction passage (22) is provided, even when the refrigerant leaks from the first electromagnetic valve (14) or the check valve (21) and flows into the second compressor (9), The refrigerant is sucked into the first compressor (8) through the capillary tube (24). At that time, the refrigerant in the second compressor (9) passes through the capillary tube (24), mixes with the low-pressure gas refrigerant, is gasified and then sucked into the compressor (8). (8) Liquid refrigerant never returns.
[0041]
-Effect of the embodiment-
According to the present embodiment , the provision of the refrigerant suction passage (21) can more reliably prevent liquid refrigerant from accumulating in the second compressor (9), so that the effect of the reference technique 2 can be further enhanced. it can.
[0042]
Other Embodiments of the Invention
The present invention may be configured as follows with respect to the above embodiment.
[0043]
For example, the air conditioning apparatus capable of switching between the heating operation and the cooling operation has been described in the above embodiment, but may be a heating-only machine or a cooling-only machine. Moreover, although the said embodiment applies this invention to an air conditioning apparatus, this invention is applicable also to refrigeration apparatuses other than an air conditioning apparatus.
[0044]
The configuration of the refrigerant circuit is merely an example, and is not limited to the above embodiment. For example, the gas injection mechanism or the liquid refrigerant introduction passage is not necessarily provided, and the specific circuit configuration for switching the operation of the compression mechanism (1) between the single stage and the two stages may be appropriately changed. Further, the cooling operation may be always performed by single-stage compression, and only the heating operation may be performed while switching between single-stage compression and two-stage compression.
[0045]
Furthermore, although the refrigerant suction passage (22) of the embodiment is provided for the refrigerant circuit of the reference technique 2 , it may be provided in the refrigerant circuit of the reference technique 1 .
[0046]
In the reference technique 1, while it is possible to prevent liquid accumulation in the second compressor (9), if the timing for opening and closing the first and second solenoid valves (14, 15) is controlled, the first compressor is operated during single-stage compression operation. Since a predetermined amount of refrigerant can be stored in the two-compressor (9), the refrigerant flow rate in the system can be adjusted while holding excess refrigerant.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Reference Technique 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram of an air conditioner according to Reference Technology 2 of the present invention.
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to the embodiment of the present invention.
FIG. 4 is a refrigerant circuit diagram of a conventional air conditioner.
[Explanation of symbols]
(1) Two-stage compression mechanism
(2) Four-way selector valve
(3) Indoor heat exchanger
(4) First electronic expansion valve
(5) Gas-liquid separator
(6) Second electronic expansion valve
(7) Outdoor heat exchanger
(8) First compressor
(9) Second compressor
(10) Accumulator
(11) Accumulator
(12) Suction side piping
(13) Discharge side piping
(14) First solenoid valve (open / close valve)
(15) Second solenoid valve (open / close valve)
(16) Third solenoid valve (open / close valve)
(17) Injection passage
(18) 4th solenoid valve
(19) Liquid refrigerant introduction passage
(20) Third electronic expansion valve
(21) Check valve
(22) Refrigerant suction passage
(23) Low pressure gas piping
(24) Capillary tube (pressure reduction mechanism)
(25) 5th solenoid valve

Claims (3)

2段圧縮運転と単段圧縮運転とが可能な2段圧縮機構(1) を備えた冷凍装置であって、
単段圧縮運転時に停止側圧縮機(9) への冷媒の流入を防止する冷媒流入防止手段(14,15,21)を備え
冷媒流入防止手段(14,15,21)は、単段圧縮運転時の停止側圧縮機(9) の吸入側配管(12)と吐出側配管(13)にそれぞれ設けられた開閉弁(14,15)により構成され、
単段圧縮運転時の停止側圧縮機(9) と、冷媒回路の低圧ガス配管(23)とが、冷媒吸引通路(22)により接続され、該冷媒吸引通路(22)には減圧機構(24)が設けられている冷凍装置。
A refrigeration apparatus equipped with a two-stage compression mechanism (1) capable of two-stage compression operation and single-stage compression operation,
Refrigerant inflow prevention means (14, 15, 21) for preventing refrigerant from flowing into the stop side compressor (9) during single stage compression operation ,
Refrigerant inflow prevention means (14, 15, 21) are open / close valves (14, 15, respectively) provided in the suction side pipe (12) and the discharge side pipe (13) of the stop side compressor (9) during single-stage compression operation. 15)
The stop-side compressor (9) at the time of single-stage compression operation and the low-pressure gas pipe (23) of the refrigerant circuit are connected by a refrigerant suction passage (22), and the pressure reduction mechanism (24 ) Refrigeration equipment.
2段圧縮運転と単段圧縮運転とが可能な2段圧縮機構(1) を備えた冷凍装置であって、
単段圧縮運転時に停止側圧縮機(9) への冷媒の流入を防止する冷媒流入防止手段(14,15,21)を備え、
冷媒流入防止手段(14,15,21)は、単段圧縮運転時の停止側圧縮機(9) の吸入側配管(12)に設けられた開閉弁(14)と、該停止側圧縮機(9) の吐出側配管(13)に、該停止側圧縮機(9) に流入する方向への冷媒の流通を禁止するように設けられた逆止弁(21)とから構成されて、
単段圧縮運転時の停止側圧縮機(9) と、冷媒回路の低圧ガス配管(23)とが、冷媒吸引通路(22)により接続され、該冷媒吸引通路(22)には減圧機構(24)が設けられている冷凍装置。
A refrigeration apparatus equipped with a two-stage compression mechanism (1) capable of two-stage compression operation and single-stage compression operation,
Refrigerant inflow prevention means (14, 15, 21) for preventing refrigerant from flowing into the stop side compressor (9) during single stage compression operation,
The refrigerant inflow prevention means (14, 15, 21) includes an on-off valve (14) provided in the suction side pipe (12) of the stop side compressor (9) during the single stage compression operation, and the stop side compressor ( The discharge side pipe (13) of 9) comprises a check valve (21) provided so as to prohibit the flow of the refrigerant in the direction of flowing into the stop side compressor (9),
The stop-side compressor (9) at the time of single-stage compression operation and the low-pressure gas pipe (23) of the refrigerant circuit are connected by a refrigerant suction passage (22), and the pressure reduction mechanism (24 ) Refrigeration equipment.
減圧機構(24)がキャピラリチューブにより構成されている請求項1または2記載の冷凍装置。The refrigeration apparatus according to claim 1 or 2, wherein the decompression mechanism (24) is constituted by a capillary tube .
JP15587999A 1999-06-03 1999-06-03 Refrigeration equipment Expired - Fee Related JP4320844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15587999A JP4320844B2 (en) 1999-06-03 1999-06-03 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15587999A JP4320844B2 (en) 1999-06-03 1999-06-03 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2000346474A JP2000346474A (en) 2000-12-15
JP4320844B2 true JP4320844B2 (en) 2009-08-26

Family

ID=15615513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15587999A Expired - Fee Related JP4320844B2 (en) 1999-06-03 1999-06-03 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4320844B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779609B2 (en) * 2005-11-30 2011-09-28 ダイキン工業株式会社 Refrigeration equipment
JP4661561B2 (en) * 2005-11-30 2011-03-30 ダイキン工業株式会社 Refrigeration equipment
JP2007327668A (en) * 2006-06-06 2007-12-20 Denso Corp Refrigerating device comprising waste heat utilization device
JP5484889B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
DE102011075207A1 (en) * 2011-05-04 2012-11-08 BSH Bosch und Siemens Hausgeräte GmbH Single-circuit refrigerating appliance
CN102748900B (en) * 2012-07-24 2015-03-11 上海伯涵热能科技有限公司 Heat pump, heat pump air conditioner and heat pump water heating unit sequentially using single/double stage compression
CN104729138B (en) * 2013-12-23 2017-08-01 珠海格力电器股份有限公司 Air conditioner and capacity change judgment method thereof
CN104061723B (en) * 2014-06-09 2016-05-04 珠海格力电器股份有限公司 Air conditioning system
JP6784118B2 (en) * 2016-09-27 2020-11-11 ダイキン工業株式会社 Refrigeration equipment
CN115560493A (en) * 2022-11-07 2023-01-03 珠海格力电器股份有限公司 Heat pump system and control method of heat pump system

Also Published As

Publication number Publication date
JP2000346474A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
KR101003228B1 (en) Refrigeration system
US20080060365A1 (en) Refrigeration System
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
US20100180612A1 (en) Refrigeration device
US20080028773A1 (en) Air conditioner and controlling method thereof
JP2001056159A (en) Air conditioner
JP4320844B2 (en) Refrigeration equipment
KR101695689B1 (en) Refrigerator
KR100761285B1 (en) Air conditioner
JP2001235245A (en) Freezer
KR20120053381A (en) Refrigerant cycle apparatus
CN111919073B (en) Refrigerating device
JP2001056156A (en) Air conditioning apparatus
JP4031560B2 (en) Air conditioner
JP2010002112A (en) Refrigerating device
JP6735896B2 (en) Refrigeration cycle equipment
KR20070041060A (en) Air conditioner and its control method for the pressure equilibrium
KR20040094338A (en) A refrigerator
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP4661561B2 (en) Refrigeration equipment
JP2757689B2 (en) Refrigeration equipment
JPH102626A (en) Air conditioning device
JP4779609B2 (en) Refrigeration equipment
US11397015B2 (en) Air conditioning apparatus
JP5194842B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees