JP4320800B2 - Method and apparatus for continuous processing of thermoplastic materials - Google Patents

Method and apparatus for continuous processing of thermoplastic materials Download PDF

Info

Publication number
JP4320800B2
JP4320800B2 JP19002298A JP19002298A JP4320800B2 JP 4320800 B2 JP4320800 B2 JP 4320800B2 JP 19002298 A JP19002298 A JP 19002298A JP 19002298 A JP19002298 A JP 19002298A JP 4320800 B2 JP4320800 B2 JP 4320800B2
Authority
JP
Japan
Prior art keywords
thermoplastic material
processing
main body
thermoplastic
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19002298A
Other languages
Japanese (ja)
Other versions
JP2000017078A (en
Inventor
努 向井
稔 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP19002298A priority Critical patent/JP4320800B2/en
Publication of JP2000017078A publication Critical patent/JP2000017078A/en
Application granted granted Critical
Publication of JP4320800B2 publication Critical patent/JP4320800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Polyamides (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリアミド等の熱可塑性物質の連続処理方法および装置に関し、さらに詳しくは、熱可塑性物質を乾燥または固相重合するにあたり、該熱可塑性物質を連続的にマスフローで流動させることにより均一処理された高品質の熱可塑性物質を得る熱可塑性物質の連続処理方法および装置に関する。
【0002】
【従来の技術】
従来、ポリアミド等の熱可塑性物質を加熱,冷却,乾燥或いは固相重合等の連続処理を行う方法としては、例えば図4に示すような連続処理装置が使用されている。
この装置は円筒状の処理塔本体1の下部に円錐状部2を形成し、上部に熱可塑性物質供給口3を、下部に熱可塑性物質排出口4とロータリバルブ5を設けている。また、処理塔本体1の下部に気体供給管6,7を内部中央まで延長するように挿入して、その挿入端部に気体供給口6a,7bを開口させ、かつ処理塔本体1の上部に気体排出口8を設けるようにした構成になっている。そして熱可塑性物質の連続処理を行うときは、熱可塑性物質供給口3からペレット状の熱可塑性物質を、また気体供給口6a,7bから処理気体をそれぞれ連続供給し、これら熱可塑性物質と処理気体とを互いに接触させるように行っていた。
【0003】
しかし、この連続処理装置では、気体供給管6,7を処理塔本体1の内部中央まで延長するように挿入するようにしているため、この気体供給管6,7がペレット状の熱可塑性物質の流れを乱しやすくなっている。そのため処理気体による熱可塑性物質の処理が不均一になるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するため、熱可塑性物質を連続供給しながら気体で連続処理するに当たり、熱可塑性物質のマスフローを可能にすることにより高品質の熱可塑性物質が得られるようにする熱可塑性物質の連続処理方法および装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明による熱可塑性物質の連続処理方法は、ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するための処理塔本体の上部に熱可塑性物質供給口と気体排出口とを設け、前記処理塔本体の下部下端に熱可塑性物質排出口を設けると共に、下部側壁に気体供給口を該側壁内面に開口するように設け、かつ該気体供給口に対向させて下向きに開口する仕切板を設け、前記熱可塑性物質供給口から熱可塑性物質を、前記気体供給口から処理気体をそれぞれ連続供給しながら熱可塑性物質と処理気体とを互いに向流接触させることを特徴とするものである。
【0006】
また、本発明による熱可塑性物質の連続処理装置は、ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するための処理塔本体の上部に熱可塑性物質供給口と気体排出口とを設け、前記処理塔本体の下部下端に熱可塑性物質排出口を設けると共に、下部側壁に気体供給口を該側壁内面に開口するように設け、かつ該気体供給口に対向させて下向きに開口する仕切板を設けた構成からなり、前記熱可塑性物質供給口から熱可塑性物質を、前記気体供給口から処理気体をそれぞれ連続供給しながら熱可塑性物質と処理気体とを互いに向流接触させることを特徴とするものである。
【0007】
このように処理塔本体に対する気体供給口の取付けを、該処理塔本体の側壁内面に開口させるようにし、気体供給管が処理塔本体の内部まで延長しない構成にしたため、熱可塑性物質の流れを気体供給管で乱されることなく、その熱可塑性物質を均一処理することができる。また、気体供給口に、下向きに開口する仕切板を対設しているので、気体供給口が処理塔本体の内壁面に開口していても、該気体供給口が熱可塑性物質により詰まりを生ずることなく、処理気体を円滑供給するため一層良好な熱可塑性物質の均一処理を可能にする。
【0008】
【発明の実施の形態】
図1は、本発明に用いられる熱可塑性物質の連続処理装置の一例を概略的に示す。
この連続処理装置は、処理塔本体1の上部の本体部分を円筒状に形成すると共に、下部を逆円錐状の錐状部2に形成している。処理塔本体1の上部にはペレット状の熱可塑性物質を投入する熱可塑性物質供給口3が設けられている。また、錐状部2の下端には熱可塑性物質排出口4が設けられ、さらにその下流にロータリーバルブ5が設けられている。
【0009】
熱可塑性物質供給口3および熱可塑性物質排出口4は、共に処理塔本体1の内壁面に開口するだけであり、処理塔本体1の内部にまで延長する部分を設けいない。また、錐状部2の容積は処理塔本体1の全体容積の少なくとも10%を占め、かつその半頂角Aを2〜20度の鋭い角度にしている。ここで半頂角とは、図1に示す角度Aのことをいう。
【0010】
逆円錐状の錐状部2には、その側壁に気体供給管6,7が上下2段に連結されている。気体供給管6,7は、端部の気体供給口6a,7aを錐状部2の内壁面に直接開口させ、処理塔本体1の内部に侵入させないようにしている。さらに、内壁面に直接開口した気体供給口6a,7aの出口側には、下向きに開口する仕切板9が小隙間を介して対向している。仕切板9は気体供給口6a,7aから噴射した処理気体を下向きに案内したのち、処理塔本体1の中に供給するようにしている(図2参照)。
【0011】
図示の実施形態では、上下2段の気体供給管6,7のうち、上段側の気体供給管6は加熱処理用気体の供給管であり、下段側の気体供給管7は冷却処理用気体の供給管になっている。これら気体供給管6,7はそれぞれ2本ずつ互いに対向するように設けられ、これらは、図3(A)のように、錐状部2の横断面における壁面に垂直に連結されていてもよく、或いは図3(B)のように、錐状部2の横断面における壁面に対して接線方向に連結されていてもよい。
【0012】
気体供給管6,7を図3(A)のように横断面壁面に直角に連結した場合は、気体供給管6,7から供給された処理気体が、仕切板9に衝突後に左右両側に分流し、さらに分流しながら下方へ案内されて処理塔本体1の中に供給される。また、図3(B)のように横断面壁面の接線方向に連結した場合は、気体供給管6,7から供給した処理気体が仕切板9の周囲に同一方向に旋回しながら、下方へ案内されて処理塔本体1内に供給される。いずれの場合も、気体供給管6,7は処理塔本体1の内部に延長することなく、端部の気体供給口6a,7aを内壁面に直接開口させるようにしている。
【0013】
他方、処理塔本体1の上部には気体排出口8が設けられている。この気体排出口8も処理塔本体1内部に延長する部分を有しておらず、上述したように気体供給管6,7の供給口6a,7aから処理塔本体1内に供給された処理気体を排出する。供給口6a,7aから処理塔本体1内に供給された処理気体は、熱可塑性物質供給口3から処理塔本体1内に供給されて流下するペレット状の熱可塑性物質と向流接触しながら上昇し、気体排出口8から排出される。
【0014】
上述した本発明の連続処理装置によると、上部の熱可塑性物質供給口3からペレット状の熱可塑性物質を連続供給すると、この熱可塑性物質は処理塔本体1内を流下する間に、下部の錐状部2に連結された気体供給管6,7の供給口6a,7aから連続供給した処理気体と向流接触して処理される。
【0015】
このような処理気体による熱可塑性物質の処理において、気体供給管6,7が処理塔本体1内に延長しておらず、気体供給口6a,7aを内壁面に開口させた状態にしているので、ペレット状の熱可塑性物質が上記のように流下するとき、流れを乱されることがなくマスフロー状態にできるため、均一な処理をすることができる。また、上記連続処理装置では、気体供給口6a,7aには仕切板9が対設されているため、ペレット状の熱可塑性物質によって気体供給口6a,7aが塞がれることがないので、気体供給口6a,7aを処理塔本体1の内壁面に直接開口させるようにしていても、処理気体を円滑に供給することができる。
【0016】
また、図の実施形態では、錐状部2の容積を処理塔本体1の容積の少なくとも10%を占めるようにしているため、熱可塑性物質のマスフローを一層円滑にし、処理気体による処理を均一にすることができ、さらに均一性に優れた熱可塑性物質を得ることができる。
気体供給口6a,7aに対設した仕切板9は、図3(A),(B)に示すように、処理塔本体1(錐状部2)の内壁面に沿って環状に形成すると、処理気体を処理塔本体1の全周囲に万遍なく行き渡らせ、処理塔本体1の内部全体に均一に分布させるようになるため、一層均一な熱可塑性物質の処理を可能にする。
【0017】
錐状部2は円錐状、角錐状のいずれであってもよいが、前述したように処理塔本体1に占める容積を、該処理塔本体容積の少なくとも10%にすることが好ましく、さらに好ましくは20%以上にするとよい。また、錐状部2の容積は必要により処理塔本体容積の100%であってもよい。すなわち、100%とは、処理塔本体1の全体を上部から下部にかけて徐々に径を減少させて錐状に形成したものである。
【0018】
さらに錐状部2は、その半頂角Aを鋭い2〜20度にするとよく、さらに好ましくは、2〜15度にするとよい。半頂角Aをこのような鋭角にすることによって、処理塔本体1内における熱可塑性物質のマスフローを一層しやすくし、部分滞留をなくすことができる。
処理塔本体1の寸法は、その熱可塑性物質供給口3から熱可塑性物質排出口4までの長さLを、処理塔本体1の側面視における最大幅Dとの比L/Dにして、1〜15の範囲にすることが好ましい。さらに好ましくは、この比L/Dを3〜8にするのがよい。
【0019】
本発明において熱可塑性物質の処理としては、処理気体による乾燥処理或いは固相重合処理のいずれかを行う際に適用すると好適なものである。それらの処理は、例えば、気体供給管に風送ブロワー等の強制供給手段を連結し、処理塔本体内に所定温度にコントロールした処理気体を供給して、処理塔本体内を所定の温度環境下に設定することにより、該熱可塑性物質の処理をすることができる。また、気体供給管として、図1の実施形態のように、互いに異なる温度の気体を供給する複数本を設けることにより、熱可塑性物質を処理塔本体に供給してから排出するまでの間に経時的に温度環境を変化させるように処理することができる。
【0020】
処理気体は、供給量をコントロールしたり、或いは気体供給口付近の処理塔本体(錐状部)の径を大きくすることにより、熱可塑性物質の流れを乱さないような流速にすることができる。処理塔本体内に熱可塑性物質を供給してから排出するまでの滞留時間は、図示の実施形態のように熱可塑性物質排出口にロータリーバルブを設置し、そのロータリーバルブの回転数を制御して排出量を調整することにより制御することができる。
【0021】
本発明の連続処理装置に適用可能な熱可塑性物質は、例えばポリアミド,ポリブチレンテレフタレート,ポリアセタール,ポリエチレン,ポリプロピレンなど熱可塑性物質を挙げることができるが、特にポリアミドに適用する場合に有効である。 また、熱可塑性物質の形態としては、ペレット(チップ)状,顆粒状,粉体状などであるが、これらのなかでもペレット状にするのが最も好ましい。
【0022】
以下に、本発明の連続処理装置を使用して、ポリアミド6を乾燥または固相重合する場合について具体的に説明する。ポリアミド6は、ε−カプロラクタムを水を触媒として通常の方法により重縮合し、ペレット状にカッティングしたものが適用される。このポリアミド6には、重合平衡によりモノマーやオリゴマーなどの低分子量物質が数%〜十数%含まれているため、熱水のような溶媒を用いて抽出処理するとよい。
【0023】
抽出処理されたポリアミド6ペレットを、熱可塑性物質供給口3から連続的に処理塔本体1内に供給すると共に、気体供給口6aおよび7aから処理気体を供給すると、処理気体と向流接触することによりポリアミド6ペレットが昇温し、乾燥または固相重合を行いながら流動し、錐状部2を経由して熱可塑性物質排出口4から排出される。ここで処理気体としては、除湿した窒素等の不活性気体が好ましく使用される。
【0024】
気体供給口6a,7aからは、それぞれ温度の異なる処理気体が供給され、処理塔本体1内に高温領域と低温領域とを形成して、乾燥または固相重合と冷却処理とを行う。このように処理されたポリアミド6ペレットは、整流用スペーサー等の挿入物を用いることなくマスフローになるので均一処理され、熱可塑性物質排出口4から排出される。
【0025】
処理塔本体1内の温度としては、乾燥処理の場合は、高温領域では101〜125℃が好ましく、さらに好ましくは115〜120℃にするのがよい。また、固相重合処理の場合は、126〜186℃にするのが好ましい。一方、低温領域では、乾燥処理および固相重合処理とも、0〜100℃が好ましく、さらに好ましくは30〜70℃にするのがよい。
【0026】
処理塔本体1における高温領域での処理時間としては、5〜50時間が好ましく、さらに好ましくは10〜30時間にするのがよい。一方、低温領域における処理時間としては、0.5〜5時間が好ましく、さらに好ましくは0.5〜3時間にするのがよい。処理時間は、熱可塑性物質排出口4の出口側に設けたロータリーバルブ5の回転数を制御すること、或いは処理量を制御することによりコントロールすることができる。
【0027】
本発明の連続処理装置によれば、熱可塑性物質をマスフローで流動させつつ排出するようにするため、ファネルフローや異常滞留を発生することがない。したがって、熱可塑性物質を連続的に均一処理することができ、着色や劣化のない、きわめて高品質の熱可塑性物質を製造することができる。
【0028】
【実施例】
以下、本発明を実施例および比較例により説明するが、実施例および比較例中に使用した物性等は以下の測定法によって測定した。
〔色調(YI)〕
ペレットのYI(イエローインデックス)値をSMカラーコンピューター(スガ試験機)により測定した。
【0029】
〔硫酸相対粘度(ηr)〕
JIS−K6810の規定に従って、98%硫酸を溶媒とし、該溶媒中に濃度10g/Lで溶解して、温度25℃における98%硫酸に対する相対粘度を測定した。
〔水分(w)〕
ペレット10gにメタノール20mlを加えて煮沸抽出した後、メタノール中の水分をカールフィッシャー水分測定装置により測定した。
また、上記各測定値YI、ηr、wの最大値と最小値との差をそれぞれΔYI、Δηr、Δwで示した。
【0030】
実施例1
錐状部2の半頂角Aが13度、容積が処理塔本体容積の32%で、かつL/D=5である図1の構成からなる連続処理装置を使用し、この連続処理装置に、重縮合後抽出処理したポリアミド6ペレットを1050kg/hrで連続供給するとともに、窒素を処理用気体として、高温領域の温度が115℃、低温領域の温度が50℃となるように連続供給し、高温領域の滞留時間を20時間にするようにロータリーバルブの回転数で調整して乾燥処理した。
【0031】
得られたポリアミド6ペレットは、色調がYI=−12.0、硫酸相対粘度がηr=2.70、水分がw=0.01%であり、バラツキがほとんどないように均一処理されており、しかも着色や劣化もない高品質のものであった。結果を表−1に示す。
【0032】
実施例2
実施例1と同一の連続処理装置を使用し、この連続処理装置に、重縮合後抽出処理したポリアミド6ペレットを1050kg/hrで連続供給するとともに、窒素を処理用気体として、高温領域の温度が150℃、低温領域の温度が50℃となるように連続供給し、高温領域の滞留時間を20時間にするようにロータリーバルブの回転数を調節して固相重合処理した。
【0033】
得られたポリアミド6ペレットは、色調がYI=−11.5、硫酸相対粘度がηr=3.40、水分がw=0.01%であり、バラツキがほとんどないように均一処理されており、しかも着色や劣化もない高品質のものであった。結果を表−1に示す。
【0034】
比較例1
錐状部2の半頂角Aが30度、容積が処理塔本体容積の7%であり、L/D=4.4である図4に示す構造の連続処理装置を使用し、実施例1と同じポリアミド6ペレットを、同じ供給速度で連続供給すると共に、同じ処理気体を連続供給して同じ温度の高温領域および低温領域を設定し、かつ高温領域の滞留時間を同じに設定して乾燥処理した。
【0035】
得られたポリアミド6ペレットは、色調がYI=−10.7、硫酸相対粘度がηr=2.71、水分がw=0.03%であり、平均値が劣っていると共にバラツキも大きく、実施例1のポリアミド6ペレットに比べて品質が劣っていた。
【0036】
比較例2
比較例1と同一の連続処理装置を使用し、実施例2と同一のポリアミド6ペレットを、同じ供給速度で連続供給すると共に、同じ処理気体を連続供給して同じ温度の高温領域および低温領域を設定し、かつ高温領域の滞留時間を同じに設定して固相重合処理した。
【0037】
得られたポリアミド6ペレットは、色調がYI=−9.5、硫酸相対粘度が ηr=3.40、水分がw=0.02%であり、平均値が劣っていると共にバラツキも大きく、実施例2のポリアミド6ペレットに比べて品質が劣っていた。
【0038】
実施例3
図4の構造において、その気体供給口を図1の構造に置き換えた連続処理装置を使用し、実施例1と同一のポリアミド6ペレットを、同じ供給速度で連続供給すると共に、同じ処理気体を連続供給して同じ温度の高温領域および低温領域を設定し、かつ高温領域の滞留時間を同じに設定して固相重合処理した。
【0039】
得られたポリアミド6ペレットは、色調がYI=−11.7、硫酸相対粘度がηr=2.70、水分がw=0.02%であり、バラツキがほとんどないように均一処理されており、しかも着色や劣化もない高品質のものであった。結果を表−1に示す。
【0040】
【表1】
表 1

Figure 0004320800
【0041】
【発明の効果】
以上説明したように、本発明によれば、ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するための処理塔本体に対する気体供給口の取付けを、該処理塔本体の側壁内面に開口させるようにし、気体供給管が処理塔本体の内部まで延長しない構成にしたため、熱可塑性物質の流れを気体供給管で乱されるこなく、その熱可塑性物質を均一に乾燥または固相重合処理することができる。また、気体供給口に、下向きに開口する仕切板を対設しているので、気体供給口が処理塔本体の内壁面に開口していても、該気体供給口が熱可塑性物質により詰まりを生ずることなく、処理気体を円滑供給するため一層良好な熱可塑性物質の均一な乾燥または固相重合処理を可能にする。
【図面の簡単な説明】
【図1】本発明に使用する熱可塑性物質の連続処理装置の概略縦断面図である。
【図2】図1の装置の要部を示す拡大縦断面図である。
【図3】(A),(B)は、それぞれ図2におけるX−X矢視断面の互い異なる態様を示す断面図である。
【図4】従来の熱可塑性物質の連続処理装置の概略縦断面図である。
【符号の説明】
1 処理塔本体
2 錐状部
3 熱可塑性物質供給口
4 熱可塑性物質排出口
5 ロータリーバルブ
6,7 気体供給管
6a,7a 気体供給口
8 気体排出口
9 仕切板
A 半頂角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous processing method and apparatus for thermoplastic materials such as polyamide, and more specifically, when a thermoplastic material is dried or solid-phase polymerized, the thermoplastic material is uniformly processed by flowing it in a mass flow. The present invention relates to a method and an apparatus for continuously processing a thermoplastic material to obtain a high-quality thermoplastic material.
[0002]
[Prior art]
Conventionally, for example, a continuous processing apparatus as shown in FIG. 4 is used as a method for performing continuous processing such as heating, cooling, drying or solid phase polymerization on a thermoplastic material such as polyamide.
In this apparatus, a conical portion 2 is formed at the bottom of a cylindrical processing tower body 1, a thermoplastic material supply port 3 is provided at the top, and a thermoplastic material discharge port 4 and a rotary valve 5 are provided at the bottom. Further, the gas supply pipes 6 and 7 are inserted into the lower portion of the processing tower main body 1 so as to extend to the center of the interior, the gas supply ports 6a and 7b are opened at the insertion end portions, and the upper portion of the processing tower main body 1 is formed. The gas outlet 8 is provided. When the thermoplastic material is continuously processed, a pellet-shaped thermoplastic material is continuously supplied from the thermoplastic material supply port 3, and a processing gas is continuously supplied from the gas supply ports 6a and 7b. Were in contact with each other.
[0003]
However, in this continuous processing apparatus, since the gas supply pipes 6 and 7 are inserted so as to extend to the inner center of the processing tower main body 1, the gas supply pipes 6 and 7 are made of pellet-like thermoplastic substances. It is easy to disturb the flow. Therefore, there has been a problem that the processing of the thermoplastic substance by the processing gas becomes non-uniform.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to dry or solid-state polymerize a thermoplastic material selected from pellets (chips), granules, or powders of polyamide, polybutylene terephthalate, polyacetal, polyethylene, and polypropylene. An object of the present invention is to provide a method and an apparatus for continuously processing a thermoplastic material that enables a high-quality thermoplastic material to be obtained by enabling mass flow of the thermoplastic material in continuous processing with gas while continuously supplying.
[0005]
[Means for Solving the Problems]
The continuous processing method of the thermoplastic material according to the present invention for achieving the above object is to dry a thermoplastic material selected from pellets (chips), granules or powders of polyamide, polybutylene terephthalate, polyacetal, polyethylene and polypropylene. Alternatively, a thermoplastic substance supply port and a gas discharge port are provided at the upper part of the processing tower main body for solid-phase polymerization, a thermoplastic substance discharge port is provided at the lower lower end of the processing tower main body, and a gas supply port is provided at the lower side wall. A partition plate is provided so as to open on the inner surface of the side wall and open downward facing the gas supply port. The thermoplastic material is continuously supplied from the thermoplastic material supply port, and the processing gas is continuously supplied from the gas supply port. The thermoplastic material and the processing gas are brought into countercurrent contact with each other while being supplied.
[0006]
The continuous processing apparatus for a thermoplastic material according to the present invention is a method for drying or solid phase drying a thermoplastic material selected from polyamide (polybutylene terephthalate, polyacetal, polyethylene and polypropylene) in the form of pellets (chips), granules or powders. A thermoplastic material supply port and a gas discharge port are provided at the upper part of the treatment tower body for polymerization, a thermoplastic material discharge port is provided at the lower lower end of the treatment tower body, and a gas supply port is provided on the lower side wall. And a partition plate that opens downward facing the gas supply port, the thermoplastic material from the thermoplastic material supply port, and the processing gas from the gas supply port, respectively. The thermoplastic material and the processing gas are brought into countercurrent contact with each other while being continuously supplied.
[0007]
In this way, the gas supply port is attached to the processing tower main body so that the gas supply pipe is not extended to the inside of the processing tower main body so that the gas supply pipe is not extended to the inside of the processing tower main body. The thermoplastic material can be uniformly processed without being disturbed by the supply pipe. Moreover, since the partition plate opened downward is provided at the gas supply port, the gas supply port is clogged with the thermoplastic material even if the gas supply port is opened on the inner wall surface of the processing tower body. Therefore, since the processing gas is smoothly supplied, a better processing of the thermoplastic material can be performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows an example of a continuous processing apparatus for thermoplastic materials used in the present invention.
In this continuous processing apparatus, an upper main body portion of the processing tower main body 1 is formed in a cylindrical shape, and a lower portion is formed in an inverted conical cone-shaped portion 2. A thermoplastic material supply port 3 for introducing a pellet-shaped thermoplastic material is provided at the upper portion of the processing tower body 1. Further, a thermoplastic material discharge port 4 is provided at the lower end of the conical portion 2, and a rotary valve 5 is further provided downstream thereof.
[0009]
Both the thermoplastic material supply port 3 and the thermoplastic material discharge port 4 are only opened on the inner wall surface of the processing tower body 1, and no portion extending to the inside of the processing tower body 1 is provided. Further, the volume of the conical portion 2 occupies at least 10% of the entire volume of the processing tower main body 1, and the half apex angle A is set to a sharp angle of 2 to 20 degrees. Here, the half apex angle refers to the angle A shown in FIG.
[0010]
Gas supply pipes 6 and 7 are connected to the side wall of the inverted conical conical section 2 in two upper and lower stages. In the gas supply pipes 6 and 7, the gas supply ports 6 a and 7 a at the ends are directly opened on the inner wall surface of the conical portion 2 so as not to enter the inside of the processing tower main body 1. Furthermore, a partition plate 9 that opens downward is opposed to the outlet side of the gas supply ports 6a and 7a that are directly open to the inner wall surface via a small gap. The partition plate 9 guides the processing gas injected from the gas supply ports 6a and 7a downward, and then supplies the processing gas into the processing tower body 1 (see FIG. 2).
[0011]
In the illustrated embodiment, of the upper and lower gas supply pipes 6 and 7, the upper gas supply pipe 6 is a heat treatment gas supply pipe, and the lower gas supply pipe 7 is a cooling gas supply pipe. It is a supply pipe. Two of these gas supply pipes 6 and 7 are provided so as to face each other, and they may be vertically connected to the wall surface in the cross section of the conical section 2 as shown in FIG. Alternatively, as shown in FIG. 3B, the conical section 2 may be connected in a tangential direction with respect to the wall surface in the cross section.
[0012]
When the gas supply pipes 6 and 7 are connected to the wall of the cross section at a right angle as shown in FIG. 3A, the processing gas supplied from the gas supply pipes 6 and 7 is divided into the left and right sides after colliding with the partition plate 9. Then, it is guided downward while being further divided and supplied into the processing tower body 1. 3B, the processing gas supplied from the gas supply pipes 6 and 7 guides downward while turning around the partition plate 9 in the same direction. Then, it is supplied into the processing tower main body 1. In any case, the gas supply pipes 6 and 7 do not extend into the inside of the processing tower main body 1, and the gas supply ports 6 a and 7 a at the end are opened directly to the inner wall surface.
[0013]
On the other hand, a gas outlet 8 is provided in the upper part of the processing tower body 1. This gas discharge port 8 also does not have a portion extending into the processing tower main body 1, and the processing gas supplied into the processing tower main body 1 from the supply ports 6 a and 7 a of the gas supply pipes 6 and 7 as described above. Is discharged. The processing gas supplied from the supply ports 6a and 7a into the processing tower main body 1 rises in countercurrent contact with the pellet-shaped thermoplastic material supplied from the thermoplastic substance supply port 3 into the processing tower main body 1 and flowing down. And is discharged from the gas outlet 8.
[0014]
According to the above-described continuous processing apparatus of the present invention, when a pellet-shaped thermoplastic material is continuously supplied from the upper thermoplastic material supply port 3, the thermoplastic material flows down in the processing tower main body 1, while the lower cone is formed. Processing is performed in countercurrent contact with the processing gas continuously supplied from the supply ports 6 a and 7 a of the gas supply pipes 6 and 7 connected to the shape portion 2.
[0015]
In the processing of the thermoplastic substance by such a processing gas, the gas supply pipes 6 and 7 are not extended into the processing tower main body 1, and the gas supply ports 6a and 7a are opened on the inner wall surface. When the pellet-like thermoplastic material flows down as described above, the flow is not disturbed and the mass flow state can be obtained, so that uniform processing can be performed. Moreover, in the said continuous processing apparatus, since the partition plates 9 are opposed to the gas supply ports 6a and 7a, the gas supply ports 6a and 7a are not blocked by the pellet-shaped thermoplastic material. Even if the supply ports 6a and 7a are directly opened on the inner wall surface of the processing tower main body 1, the processing gas can be supplied smoothly.
[0016]
Further, in the illustrated embodiment, the volume of the conical portion 2 occupies at least 10% of the volume of the processing tower body 1, so that the mass flow of the thermoplastic material is further smoothed and the processing with the processing gas is made uniform. It is possible to obtain a thermoplastic material having excellent uniformity.
When the partition plate 9 provided to the gas supply ports 6a and 7a is formed in an annular shape along the inner wall surface of the processing tower body 1 (conical portion 2), as shown in FIGS. 3 (A) and 3 (B), Since the processing gas is distributed uniformly around the entire periphery of the processing tower main body 1 and is uniformly distributed throughout the processing tower main body 1, a more uniform thermoplastic material can be processed.
[0017]
The conical portion 2 may be either a conical shape or a pyramid shape, but as described above, the volume occupied in the processing tower main body 1 is preferably at least 10% of the processing tower main body volume, more preferably. It should be 20% or more. Further, the volume of the conical portion 2 may be 100% of the processing tower main body volume if necessary. That is, 100% means that the entire processing tower main body 1 is formed in a conical shape by gradually decreasing the diameter from the upper part to the lower part.
[0018]
Furthermore, the cone-shaped part 2 is good to make the half apex angle A sharp 2-20 degree | times, More preferably, it is good to make it 2-15 degree | times. By setting the half apex angle A to such an acute angle, the mass flow of the thermoplastic substance in the processing tower main body 1 can be further facilitated, and partial retention can be eliminated.
The dimensions of the processing tower body 1 are such that the length L from the thermoplastic material supply port 3 to the thermoplastic material discharge port 4 is a ratio L / D with the maximum width D in a side view of the processing tower body 1. It is preferable to be in the range of ˜15. More preferably, the ratio L / D is 3 to 8.
[0019]
In the present invention, the thermoplastic material treatment is preferably applied when performing either a drying treatment with a treatment gas or a solid phase polymerization treatment. For example, these processes are performed by connecting a forced supply means such as an air blower to a gas supply pipe, supplying a processing gas controlled to a predetermined temperature into the processing tower main body, and in the processing tower main body under a predetermined temperature environment. By setting to, the thermoplastic material can be processed . Further, as the gas supply pipe, as shown in the embodiment of FIG. 1, by providing a plurality of gases for supplying gases having different temperatures, the time elapsed from the supply of the thermoplastic material to the treatment tower body until the discharge thereof. The temperature environment can be changed as desired.
[0020]
The flow rate of the processing gas can be controlled so as not to disturb the flow of the thermoplastic material by controlling the supply amount or increasing the diameter of the processing tower main body (conical portion) near the gas supply port. The residence time from the supply of the thermoplastic material into the processing tower body to the discharge is set up by installing a rotary valve at the thermoplastic material discharge port as in the illustrated embodiment, and controlling the number of rotations of the rotary valve. It can be controlled by adjusting the discharge amount.
[0021]
Examples of the thermoplastic material applicable to the continuous processing apparatus of the present invention include thermoplastic materials such as polyamide, polybutylene terephthalate, polyacetal, polyethylene, and polypropylene, and are particularly effective when applied to polyamide. The thermoplastic material is in the form of pellets (chips), granules, powders, etc. Among these, the pellets are most preferable.
[0022]
Hereinafter, the case where the polyamide 6 is dried or solid-phase polymerized using the continuous processing apparatus of the present invention will be described in detail. As the polyamide 6, a product obtained by polycondensing ε-caprolactam with water as a catalyst and cutting into pellets is used. Since this polyamide 6 contains several to dozens of% of low molecular weight substances such as monomers and oligomers due to polymerization equilibrium, it may be extracted using a solvent such as hot water.
[0023]
When the extracted polyamide 6 pellets are continuously supplied from the thermoplastic material supply port 3 into the processing tower main body 1 and the processing gas is supplied from the gas supply ports 6a and 7a, the polyamide 6 pellets are brought into countercurrent contact with the processing gas. As a result, the temperature of the polyamide 6 pellets rises, flows while drying or solid-phase polymerization, and is discharged from the thermoplastic material discharge port 4 via the conical portion 2. Here, an inert gas such as dehumidified nitrogen is preferably used as the processing gas.
[0024]
Process gases having different temperatures are supplied from the gas supply ports 6a and 7a, respectively, and a high temperature region and a low temperature region are formed in the processing tower body 1 to perform drying or solid phase polymerization and cooling processing. The polyamide 6 pellets treated in this way are mass-flowed without using inserts such as rectifying spacers, so that they are uniformly treated and discharged from the thermoplastic material discharge port 4.
[0025]
In the case of a drying process, the temperature in the processing tower body 1 is preferably 101 to 125 ° C., more preferably 115 to 120 ° C. in a high temperature region. Moreover, in the case of a solid phase polymerization process, it is preferable to set it as 126-186 degreeC. On the other hand, in the low temperature region, both the drying treatment and the solid phase polymerization treatment are preferably 0 to 100 ° C, more preferably 30 to 70 ° C.
[0026]
As processing time in the high temperature area | region in the processing tower main body 1, 5 to 50 hours are preferable, More preferably, it is good to set it as 10 to 30 hours. On the other hand, the treatment time in the low temperature region is preferably 0.5 to 5 hours, and more preferably 0.5 to 3 hours. The processing time can be controlled by controlling the number of rotations of the rotary valve 5 provided on the outlet side of the thermoplastic substance discharge port 4 or by controlling the processing amount.
[0027]
According to the continuous processing apparatus of the present invention, since the thermoplastic substance is discharged while being flowed by mass flow, no funnel flow or abnormal stagnation occurs. Therefore, the thermoplastic material can be processed uniformly and continuously, and an extremely high quality thermoplastic material free from coloring and deterioration can be produced.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, the physical property etc. which were used in an Example and a comparative example were measured with the following measuring methods.
[Color tone (YI)]
The YI (yellow index) value of the pellet was measured with an SM color computer (Suga Tester).
[0029]
[Sulfuric acid relative viscosity (ηr)]
In accordance with JIS-K6810, 98% sulfuric acid was used as a solvent, dissolved in the solvent at a concentration of 10 g / L, and the relative viscosity with respect to 98% sulfuric acid at a temperature of 25 ° C. was measured.
[Moisture (w)]
After 20 ml of methanol was added to 10 g of the pellet and boiled and extracted, the moisture in the methanol was measured with a Karl Fischer moisture measuring device.
Further, the difference between the maximum value and the minimum value of the measured values YI, ηr, and w is indicated by ΔYI, Δηr, and Δw, respectively.
[0030]
Example 1
A continuous processing apparatus having the configuration of FIG. 1 in which the half apex angle A of the conical portion 2 is 13 degrees, the volume is 32% of the processing tower body volume, and L / D = 5 is used. , And continuously supplying polyamide 6 pellets extracted after polycondensation at 1050 kg / hr, and continuously supplying nitrogen as a processing gas so that the temperature in the high temperature region is 115 ° C. and the temperature in the low temperature region is 50 ° C., Drying was performed by adjusting the number of rotations of the rotary valve so that the residence time in the high temperature region was 20 hours.
[0031]
The obtained polyamide 6 pellets have a color tone of YI = -12.0, a sulfuric acid relative viscosity of ηr = 2.70, a water content of w = 0.01%, and are uniformly treated so that there is almost no variation. Moreover, it was of high quality without coloring or deterioration. The results are shown in Table-1.
[0032]
Example 2
The same continuous processing apparatus as in Example 1 was used, and polyamide 6 pellets extracted after polycondensation were continuously supplied to this continuous processing apparatus at 1050 kg / hr, and nitrogen was used as the processing gas, and the temperature in the high temperature region was Solid supply was carried out by continuously supplying 150 ° C. and the temperature in the low temperature region to 50 ° C., and adjusting the rotational speed of the rotary valve so that the residence time in the high temperature region was 20 hours.
[0033]
The obtained polyamide 6 pellets have a color tone of YI = −11.5, sulfuric acid relative viscosity of ηr = 3.40, moisture of w = 0.01%, and are uniformly treated so that there is almost no variation. Moreover, it was of high quality without coloring or deterioration. The results are shown in Table-1.
[0034]
Comparative Example 1
A continuous processing apparatus having the structure shown in FIG. 4 in which the half apex angle A of the cone-shaped portion 2 is 30 degrees, the volume is 7% of the processing tower body volume, and L / D = 4.4 is used. The same polyamide 6 pellets are continuously supplied at the same supply rate, the same processing gas is continuously supplied to set the high temperature region and the low temperature region at the same temperature, and the residence time in the high temperature region is set to be the same to perform the drying process. did.
[0035]
The obtained polyamide 6 pellets had a color tone of YI = -10.7, a sulfuric acid relative viscosity of ηr = 2.71, a water content of w = 0.03%, and the average value was inferior and the variation was large. The quality was inferior to the polyamide 6 pellets of Example 1.
[0036]
Comparative Example 2
The same continuous processing apparatus as in Comparative Example 1 was used, and the same polyamide 6 pellets as in Example 2 were continuously supplied at the same supply rate, and the same processing gas was continuously supplied to provide a high temperature region and a low temperature region at the same temperature. The solid phase polymerization treatment was performed with the same residence time in the high temperature region set.
[0037]
The obtained polyamide 6 pellets had a color tone of YI = −9.5, a sulfuric acid relative viscosity of ηr = 3.40, a water content of w = 0.02%, the average value was inferior and the variation was large. The quality was inferior to the polyamide 6 pellets of Example 2.
[0038]
Example 3
In the structure of FIG. 4, a continuous processing apparatus in which the gas supply port is replaced with the structure of FIG. 1 is used, and the same polyamide 6 pellets as in Example 1 are continuously supplied at the same supply speed, and the same processing gas is continuously supplied. A high-temperature region and a low-temperature region having the same temperature were set, and the residence time in the high-temperature region was set to be the same, and solid phase polymerization treatment was performed.
[0039]
The obtained polyamide 6 pellets have a color tone of YI = −11.7, sulfuric acid relative viscosity of ηr = 2.70, moisture of w = 0.02%, and are uniformly processed so that there is almost no variation, Moreover, it was of high quality without coloring or deterioration. The results are shown in Table-1.
[0040]
[Table 1]
Table 1
Figure 0004320800
[0041]
【The invention's effect】
As described above, according to the present invention, a thermoplastic material selected from polyamide (polybutylene terephthalate, polyacetal, polyethylene and polypropylene) in the form of pellets (chips), granules, or powders is dried or solid-phase polymerized. The gas supply port is attached to the processing tower main body so that the gas supply pipe is not extended to the inside of the processing tower main body, so that the flow of the thermoplastic material is supplied to the gas. The thermoplastic material can be uniformly dried or solid state polymerized without being disturbed by the tube. Moreover, since the partition plate opened downward is provided at the gas supply port, the gas supply port is clogged with the thermoplastic material even if the gas supply port is opened on the inner wall surface of the processing tower body. Therefore, since the process gas is smoothly supplied, it is possible to perform uniform drying or solid phase polymerization of the thermoplastic material better.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a continuous processing apparatus for thermoplastic materials used in the present invention.
FIG. 2 is an enlarged vertical sectional view showing a main part of the apparatus of FIG.
3A and 3B are cross-sectional views showing different aspects of the cross-section taken along the line XX in FIG.
FIG. 4 is a schematic longitudinal sectional view of a conventional continuous processing apparatus for thermoplastic materials.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing tower body 2 Conical part 3 Thermoplastic substance supply port 4 Thermoplastic substance discharge port 5 Rotary valve 6, 7 Gas supply pipe 6a, 7a Gas supply port 8 Gas discharge port 9 Partition plate A Half apex angle

Claims (10)

ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するための処理塔本体の上部に熱可塑性物質供給口と気体排出口とを設け、前記処理塔本体の下部下端に熱可塑性物質排出口を設けると共に、下部側壁に気体供給口を該側壁内面に開口するように設け、かつ該気体供給口に対向させて下向きに開口する仕切板を設け、前記熱可塑性物質供給口から熱可塑性物質を、前記気体供給口から処理気体をそれぞれ連続供給しながら熱可塑性物質と処理気体とを互いに向流接触させる熱可塑性物質の連続処理方法。Supplying a thermoplastic material to the upper part of the processing tower body for drying or solid-phase polymerization of a thermoplastic material selected from pellets (chips), granules or powders of polyamide, polybutylene terephthalate, polyacetal, polyethylene and polypropylene And a thermoplastic discharge port at the lower lower end of the main body of the processing tower, and a gas supply port is provided in the lower side wall so as to open on the inner surface of the side wall, and is opposed to the gas supply port. A partition plate that opens downward, and heats the thermoplastic material and the processing gas in countercurrent contact with each other while continuously supplying the thermoplastic material from the thermoplastic material supply port and the processing gas from the gas supply port. A continuous processing method for plastic materials. 前記仕切板を前記処理塔本体の側壁内面に沿って環状に形成した請求項1に記載の熱可塑性物質の連続処理方法。  The method for continuously treating a thermoplastic substance according to claim 1, wherein the partition plate is formed in an annular shape along the inner wall of the processing tower main body. 前記処理塔本体の下部に該処理塔本体容量の少なくとも10%を占める錐状部を形成した請求項1または2に記載の熱可塑性物質の連続処理方法。The method for continuously treating a thermoplastic material according to claim 1 or 2, wherein a conical portion occupying at least 10% of the capacity of the processing tower main body is formed in a lower portion of the processing tower main body. 前記錐状部の半頂角が2〜20度である請求項3に記載の熱可塑性物質の連続処理方法。  The method for continuously treating a thermoplastic material according to claim 3, wherein the half apex angle of the conical portion is 2 to 20 degrees. 前記熱可塑性物質が、ポリアミド,ポリブチレンテレフタレート,ポリアセタール,ポリエチレンおよびポリプロピレンの群から選ばれた1種である請求項1〜4のいずれかに記載の熱可塑性物質の連続処理方法。The method for continuously treating a thermoplastic substance according to any one of claims 1 to 4 , wherein the thermoplastic substance is one selected from the group consisting of polyamide, polybutylene terephthalate, polyacetal, polyethylene, and polypropylene. 前記処理気体が窒素である請求項に記載の熱可塑性物質の連続処理方法。The method for continuously treating a thermoplastic substance according to claim 5 , wherein the processing gas is nitrogen. ペレット(チップ)状、顆粒状、または粉体状のポリアミド、ポリブチレンテレフタレート、ポリアセタール、ポリエチレンおよびポリプロピレンから選ばれる熱可塑性物質を乾燥または固相重合するための処理塔本体の上部に熱可塑性物質供給口と気体排出口とを設け、前記処理塔本体の下部下端に熱可塑性物質排出口を設けると共に、下部側壁に気体供給口を該側壁内面に開口するように設け、かつ該気体供給口に対向させて下向きに開口する仕切板を設けた構成からなり、前記熱可塑性物質供給口から熱可塑性物質を、前記気体供給口から処理気体をそれぞれ連続供給しながら熱可塑性物質と処理気体とを互いに向流接触させる熱可塑性物質の連続処理装置。Supplying a thermoplastic material to the upper part of the processing tower body for drying or solid-phase polymerization of a thermoplastic material selected from pellets (chips), granules or powders of polyamide, polybutylene terephthalate, polyacetal, polyethylene and polypropylene And a thermoplastic discharge port at the lower lower end of the main body of the processing tower, and a gas supply port is provided in the lower side wall so as to open on the inner surface of the side wall, and is opposed to the gas supply port. In this configuration, a downwardly opening partition plate is provided, and the thermoplastic material and the processing gas are directed to each other while continuously supplying the thermoplastic material from the thermoplastic material supply port and the processing gas from the gas supply port. Continuous processing equipment for thermoplastics in fluid contact. 前記仕切板を前記処理塔本体の側壁内面に沿って環状に形成した請求項に記載の熱可塑性物質の連続処理装置。The continuous processing apparatus of the thermoplastic substance of Claim 7 which formed the said partition plate cyclically | annularly along the side wall inner surface of the said processing tower main body. 前記処理塔本体の下部に該処理塔本体容量の少なくとも10%を占める錐状部を形成した請求項7または8に記載の熱可塑性物質の連続処理装置。The continuous processing apparatus of the thermoplastic substance of Claim 7 or 8 which formed the cone-shaped part which occupies at least 10% of this processing tower main body capacity | capacitance in the lower part of the said processing tower main body. 前記錐状部の半頂角が2〜20度である請求項に記載の熱可塑性物質の連続処理装置。The continuous processing apparatus for a thermoplastic material according to claim 9 , wherein a half apex angle of the conical portion is 2 to 20 degrees.
JP19002298A 1998-07-06 1998-07-06 Method and apparatus for continuous processing of thermoplastic materials Expired - Fee Related JP4320800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19002298A JP4320800B2 (en) 1998-07-06 1998-07-06 Method and apparatus for continuous processing of thermoplastic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19002298A JP4320800B2 (en) 1998-07-06 1998-07-06 Method and apparatus for continuous processing of thermoplastic materials

Publications (2)

Publication Number Publication Date
JP2000017078A JP2000017078A (en) 2000-01-18
JP4320800B2 true JP4320800B2 (en) 2009-08-26

Family

ID=16251078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19002298A Expired - Fee Related JP4320800B2 (en) 1998-07-06 1998-07-06 Method and apparatus for continuous processing of thermoplastic materials

Country Status (1)

Country Link
JP (1) JP4320800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437663B2 (en) 2018-08-27 2024-02-26 ベイ マニュファクチャリング テクノロジーズ エルエルシー Positioning and clamping system for thread rolling

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670127B2 (en) * 2000-06-08 2011-04-13 東洋紡績株式会社 How to dry polyester
GB0110161D0 (en) * 2001-04-25 2001-06-20 Bp Chem Int Ltd Polymer treatment
WO2004039848A1 (en) * 2002-10-30 2004-05-13 Solvay Polyolefins Europe - Belgium (S.A.) Polymer treatment
JP3690390B2 (en) * 2003-01-23 2005-08-31 住友化学株式会社 Solid phase polymerization method of powdery polymer
JP5045078B2 (en) * 2005-12-02 2012-10-10 東レ株式会社 Production method of polyester resin
US8309642B2 (en) * 2007-02-03 2012-11-13 Teijin Aramid B.V. Method for dissolving aramid polymer in sulfuric acid using a double shaft kneader
JP5669376B2 (en) * 2008-11-04 2015-02-12 株式会社カワタ Drying device for powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437663B2 (en) 2018-08-27 2024-02-26 ベイ マニュファクチャリング テクノロジーズ エルエルシー Positioning and clamping system for thread rolling

Also Published As

Publication number Publication date
JP2000017078A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
US8556610B2 (en) Method for the production of polyester granulates from highly viscous polyester melts and also device for the production of the polyester granulates
US5052123A (en) Drying and heating of polyamide granules
US4584366A (en) Process for the crystallizing, drying and aftercondensation of polycondensates
US8763273B2 (en) Hopper structure, dehumidification plant and method for dehumidifying granular plastic material
JP4320800B2 (en) Method and apparatus for continuous processing of thermoplastic materials
US3113843A (en) Apparatus for separating a vapor from a viscous material such as molten polymer
US4092784A (en) Process and apparatus for drying and heating nylon granules
JP4838472B2 (en) Apparatus for drying and heat-treating granules with an inert gas stream
US3266165A (en) Process and apparatus for segregative drying of nylon-6
US4589215A (en) Apparatus for after-treating polyolefin powder
BR112019009598B1 (en) PROCESS TO REDUCE THE CONTENT OF VOLATILE ORGANIC COMPOUNDS OF GRANULATED PLASTOMERS
KR100729988B1 (en) A hot-air drying hopper of the hopper dryer
CN110769993B (en) Pellet drying and degassing method
JP2001519522A (en) Dryer or heat exchanger
JP2000017077A (en) Continuous processing of thermoplastic material and apparatus therefor
US4252968A (en) Process for preparing granular polycarbonate
KR20010102993A (en) Device and method for treating plastic material
US3285592A (en) Method and apparatus for dehydrating and melting thermoplastic polymers for spinning or molding
US20180065102A1 (en) Apparatus for producing pulverulent poly(meth)acrylate
SU1139949A1 (en) Apparatus for heat treatment of loose materials
JPH02217777A (en) Method and device for drying granular body
RU2182299C2 (en) Grain drier
FI61408C (en) FOER FARTA OCH ANORDNING FOER SEPARERING AV KVARBLIVANDE FLYKTIGT LOESNINGSMEDEL FRAON FASTA POLYMERKULOR
CN207561338U (en) A kind of novel particle type preserved fruit food ingredient equipment
SU1022730A1 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees