JP4320344B2 - Method for producing phosphorus compound having phosphate-phosphonate bond - Google Patents

Method for producing phosphorus compound having phosphate-phosphonate bond Download PDF

Info

Publication number
JP4320344B2
JP4320344B2 JP2006543011A JP2006543011A JP4320344B2 JP 4320344 B2 JP4320344 B2 JP 4320344B2 JP 2006543011 A JP2006543011 A JP 2006543011A JP 2006543011 A JP2006543011 A JP 2006543011A JP 4320344 B2 JP4320344 B2 JP 4320344B2
Authority
JP
Japan
Prior art keywords
group
phosphonate
phosphorus compound
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006543011A
Other languages
Japanese (ja)
Other versions
JPWO2006049011A1 (en
Inventor
和男 藤本
左希子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Publication of JPWO2006049011A1 publication Critical patent/JPWO2006049011A1/en
Application granted granted Critical
Publication of JP4320344B2 publication Critical patent/JP4320344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fireproofing Substances (AREA)

Description

本発明は、樹脂材料の難燃剤として有用な1分子中にホスフェート−ホスホネート結合を有するリン化合物を、原料のアルコール性ヒドロキシ基を有するホスホネートの種類に制限されることなしに、塩化マグネシウムのような触媒を用いず、窒素含有塩基性化合物の使用のみで、高純度かつ高収率で得ることができる新規な製造方法に関する。
本発明において「ホスフェート−ホスホネート結合」とは、リン原子間が置換基を有していてもよいアルキレン基と酸素原子との連結基で結合された構造を意味する。
The present invention provides a phosphorus compound having a phosphate-phosphonate bond in one molecule useful as a flame retardant for a resin material, such as magnesium chloride, without being limited to the type of phosphonate having an alcoholic hydroxy group as a raw material. The present invention relates to a novel production method that can be obtained with high purity and high yield only by using a nitrogen-containing basic compound without using a catalyst.
In the present invention, the “phosphate-phosphonate bond” means a structure in which phosphorus atoms are bonded by a linking group of an alkylene group which may have a substituent and an oxygen atom.

リン化合物は、一般に多機能な化合物として様々な分野で使用され、多種の化合物が開発されている。特に、リン化合物は難燃剤として優れた機能を有し、従来から多用されている。その難燃化の対象となる樹脂は多岐にわたり、例えば、ポリカーボネート、ABS樹脂、ポリフェニレンエーテル(PPE)、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート)などの熱可塑性樹脂、ポリウレタン、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂などが挙げられる。また、それらの樹脂の形態は成形品に限らず、繊維製品など多岐にわたっている。   Phosphorus compounds are generally used in various fields as multifunctional compounds, and various compounds have been developed. In particular, phosphorus compounds have an excellent function as a flame retardant and have been frequently used. There are a wide variety of flame retardant resins such as polycarbonate, ABS resin, polyphenylene ether (PPE), polyester (eg, polyethylene terephthalate, polybutylene terephthalate), polyurethane resin, epoxy resin, phenol resin. And thermosetting resins. Moreover, the form of those resin is not limited to a molded article, but is various, such as a textile product.

樹脂の難燃性は、一般的にリン化合物中のリン含有率に依存するが、所望の難燃性を付与するために樹脂にリン化合物を添加する場合、その添加量が多くなり樹脂自体の物性、特に機械特性が著しく低下することがある。したがって、より少ないリン化合物の添加量で十分な難燃性を樹脂に付与するために、リン含有率の高いリン化合物が望まれている。
また、樹脂は混練や成形加工の工程で非常に高い温度に曝されるので、添加するリン化合物としては高温においても安定性の高いものが望まれている。
The flame retardancy of the resin generally depends on the phosphorus content in the phosphorus compound, but when a phosphorus compound is added to the resin in order to impart the desired flame retardancy, the amount of addition increases and the resin itself Physical properties, particularly mechanical properties, can be significantly degraded. Therefore, a phosphorus compound having a high phosphorus content is desired in order to impart sufficient flame retardancy to the resin with a smaller addition amount of the phosphorus compound.
Further, since the resin is exposed to a very high temperature in the steps of kneading and molding, it is desired that the phosphorus compound to be added has high stability even at high temperatures.

リン化合物の構造は、主にホスフェート、ホスホネート、ホスフィネート、ホスファイト、ホスホナイト、ホスフィナイト、ホスフィンオキサイド、ホスフィンなどに大別される。リン化合物は1分子中にこれらの少なくとも1種の構造を有し、2種以上の異なる構造を有するリン化合物も存在する。
ホスフェート−ホスホネートはその一例であり、例えば、1分子中に塩素や臭素などのハロゲン原子を含有するホスフェート−ホスホネート、1分子中にアルコール性ヒドロキシ基を含有するホスフェート−ホスホネート、エチル基のような低級アルキル基を有するホスフェート−ホスホネートなどが知られている。
The structure of the phosphorus compound is roughly classified into phosphate, phosphonate, phosphinate, phosphite, phosphonite, phosphinite, phosphine oxide, phosphine and the like. The phosphorus compound has at least one of these structures in one molecule, and there are also phosphorus compounds having two or more different structures.
Phosphate-phosphonate is one example, for example, phosphate-phosphonate containing halogen atoms such as chlorine and bromine in one molecule, phosphate-phosphonate containing alcoholic hydroxy group in one molecule, lower group such as ethyl group. Known are phosphate-phosphonates having an alkyl group.

このようなホスフェート−ホスホネートの製造方法として、種々の方法が知られている。
例えば、米国特許第4697030号明細書(特許文献1)には、触媒としての塩化マグネシウムのようなルイス酸と塩化水素捕捉剤としてのトリエチルアミンとの共存下で、アルコール性ヒドロキシ基を有するホスホネートとオキシ塩化リンあるいはホスホロクロリデートとを反応させてホスフェート−ホスホネートを合成する方法が記載されている。
Various methods are known for producing such phosphate-phosphonates.
For example, US Pat. No. 4,697,030 (Patent Document 1) describes a phosphonate having an alcoholic hydroxy group and an oxy-acid in the presence of a Lewis acid such as magnesium chloride as a catalyst and triethylamine as a hydrogen chloride scavenger. A method of synthesizing phosphate-phosphonates by reacting with phosphorus chloride or phosphorochloridate is described.

しかしながら、この方法では、原料として使用できるホスホネートの種類が制限されるという問題がある。すなわち、原料として1級のヒドロキシ基を有するホスホネートを用いる場合には、上記明細書の実施例に記載されているように問題なく反応が進行する。しかし、原料として2級あるいは3級のヒドロキシ基を有するホスホネートを用いる場合には、五価であるP(=O)−Cl(リン−塩素)結合を有する化合物との反応性が非常に低下し、その結果、目的化合物の収率が低下するという問題がある。
また、触媒として4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)ウンデセン-
7(DBU)などの強塩基性触媒をトリエチルアミンと併用した場合でも、反応性はそれ
ほど向上せず、しかも触媒が高価であるためコスト面でも好ましくない。さらにこれら触媒を用いることで、不純物の副生が増えるという問題もある。
However, this method has a problem that the type of phosphonate that can be used as a raw material is limited. That is, when a phosphonate having a primary hydroxy group is used as a raw material, the reaction proceeds without problems as described in the examples of the above specification. However, when a phosphonate having a secondary or tertiary hydroxy group is used as a raw material, the reactivity with a compound having a pentavalent P (═O) —Cl (phosphorus-chlorine) bond is greatly reduced. As a result, there is a problem that the yield of the target compound is lowered.
Further, 4-dimethylaminopyridine, 1,8-diazabicyclo (5,4,0) undecene-
Even when a strongly basic catalyst such as 7 (DBU) is used in combination with triethylamine, the reactivity is not improved so much, and the catalyst is expensive, which is not preferable in terms of cost. Furthermore, the use of these catalysts also causes a problem that by-products of impurities increase.

また、英国特許第941706号明細書(特許文献2)には、原料としてトリアルキルホスファイトと、ケトン類やアルデヒド類などのカルボニル化合物、ホスホロクロリダイトを用いた三価のホスファイト化合物の合成法が記載されている。ホスフェート−ホスホネートは、前記の方法で得られた三価のホスファイト化合物を酸化することにより得ることができる。
しかしながら、ホスファイト化合物は酸性雰囲気下で容易に分解してしまうという欠点がある。上記明細書の合成法は、触媒を用いない、ホスホロクロリダイト中にカルボニル化合物を添加反応させるという酸性雰囲気下の合成であり、生成物が分解してしまい、その結果収率が低下するという問題がある。
In addition, British Patent No. 941706 (Patent Document 2) describes the synthesis of trivalent phosphite compounds using trialkyl phosphites, carbonyl compounds such as ketones and aldehydes, and phosphorochloridites as raw materials. The law is described. The phosphate-phosphonate can be obtained by oxidizing the trivalent phosphite compound obtained by the above method.
However, the phosphite compound has a disadvantage that it easily decomposes in an acidic atmosphere. The synthesis method of the above specification is a synthesis under an acidic atmosphere in which a carbonyl compound is added and reacted in a phosphorochloridite without using a catalyst, and the product is decomposed, resulting in a decrease in yield. There's a problem.

米国特許第4697030号明細書US Pat. No. 4,697,030 英国特許第941706号明細書British Patent No. 941706

本発明は、1分子中にホスフェート−ホスホネート結合を有するリン化合物を、原料のアルコール性ヒドロキシ基を有するホスホネートの種類に制限されることなしに、塩化マグネシウムのような触媒を用いず、窒素含有塩基性化合物の使用のみで、副生成物が少なく、高純度かつ高収率で得ることができる新規な製造方法を提供することを課題とする。   In the present invention, a phosphorus compound having a phosphate-phosphonate bond in one molecule is not limited to the type of phosphonate having an alcoholic hydroxy group as a raw material, and without using a catalyst such as magnesium chloride, a nitrogen-containing base It is an object of the present invention to provide a novel production method that can be obtained with a high purity and a high yield with only a small amount of by-products by using only a functional compound.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、原料として、反応活性の高いジ置換ホスホロハリダイトを使用することにより、アルコール性ヒドロキシ基を有するホスホネートとの脱ハロゲン化水素反応を行うことができ、ホスホネートの種類に制限されることなしに、塩化マグネシウムのような触媒を用いず、窒素含有塩基性化合物の使用のみで、副生成物が少なく、高純度かつ高収率でホスフェート−ホスホネートが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a di-substituted phosphorohalidite having a high reaction activity as a raw material, thereby eliminating the phosphonate having an alcoholic hydroxy group. A hydrogen halide reaction can be performed, without being limited to the type of phosphonate, without using a catalyst such as magnesium chloride, and by using only a nitrogen-containing basic compound, there are few by-products, high purity and The inventors have found that phosphate-phosphonate can be obtained in high yield, and have completed the present invention.

かくして、本発明によれば、一般式(II):

Figure 0004320344
Thus, according to the invention, the general formula (II):
Figure 0004320344

(式中、R1およびR2は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはアリール基であるか、またはR1とR2はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成し、R3およびR4は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基またはアリール基であるか、またはR3とR4はそれらが結合する炭素原子と一緒になって環状構造を形成する)
で表されるアルコール性ヒドロキシ基を有するホスホネートと、一般式(III):
Wherein R 1 and R 2 are the same or different from each other, and are a linear or branched alkyl group, cycloalkyl group or aryl group, or R 1 and R 2 are oxygen atoms to which they are bonded. and together with the phosphorus atom to form a cyclic structure, R 3 and R 4 are the same or different from each other, a straight or branched alkyl group or an aryl group, or R 3 and R 4, the Together with the carbon atoms to which they are attached form a cyclic structure)
A phosphonate having an alcoholic hydroxy group represented by formula (III):

Figure 0004320344
Figure 0004320344

(式中、R5およびR6は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基でありかつ5とR6はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成し、Xはハロゲン原子である)
で表されるジ置換ホスホロハリダイトとを、窒素含有塩基性化合物の存在下で脱ハロゲン化水素反応に付して、一般式(I’)
(In the formula, R 5 and R 6 are the same or different from each other, and are linear or branched alkyl groups , and R 5 and R 6 are cyclic together with the oxygen atom and phosphorus atom to which they are bonded. Form a structure, X is a halogen atom)
Is subjected to a dehydrohalogenation reaction in the presence of a nitrogen-containing basic compound to give a compound of the general formula (I ′)

Figure 0004320344
Figure 0004320344

(式中、R1、R2、R3、R4、R5およびR6は、上記と同じ意味を有する)
で表される反応生成物を得、次いで、反応生成物(I’)を酸化して、一般式(I):
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the same meaning as above)
Then, the reaction product (I ′) is oxidized to give a general formula (I):

Figure 0004320344
Figure 0004320344

(式中、R1、R2、R3、R4、R5およびR6は、上記と同じ意味を有する)
で表されるホスフェート−ホスホネート結合を有するリン化合物を得ることを特徴とするリン化合物の製造方法が提供される。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the same meaning as above)
A phosphorus compound having a phosphate-phosphonate bond represented by the following formula is obtained.

本発明によれば、1分子中にホスフェート−ホスホネート結合を有するリン化合物を、原料のアルコール性ヒドロキシ基を有するホスホネートの種類に制限されることなしに、塩化マグネシウムのような触媒を用いず、窒素含有塩基性化合物の使用のみで、副生成物が少なく、高純度かつ高収率で製造することができる。   According to the present invention, a phosphorus compound having a phosphate-phosphonate bond in one molecule is not limited to the type of phosphonate having an alcoholic hydroxy group as a raw material, and a catalyst such as magnesium chloride is not used. By using only the contained basic compound, there are few by-products and it can manufacture with high purity and a high yield.

本発明のリン化合物の製造方法は、ホスホネート(II)とジ置換ホスホロハリダイト(III)とを、窒素含有塩基性化合物の存在下で脱ハロゲン化水素反応に付して、反応生成物(I’)を得、次いで、反応生成物(I’)を酸化して、ホスフェート−ホスホネート結合を有するリン化合物(I)を得ることを特徴とする。
窒素含有塩基性化合物は、ハロゲン化水素捕捉剤として機能する。
In the method for producing a phosphorus compound of the present invention, a phosphonate (II) and a disubstituted phosphorohalidite (III) are subjected to a dehydrohalogenation reaction in the presence of a nitrogen-containing basic compound to produce a reaction product ( I ′) is obtained, and then the reaction product (I ′) is oxidized to obtain a phosphorus compound (I) having a phosphate-phosphonate bond.
The nitrogen-containing basic compound functions as a hydrogen halide scavenger.

ホスホネート(II)におけるR1およびR2は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはアリール基であるか、またはR1とR2はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成していてもよい。R 1 and R 2 in the phosphonate (II) are the same or different from each other, and are a linear or branched alkyl group, cycloalkyl group or aryl group, or R 1 and R 2 are oxygens to which they are bonded. A cyclic structure may be formed together with an atom and a phosphorus atom.

1およびR2の直鎖状もしくは分岐状のアルキル基としては、例えばメチル、エチル、n-プロピル、iso-プロピル、n-ブチル、iso-ブチル、sec-ブチル、n-ペンチル、n-ヘキシル、n-オクチル、2-エチルヘキシルなどが挙げられ、それらの中でもC2〜C8アルキル基が特に好ましい。
1およびR2のうち少なくとも一方がメチル基である場合には、加水分解し易く、その結果、リン化合物(I)の収率が低下するおそれがあるので、R1およびR2は、炭素数が2以上のアルキル基が好ましい。また、R1およびR2のうち少なくとも一方のアルキル基の炭素原子数が9以上の場合には、ホスホネート(II)の製造に由来する炭素原子数の大きなアルコールが最終生成物中に残存することがあり、その除去が困難となるおそれがあるので好ましくない。
Examples of the linear or branched alkyl group for R 1 and R 2 include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, n-pentyl, and n-hexyl. , n- octyl, 2-ethylhexyl, and the like, are C 2 -C 8 alkyl group among them particularly preferred.
When at least one of R 1 and R 2 are methyl groups, easily hydrolyzed, As a result, the yield of the phosphorus compound (I) may be lowered, R 1 and R 2, carbon An alkyl group having 2 or more is preferred. In addition, when at least one alkyl group of R 1 and R 2 has 9 or more carbon atoms, alcohol having a large number of carbon atoms derived from the production of phosphonate (II) should remain in the final product. This is not preferable because it may be difficult to remove.

1およびR2のシクロアルキル基としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルが挙げられ、それらの中でもC5〜C7シクロアルキル基が好ましく、シクロヘキシル基が特に好ましい。
シクロアルキル基の環状構造を形成する炭素原子数が8以上の場合、あるいはシクロアルキル基の環状構造を形成する炭素原子数が4以下の場合には、該シクロアルキル環が不安定になり易く、その結果、環の開裂によって生じる化合物が、反応系において悪影響を及ぼすおそれがあるので好ましくない。
Examples of the cycloalkyl group represented by R 1 and R 2 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl. Among them, a C 5 to C 7 cycloalkyl group is preferable, and cyclohexyl The group is particularly preferred.
When the number of carbon atoms forming the cyclic structure of the cycloalkyl group is 8 or more, or when the number of carbon atoms forming the cyclic structure of the cycloalkyl group is 4 or less, the cycloalkyl ring tends to be unstable, As a result, a compound produced by ring cleavage may be adversely affected in the reaction system.

1およびR2のシクロアルキル基は置換基を有していてもよい。その置換基としては、C1〜C7の直鎖状もしくは分岐状のアルキル基が挙げられ、それらの中でも、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチルのようなC1〜C4アルキル基が特に好ましい。
置換基を有するシクロアルキル基としては、例えば、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基などが挙げられ、これらの基を有するホスホネート(II)は、ホスホネート(II)を合成する上での原料を入手し易いので好ましい。
The cycloalkyl group of R 1 and R 2 may have a substituent. Examples of the substituent include C 1 to C 7 linear or branched alkyl groups. Among them, for example, methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, Particularly preferred are C 1 -C 4 alkyl groups such as tert-butyl.
Examples of the cycloalkyl group having a substituent include 3-methylcyclohexyl group and 4-methylcyclohexyl group. Phosphonate (II) having these groups is a raw material for synthesizing phosphonate (II). Is preferable because it is easy to obtain.

1およびR2のアリール基としては、例えばフェニル、1-ナフチル、2-ナフチルなどが挙げられる。
1およびR2のアリール基は置換基を有していてもよい。その置換基としては、C1
9の直鎖状もしくは分岐状のアルキル基が挙げられ、それらの中でも、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチルのようなC1〜C4アルキル基が特に好ましい。
Examples of the aryl group for R 1 and R 2 include phenyl, 1-naphthyl, 2-naphthyl and the like.
The aryl group of R 1 and R 2 may have a substituent. As the substituent, C 1-
C 9 linear or branched alkyl groups are mentioned, among them, for example, C 1- such as methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl. C 4 alkyl group is particularly preferred.

置換基を有するアリール基としては、例えば、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、2,6-ジメチルフェニル、2,4-ジメチルフェニル、3,5-ジメチルフェニル、2,6-ジ-tert-ブチル-4-メチルフェニルなどのC6〜C15アリール基が挙げられる。
上記のアリール基の中でも、フェニル基、3-メチルフェニル基、4-メチルフェニル基を有するホスホネート(II)は、ホスホネート(II)を合成する上での原料を入手し易いので好ましい。
Examples of the aryl group having a substituent include 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, 3,5-dimethylphenyl, 2,6 C 6 -C 15 aryl groups such as -di-tert-butyl-4-methylphenyl.
Among the above aryl groups, the phosphonate (II) having a phenyl group, a 3-methylphenyl group, or a 4-methylphenyl group is preferable because a raw material for synthesizing the phosphonate (II) is easily available.

また、R1とR2はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成していてもよい。R1とR2とが結合して形成される連結基−R1−R2−としては、R1およびR2に含まれる炭素原子数の和が2〜9になるアルキレン基が好ましく、2〜6になるアルキレン基がより好ましい。そして、環状構造における環は5〜7員環が好ましく、5員環もしくは6員環がより好ましく、6員環が特に好ましい。この環が8員環以上の場合もしくは4員環以下の場合には、環が不安定になり易く、その結果、環の開裂によって生じる酸成分[P−OH]が反応の進行に悪影響を及ぼすおそれがあるので好ましくない。R 1 and R 2 may be combined with an oxygen atom and a phosphorus atom to which they are bonded to form a cyclic structure. R 1 and R 2 and connection is formed by bonding group -R 1 -R 2 - as an alkylene group in which the sum of the number of carbon atoms contained in R 1 and R 2 is 2-9 are preferable, 2 An alkylene group of ˜6 is more preferred. The ring in the cyclic structure is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and particularly preferably a 6-membered ring. When this ring is an 8-membered ring or more or a 4-membered ring or less, the ring is likely to be unstable, and as a result, the acid component [P—OH] generated by ring cleavage adversely affects the progress of the reaction. This is not preferable because of fear.

特に好ましい環状構造としては、次の一般式(VI)で表される環状構造:

Figure 0004320344
(式中、R51およびR52は、互いに同一または異なって、水素原子または直鎖状もしくは分岐状のアルキル基である)
が挙げられる。As a particularly preferred cyclic structure, a cyclic structure represented by the following general formula (VI):
Figure 0004320344
(Wherein R 51 and R 52 are the same as or different from each other, and are a hydrogen atom or a linear or branched alkyl group)
Is mentioned.

51およびR52は、それらに含まれる炭素原子数の和が0〜6であるのが好ましく、具体的には、R51とR52が共にメチル基である組み合わせ、あるいはR51とR52がそれぞれエチル基とn-ブチル基である組み合わせなどが挙げられる。R 51 and R 52 preferably have a total number of carbon atoms contained in them of 0 to 6; specifically, a combination in which R 51 and R 52 are both methyl groups, or R 51 and R 52 Are combinations in which each is an ethyl group and an n-butyl group.

ホスホネート(II)におけるR3およびR4は、互いに同一または異なって、水素原子、直鎖状もしくは分岐状のアルキル基またはアリール基であるか、またはR3とR4はそれらが結合する炭素原子と一緒になって環状構造を形成していてもよい。R 3 and R 4 in the phosphonate (II) are the same or different from each other, and are a hydrogen atom, a linear or branched alkyl group or an aryl group, or R 3 and R 4 are carbon atoms to which they are bonded. A ring structure may be formed together.

3およびR4の直鎖状もしくは分岐状のアルキル基としては、例えばメチル、エチル、n-プロピル、iso-プロピル、n-ブチル、iso-ブチル、sec-ブチル、n-ペンチル、n-ヘキシルなどが挙げられ、それらの中でもC1〜C6アルキル基が特に好ましい。
3およびR4のアリール基としては、例えばフェニル、1-ナフチル、2-ナフチルなどが挙げられる。
3およびR4のアリール基は置換基を有していてもよい。その置換基としては、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチル、n-ペンチルなどのC1〜C5の直鎖状もしくは分岐状のアルキル基が挙げられる。
置換基を有するアリール基としては、例えば、メチル基を有するフェニル基、メチル基を有するナフチル基などが挙げられる。
Examples of the linear or branched alkyl group for R 3 and R 4 include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, n-pentyl, and n-hexyl. and the like, are C 1 -C 6 alkyl group among them particularly preferred.
Examples of the aryl group for R 3 and R 4 include phenyl, 1-naphthyl, 2-naphthyl and the like.
The aryl group of R 3 and R 4 may have a substituent. Examples of the substituent include C 1 to C 5 linear or branched alkyl such as methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, and n-pentyl. Groups.
Examples of the aryl group having a substituent include a phenyl group having a methyl group and a naphthyl group having a methyl group.

また、R3とR4はそれらが結合する炭素原子と一緒になって、次式で示される環状構造を形成していてもよい。

Figure 0004320344
R 3 and R 4 may be combined with the carbon atom to which they are bonded to form a cyclic structure represented by the following formula.
Figure 0004320344

3とR4とが結合して形成される連結基−R3−R4−としては、R3およびR4に含まれる炭素原子数の和が4〜10になるアルキレン基が好ましい。また、環状構造における環は、5〜7員環が好ましく、6員環がさらに好ましく、置換基を有さない6員環が特に好ましい。この環が8員環以上の場合もしくは4員環以下の場合には、環が不安定になり易く、その結果、環の開裂によって生じる化合物が反応の進行に悪影響を及ぼすおそれがあるので好ましくない。
アルキレン基は、置換基を有していてもよい。その置換基としては、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチル、n-ペンチルのようなC1〜C6の直鎖状もしくは分岐状のアルキル基が挙げられる。
Linking group and R 3 and R 4 are formed by combining -R 3 -R 4 - as an alkylene group in which the sum of the number of carbon atoms contained in R 3 and R 4 is 4-10 are preferred. The ring in the cyclic structure is preferably a 5- to 7-membered ring, more preferably a 6-membered ring, and particularly preferably a 6-membered ring having no substituent. When the ring is an 8-membered ring or more or a 4-membered ring or less, the ring is likely to be unstable, and as a result, a compound produced by ring cleavage may adversely affect the progress of the reaction, which is not preferable. .
The alkylene group may have a substituent. Examples of the substituent include linear or branched C 1 to C 6 such as methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, and n-pentyl. An alkyl group is mentioned.

3およびR4に含まれる炭素原子数の和が1〜12であるのが好ましい。
また、ホスホネート(II)のR3およびR4に含まれる炭素原子数がそれぞれ1以上であ
り、かつR3およびR4に含まれる炭素原子数の和が2〜12であるのが好ましい。
3およびR4が共にアルキル基である場合、およびR3とR4が一緒になって環状構造を形成する場合には、ホスホネート(II)が立体的に嵩高い置換基を有することになり、その結果、ジ置換ホスホロハリダイト(III)との反応性が低下することが予想されるが、本発明の製造方法によれば、その予想に反して反応が円滑に進行する。
The sum of the number of carbon atoms contained in R 3 and R 4 is preferably 1-12.
Moreover, it is preferable that the number of carbon atoms contained in R 3 and R 4 of the phosphonate (II) is 1 or more and the sum of the number of carbon atoms contained in R 3 and R 4 is 2 to 12.
When R 3 and R 4 are both alkyl groups, and when R 3 and R 4 together form a cyclic structure, the phosphonate (II) will have a sterically bulky substituent. As a result, it is expected that the reactivity with the di-substituted phosphorohalidite (III) is lowered, but according to the production method of the present invention, the reaction proceeds smoothly against the expectation.

ホスホネート(II)におけるR3およびR4は、メチル基と水素原子、メチル基とメチル基、メチル基とエチル基、メチル基とイソブチル基、フェニル基と水素原子、フェニル基とメチル基、フェニル基とフェニル基の組み合わせ、およびR3およびR4がそれらが結合する炭素原子と一緒になって6員環を形成する連結基から選択されるのが好ましい。R 3 and R 4 in the phosphonate (II) are methyl group and hydrogen atom, methyl group and methyl group, methyl group and ethyl group, methyl group and isobutyl group, phenyl group and hydrogen atom, phenyl group and methyl group, phenyl group And R 3 and R 4 are preferably selected from linking groups that together with the carbon atom to which they are attached form a 6-membered ring.

ホスホネート(II)は、式(IV):

Figure 0004320344
(式中、R3およびR4は上記と同じ意味を有する)
で表される化合物、R1およびR2が共にn-ブチル基である化合物およびR1およびR2が共に2-エチルヘキシル基である化合物から選択されるのが好ましい。The phosphonate (II) has the formula (IV):
Figure 0004320344
(Wherein R 3 and R 4 have the same meaning as above)
Are preferably selected from the group consisting of: a compound in which R 1 and R 2 are both n-butyl groups, and a compound in which R 1 and R 2 are both 2-ethylhexyl groups.

ホスホネート(II)は、例えば、ホスファイトへのアルデヒドまたはケトンの付加反応により合成することができる(例えば、特開昭49−126623号公報参照)。
上記の付加反応に用いられるホスファイトとしては、例えば、ジエチルホスファイト、ジn-プロピルホスファイト、ジn-ブチルホスファイト、ジn-オクチルホスファイトおよびビス(2-エチルヘキシル)ホスファイトなどのジアルキルホスファイト、ネオペンチレンホスファイトなどの環状ホスファイトなどが挙げられる。原料としての入手し易さや価格の点で、例示したような、同種のアルキル基が置換されたジアルキルホスファイトおよび環状ホスファイトが特に好ましい。
Phosphonate (II) can be synthesized, for example, by addition reaction of aldehyde or ketone to phosphite (see, for example, JP-A-49-126623).
Examples of the phosphite used in the above addition reaction include dialkyl such as diethyl phosphite, di-n-propyl phosphite, di-n-butyl phosphite, di-n-octyl phosphite and bis (2-ethylhexyl) phosphite. Examples thereof include cyclic phosphites such as phosphites and neopentylene phosphites. The dialkyl phosphites and cyclic phosphites substituted with the same alkyl groups as exemplified above are particularly preferred from the viewpoint of availability as raw materials and price.

また、アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒドなどが挙げられ、ケトンとしては、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)などの鎖状ケトン、アセトフェノン、ベンゾフェノンなどの芳香族ケトン、およびシクロペンタノン、シクロヘキサノン、メチルシクロヘキサノンなどの環状ケトンなどが挙げられる。   Examples of aldehydes include formaldehyde, acetaldehyde, propionaldehyde, and benzaldehyde. Examples of ketones include chain ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone (MIBK), aromatic ketones such as acetophenone and benzophenone, and cyclohexane. Examples include cyclic ketones such as pentanone, cyclohexanone, and methylcyclohexanone.

上記の付加反応には触媒を用いるのが好ましい。このような触媒としては、金属ナトリウム、金属カリウムなどのアルカリ金属類、水素化ナトリウム、ナトリウムアルコキシド、ナトリウムアミドなどのアルカリ金属含有塩基類、トリエチルアミン、トリブチルアミンなどの脂肪族第3級アミン類、ピリジン、ルチジン、ピコリンなどの芳香族アミン類などの塩基性触媒が挙げられ、これらの中でも脂肪族第3級アミン類が好ましい。また、これらは2種以上を混合して用いることができる。
また、触媒として、塩化マグネシウム、塩化アルミニウム、塩化亜鉛、四塩化チタン、三フッ化ホウ素エーテル錯体などの金属ハロゲン化物を併用することもできる。これらも2種以上を混合して用いることができる。
上記の付加反応においては、その反応性および取り扱いの点から、塩基性触媒のトリエチルアミンと金属ハロゲン化物の塩化マグネシウムとの併用が好ましい。
It is preferable to use a catalyst for the above addition reaction. Examples of such catalysts include alkali metals such as sodium metal and potassium, alkali metal-containing bases such as sodium hydride, sodium alkoxide and sodium amide, aliphatic tertiary amines such as triethylamine and tributylamine, and pyridine. And basic catalysts such as aromatic amines such as lutidine and picoline, among which aliphatic tertiary amines are preferred. Moreover, these can be used in mixture of 2 or more types.
In addition, metal halides such as magnesium chloride, aluminum chloride, zinc chloride, titanium tetrachloride, and boron trifluoride ether complex can be used in combination as the catalyst. These can also be used as a mixture of two or more.
In the above addition reaction, the combination of triethylamine as a basic catalyst and magnesium chloride as a metal halide is preferable from the viewpoint of reactivity and handling.

ジ置換ホスホロハリダイト(III)におけるR5およびR6は、互いに同一または異なっ
て、直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはアリール基であるか、またはR5とR6はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成していてもよく、Xはハロゲン原子である。
R 5 and R 6 in the disubstituted phosphorohalidite (III) are the same or different from each other, and are a linear or branched alkyl group, cycloalkyl group or aryl group, or R 5 and R 6 are It may form a cyclic structure together with the oxygen atom and phosphorus atom to which they are bonded, and X is a halogen atom.

5およびR6の直鎖状もしくは分岐状のアルキル基としては、例えばメチル、エチル、n-プロピル、iso-プロピル、n-ブチル、iso-ブチル、sec-ブチル、n-ペンチル、n-ヘキシル、n-オクチル、2-エチルヘキシルなどが挙げられ、それらの中でもC2〜C8アルキル基が特に好ましい。
5およびR6のうち少なくとも一方がメチル基である場合には、合成が困難となり、その結果、リン化合物(I)の収率が低下するおそれがあるので、R5およびR6は、炭素数が2以上のアルキル基が好ましい。また、R5およびR6のうち少なくとも一方のアルキル基の炭素原子数が9以上の場合には、ジ置換ホスホロハリダイト(III)の製造に由来する炭素原子数の大きなアルコールが最終生成物中に残存することがあり、その除去が困難となるおそれがあるので好ましくない。
Examples of the linear or branched alkyl group represented by R 5 and R 6 include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, n-pentyl, and n-hexyl. , n- octyl, 2-ethylhexyl, and the like, are C 2 -C 8 alkyl group among them particularly preferred.
If at least one of R 5 and R 6 are methyl groups, the synthesis is difficult, as a result, the yield of the phosphorus compound (I) may be lowered, R 5 and R 6, carbon An alkyl group having 2 or more is preferred. Further, when at least one alkyl group of R 5 and R 6 has 9 or more carbon atoms, an alcohol having a large number of carbon atoms derived from the production of disubstituted phosphorohalidite (III) is the final product. This is not preferable because it may remain in the interior and may be difficult to remove.

5およびR6のシクロアルキル基としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルが挙げられ、それらの中でもC5〜C7シクロアルキル基が好ましく、シクロヘキシル基が特に好ましい。
シクロアルキル基の環状構造を形成する炭素原子数が8以上の場合、あるいはシクロアルキル基の環状構造を形成する炭素原子数が4以下の場合には、該シクロアルキル環が不安定になり易く、その結果、環の開裂によって生じる化合物が、反応系において悪影響を及ぼすおそれがあるので好ましくない。
Examples of the cycloalkyl group represented by R 5 and R 6 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl. Among them, a C 5 to C 7 cycloalkyl group is preferable, and cyclohexyl The group is particularly preferred.
When the number of carbon atoms forming the cyclic structure of the cycloalkyl group is 8 or more, or when the number of carbon atoms forming the cyclic structure of the cycloalkyl group is 4 or less, the cycloalkyl ring tends to be unstable, As a result, a compound produced by ring cleavage may be adversely affected in the reaction system.

5およびR6のシクロアルキル基は置換基を有していてもよい。その置換基としては、C1〜C7の直鎖状もしくは分岐状のアルキル基が挙げられ、それらの中でも、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチルのようなC1〜C4アルキル基が特に好ましい。
置換基を有するシクロアルキル基としては、例えば、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基などが挙げられ、これらの基を有するジ置換ホスホロハリダイト(III)は、原料として入手し易いので好ましい。
The cycloalkyl group of R 5 and R 6 may have a substituent. Examples of the substituent include C 1 to C 7 linear or branched alkyl groups. Among them, for example, methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, Particularly preferred are C 1 -C 4 alkyl groups such as tert-butyl.
Examples of the cycloalkyl group having a substituent include a 3-methylcyclohexyl group and a 4-methylcyclohexyl group, and disubstituted phosphorohalidites (III) having these groups are easily available as raw materials. preferable.

5およびR6のアリール基としては、例えば、フェニル、1-ナフチル、2-ナフチルなどが挙げられる。
5およびR6のアリール基は置換基を有していてもよい。その置換基としては、C1
9の直鎖状もしくは分岐状のアルキル基が挙げられ、それらの中でも、例えばメチル、エチル、n-プロピル、n-ブチル、iso-ブチル、sec-ブチル、tert-ブチルのようなC1〜C4アルキル基が特に好ましい。
置換基を有するアリール基としては、例えば、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、2,6-ジメチルフェニル、2,4-ジメチルフェニル、3,5-ジメチルフェニル、2,6-ジ-tert-ブチル-4-メチルフェニルなどのC6〜C15アリール基が挙げられる。
上記のアリール基の中でも、フェニル基、3-メチルフェニル基、4-メチルフェニル基を有するジ置換ホスホロハリダイト(III)は、原料として入手し易いので好ましい。
Examples of the aryl group of R 5 and R 6 include phenyl, 1-naphthyl, 2-naphthyl and the like.
The aryl group of R 5 and R 6 may have a substituent. As the substituent, C 1-
C 9 linear or branched alkyl groups are mentioned, among them, for example, C 1- such as methyl, ethyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl. C 4 alkyl group is particularly preferred.
Examples of the aryl group having a substituent include 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, 3,5-dimethylphenyl, 2,6 C 6 -C 15 aryl groups such as -di-tert-butyl-4-methylphenyl.
Among the above aryl groups, disubstituted phosphorohalidites (III) having a phenyl group, a 3-methylphenyl group, and a 4-methylphenyl group are preferable because they are easily available as raw materials.

また、R5とR6はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成していてもよい。R5とR6とが結合して形成される連結基−R5−R6−としては、R5およびR6に含まれる炭素原子数の和が2〜9になるアルキレン基が好ましく、2〜6に
なるアルキレン基がより好ましい。そして、環状構造における環は5〜7員環が好ましく、5員環もしくは6員環がより好ましく、6員環が特に好ましい。この環が8員環以上の場合もしくは4員環以下の場合には、環が不安定になり易く、その結果、環の開裂によって生じる酸成分[P−OH]が反応の進行に悪影響を及ぼすおそれがあるので好ましくない。
R 5 and R 6 may be combined with an oxygen atom and a phosphorus atom to which they are bonded to form a cyclic structure. R 5 and R 6 is a linking group -R 5 -R 6 formed by combining - as an alkylene group in which the sum of the number of carbon atoms contained in R 5 and R 6 is 2-9 are preferable, 2 More preferred are alkylene groups of ˜6. The ring in the cyclic structure is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and particularly preferably a 6-membered ring. When this ring is an 8-membered ring or more or a 4-membered ring or less, the ring is likely to be unstable, and as a result, the acid component [P—OH] generated by ring cleavage adversely affects the progress of the reaction. This is not preferable because of fear.

特に好ましい環状構造としては、次の一般式(VII)で表される環状構造:

Figure 0004320344
(式中、R53およびR54は、互いに同一または異なって、水素原子または直鎖状もしくは分岐状のアルキル基である)
が挙げられる。As a particularly preferred cyclic structure, a cyclic structure represented by the following general formula (VII):
Figure 0004320344
(In the formula, R 53 and R 54 are the same or different from each other, and are a hydrogen atom or a linear or branched alkyl group)
Is mentioned.

53およびR54は、それらに含まれる炭素原子数の合計が0〜6であるのが好ましく、具体的には、R53とR54が共にメチル基である組み合わせ、あるいはR53とR54がそれぞれエチル基とn-ブチル基である組み合わせなどが挙げられる。
ジ置換ホスホロハリダイト(III)におけるXのハロゲン原子としては、フッ素、塩素
、臭素、ヨウ素が挙げられる。反応性が高いという理由で塩素、臭素が好ましく、塩素がより好ましい。
R 53 and R 54 preferably have a total number of carbon atoms contained in them of 0 to 6, and specifically, a combination in which R 53 and R 54 are both methyl groups, or R 53 and R 54 Are combinations in which each is an ethyl group and an n-butyl group.
Examples of the halogen atom for X in the disubstituted phosphorohalidite (III) include fluorine, chlorine, bromine and iodine. Chlorine and bromine are preferable because of high reactivity, and chlorine is more preferable.

ジ置換ホスホロハリダイト(III)は、式(V):

Figure 0004320344
(式中、Xはハロゲン原子である)
で表されるものが好ましい。The disubstituted phosphorohalidite (III) has the formula (V):
Figure 0004320344
(Wherein X is a halogen atom)
The thing represented by these is preferable.

ジ置換ホスホロハリダイト(III)、例えば、環状アルキレンホスホロハリダイトは、
ハロゲン化リンとジオール系化合物との反応により合成することができる(例えば、特開平2−273688号公報参照)。
上記の反応に用いられるハロゲン化リンとしては、例えば、三塩化リン、三臭化リンなどが挙げられる。原料としての入手し易さや価格の点で、三塩化リンが特に好ましい。
原料としてオキシ塩化リンやオキシ臭化リンなどの5価のオキシハロゲン化リンを用いた場合には、ジ置換ホスホロハリダイト(III)の酸化物が得られる。この酸化物は、ホ
スホネート(II)との反応性が極めて低く、本発明の目的物であるリン化合物(I)を高収率で得ることができなくなるので好ましくない。本発明のリン化合物の製造方法は、ホスホネート(II)とジ置換ホスホロハリダイト(III)とを反応させた後に、得られた反応生成物を酸化させることを特徴としており、特にジ置換ホスホロハリダイト(III)が環状構造を有する場合には、リン化合物(I)の収率の差が顕著に表れる。
Disubstituted phosphorohalidites (III), such as cyclic alkylene phosphorohalidites,
It can be synthesized by a reaction between phosphorus halide and a diol compound (for example, see JP-A-2-273688).
Examples of the phosphorus halide used in the above reaction include phosphorus trichloride, phosphorus tribromide, and the like. Phosphorus trichloride is particularly preferred from the standpoint of availability as a raw material and price.
When pentavalent phosphorus oxyhalide such as phosphorus oxychloride or phosphorus oxybromide is used as a raw material, an oxide of disubstituted phosphorohalidite (III) is obtained. This oxide is not preferable because the reactivity with the phosphonate (II) is extremely low and the phosphorus compound (I) which is the object of the present invention cannot be obtained in a high yield. The method for producing a phosphorus compound of the present invention is characterized by oxidizing a reaction product obtained after reacting a phosphonate (II) with a disubstituted phosphorohalidite (III). When lohalidite (III) has a cyclic structure, the difference in the yield of phosphorus compound (I) appears significantly.

また、ジオール系化合物としては、1,3-プロパンジオール、1,3-ブタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,2-ジアリル-1,3-プロパンジオールなどが挙げられる。原料としての入手し易さや価格の点で、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコールが特に好ましい。   Examples of the diol compound include 1,3-propanediol, 1,3-butanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, Examples include neopentyl glycol and 2,2-diallyl-1,3-propanediol. 2-Ethyl-2-butyl-1,3-propanediol and neopentyl glycol are particularly preferable from the viewpoint of availability as raw materials and price.

上記のホスホネート(II)において、R1とR2が一緒になって環状構造を形成する、お
よび/または上記のジ置換ホスホロハリダイト(III)において、R5とR6が一緒になっ
て環状構造を形成するのが好ましい。
In the above phosphonate (II), R 1 and R 2 together form a cyclic structure, and / or in the above disubstituted phosphorohalidite (III), R 5 and R 6 together It is preferable to form a ring structure.

次に、本発明のホスホネート(II)とジ置換ホスホロハリダイト(III)との反応について詳しく説明する。
本発明の製造方法は、ホスホネート(II)とジ置換ホスホロハリダイト(III)とを、窒素含有塩基性化合物の存在下で脱ハロゲン化水素反応に付して(工程(1))、次いで、得られた反応生成物(I’)を酸化して、リン化合物(I)を得る(工程(2))ことにより行われる。
Next, the reaction between the phosphonate (II) of the present invention and the disubstituted phosphorohalidite (III) will be described in detail.
In the production method of the present invention, the phosphonate (II) and the disubstituted phosphorohalidite (III) are subjected to a dehydrohalogenation reaction in the presence of a nitrogen-containing basic compound (step (1)), and then The reaction product (I ′) thus obtained is oxidized to obtain phosphorus compound (I) (step (2)).

工程(1)で用いられる窒素含有塩基性化合物としては、例えば、トリエチルアミン、トリブチルアミンなどの脂肪族第3級アミン、ピリジンなどの芳香族アミンが挙げられ、これらの中でも、脂肪族第3級アミンが好ましく、トリエチルアミンが特に好ましい。
窒素含有塩基性化合物の使用量は、ジ置換ホスホロハリダイト(III)1モルに対して
1.0〜1.2モル程度である。
Examples of the nitrogen-containing basic compound used in the step (1) include aliphatic tertiary amines such as triethylamine and tributylamine, and aromatic amines such as pyridine. Among these, aliphatic tertiary amines Are preferred, and triethylamine is particularly preferred.
The usage-amount of a nitrogen-containing basic compound is about 1.0-1.2 mol with respect to 1 mol of disubstituted phosphorohalidites (III).

工程(1)におけるジ置換ホスホロハリダイト(III)の使用量は、ホスホネート(II)1モルに対して1.0〜1.5モルが好ましく、1.01〜1.2モルがより好ましい。
ジ置換ホスホロハリダイト(III)の使用量が、ホスホネート(II)1モルに対して1.0モル未満の場合には、未反応のホスホネート(II)が反応物中に残存する比率が高くなり、その結果、最終目的物中からのホスホネート(II)の除去が困難になるおそれがあるので好ましくない。また、ジ置換ホスホロハリダイト(III)の使用量が、ホスホネート(II)1モルに対して1.5モルを超えて、工程(1)の反応終了後に未反応のジ置換ホスホロハリダイト(III)が残存しても、これを水洗により容易に分解除去することができるが、原料ロスになることから好ましくない。
1.0-1.5 mol is preferable with respect to 1 mol of phosphonate (II), and, as for the usage-amount of the disubstituted phosphorohalidite (III) in a process (1), 1.01-1.2 mol is more preferable. .
When the amount of the disubstituted phosphorohalidite (III) used is less than 1.0 mole relative to 1 mole of phosphonate (II), the ratio of unreacted phosphonate (II) remaining in the reaction product is high. As a result, it is not preferable because removal of the phosphonate (II) from the final target product may be difficult. In addition, the amount of disubstituted phosphorohalidite (III) used exceeds 1.5 mol per mol of phosphonate (II), and unreacted disubstituted phosphorohalidite after completion of the reaction in step (1). Even if (III) remains, it can be easily decomposed and removed by washing with water, but this is not preferable because of loss of raw materials.

工程(1)における反応温度は、好ましくは10〜100℃、より好ましくは20〜70℃である。反応温度が10℃未満の場合には、反応性が低下するので好ましくない。また、反応温度が100℃を超えると、窒素含有塩基性化合物が飛散したり、ジ置換ホスホロハリダイト(III)が副反応を起こす可能性があるので好ましくない。
また、反応時間は、反応温度などの条件にもよるが、通常、1〜5時間程度で十分である。
The reaction temperature in the step (1) is preferably 10 to 100 ° C, more preferably 20 to 70 ° C. When the reaction temperature is less than 10 ° C., the reactivity decreases, which is not preferable. On the other hand, if the reaction temperature exceeds 100 ° C., the nitrogen-containing basic compound may be scattered or the di-substituted phosphorohalidite (III) may cause a side reaction.
Moreover, although reaction time is based also on conditions, such as reaction temperature, about 1 to 5 hours are usually enough.

工程(1)の反応は、必要に応じて有機溶剤の存在下で行うことができる。
有機溶剤は、この反応に不活性な溶剤であれば特に限定されず、例えば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレンおよび石油スピリットなどの炭化水素系溶剤;クロロホルム、四塩化炭素、ジクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼンおよびジクロロベンゼンなどのハロゲン含有炭化水素系溶剤;ジイソプロピルエーテル、ジブチルエーテル、1,4-ジオキサンおよびエチレングリコールジエチルエーテルなどのエーテル系溶剤などが挙げられる。これらの中でも、取り扱い易さの面でトルエン、クロロベンゼンなどの芳香族炭化水素が特に好ましい。
The reaction in the step (1) can be performed in the presence of an organic solvent as necessary.
The organic solvent is not particularly limited as long as it is an inert solvent for this reaction. For example, hydrocarbon solvents such as hexane, cyclohexane, heptane, octane, benzene, toluene, xylene and petroleum spirit; chloroform, carbon tetrachloride, Examples thereof include halogen-containing hydrocarbon solvents such as dichloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene and dichlorobenzene; ether solvents such as diisopropyl ether, dibutyl ether, 1,4-dioxane and ethylene glycol diethyl ether. Among these, aromatic hydrocarbons such as toluene and chlorobenzene are particularly preferable in terms of ease of handling.

ホスホネート(II)およびジ置換ホスホロハリダイト(III)を製造する反応と、工程
(1)の反応とを一連の工程として連続して実施する場合には、同一の溶剤を用いるのが好ましい。これにより溶剤の回収工程が簡略化できるため有利である。
When the reaction for producing the phosphonate (II) and the disubstituted phosphorohalidite (III) and the reaction of the step (1) are carried out continuously as a series of steps, it is preferable to use the same solvent. This is advantageous because the solvent recovery process can be simplified.

工程(1)の反応終了後に、副生したアミンのハロゲン化水素塩を除去するのが好ましい。除去方法としては、濾過、水洗などの公知の方法が挙げられる。   After completion of the reaction in step (1), it is preferable to remove the by-produced amine hydrogen halide salt. Examples of the removal method include known methods such as filtration and washing with water.

次いで、工程(2)では、工程(1)で得られた反応生成物(I’)を公知の方法で酸化して、上記の一般式(I)で表されるリン化合物を得る。例えば、反応生成物(I’)と過酸化水素を塩基性条件下で反応させる(例えば、特開平11−100391号公報参照)。   Next, in step (2), the reaction product (I ′) obtained in step (1) is oxidized by a known method to obtain the phosphorus compound represented by the above general formula (I). For example, the reaction product (I ') and hydrogen peroxide are reacted under basic conditions (for example, see JP-A-11-1000039).

工程(2)において反応系が酸性条件になると、反応生成物(I’)が分解するため、反応系を常に塩基性に保つ必要がある。
反応系を塩基性に保つためには、公知の塩基性化合物を用いることができる。
このような塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウムに代表される炭酸塩;アンモニア;ジメチルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリンなどのアミン;ピリジン、ピコリンなどの芳香族複合環塩基などが挙げられ、これらの中でも、水酸化ナトリウム、トリエチルアミンが特に好ましい。また、これらの塩基性化合物は、2種以上を混合して用いることもできる。
When the reaction system is in an acidic condition in the step (2), the reaction product (I ′) is decomposed. Therefore, it is necessary to always keep the reaction system basic.
In order to keep the reaction system basic, a known basic compound can be used.
Examples of such basic compounds include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; carbonates represented by sodium carbonate; ammonia; dimethylamine, trimethylamine, triethylamine, trimethylamine, and the like. Examples thereof include amines such as butylamine and N, N-dimethylaniline; aromatic complex ring bases such as pyridine and picoline. Among these, sodium hydroxide and triethylamine are particularly preferable. Moreover, these basic compounds can also be used in mixture of 2 or more types.

工程(2)における過酸化水素の使用量は、反応生成物(I’)1モルに対して1.0〜1.5モルが好ましく、1.01〜1.2モルがより好ましい。
過酸化水素水の使用量が、反応生成物(I’)1モルに対して1.0モルを下回る場合には、酸化反応が完結せずに、未反応の反応生成物(I’)が反応物中に残存する比率が高くなり、その結果、リン化合物(I)の収量が低下するおそれがあるので好ましくない。また、過酸化水素水の使用量が多い程、酸化反応が十分に進行してリン化合物(I)の収率が高くなる反面、爆発の危険性を有する未反応の過酸化水素が残存することになり、安全面で好ましくない。さらに、過酸化水素の水への還元といった余計な工程が必要になることから、過酸化水素の使用量の上限は、反応生成物(I’)1モルに対して1.5モル程度までが適当であり、1.2モル程度までが実用的である。
1.0-1.5 mol is preferable with respect to 1 mol of reaction products (I '), and, as for the usage-amount of hydrogen peroxide in a process (2), 1.01-1.2 mol is more preferable.
When the amount of hydrogen peroxide used is less than 1.0 mol relative to 1 mol of the reaction product (I ′), the oxidation reaction is not completed and the unreacted reaction product (I ′) Since the ratio which remains in a reaction material becomes high and there exists a possibility that the yield of phosphorus compound (I) may fall as a result, it is unpreferable. In addition, as the amount of hydrogen peroxide water used increases, the oxidation reaction proceeds sufficiently to increase the yield of the phosphorus compound (I), but unreacted hydrogen peroxide having a risk of explosion remains. It is not preferable in terms of safety. Furthermore, since an extra step such as reduction of hydrogen peroxide to water is required, the upper limit of the amount of hydrogen peroxide used is about 1.5 moles per mole of the reaction product (I ′). Appropriate, up to about 1.2 moles is practical.

工程(2)における反応温度は、好ましくは0〜80℃、より好ましくは10〜70℃である。反応温度が0℃未満の場合には、爆発の危険性を有する過酸化水素が反応系内に蓄積して急激な反応を起こす危険性があるので好ましくない。また、反応温度が80℃を超えると、過酸化水素自体の分解が促進されるので好ましくない。
また、反応時間は、反応温度などの条件にもよるが、通常1〜5時間程度で十分である。
The reaction temperature in the step (2) is preferably 0 to 80 ° C, more preferably 10 to 70 ° C. When the reaction temperature is less than 0 ° C., hydrogen peroxide having a risk of explosion accumulates in the reaction system and there is a risk of causing a rapid reaction, which is not preferable. On the other hand, when the reaction temperature exceeds 80 ° C., decomposition of hydrogen peroxide itself is promoted, which is not preferable.
Moreover, although reaction time is based also on conditions, such as reaction temperature, about 1 to 5 hours are usually enough.

工程(2)の反応は、必要に応じて有機溶剤の存在下で行うことができる。
有機溶剤は、この反応に不活性な溶剤であれば特に限定されず、工程(1)で例示のものが挙げられる。工程(1)と工程(2)において同一の溶剤を用いることにより、溶剤の回収工程を1回に簡略化できるので好ましい。
The reaction in the step (2) can be performed in the presence of an organic solvent as necessary.
The organic solvent is not particularly limited as long as it is an inert solvent for this reaction, and examples thereof include those exemplified in the step (1). It is preferable to use the same solvent in step (1) and step (2) because the solvent recovery step can be simplified once.

このようにして得られた反応混合物から、溶剤や低沸成分を減圧除去することにより、目的化合物であるリン化合物(I)を得ることができる。
また、窒素含有塩基性化合物や酸性成分などの不純物の残存を避けたい場合には、それらを公知の方法で除去するのが好ましい。この除去方法としては、酸洗浄処理、アルカリ洗浄処理、水洗処理、減圧蒸留などが挙げられる。しかし、難燃剤としてリン化合物(I)を樹脂に添加した場合、これらの不純物がポリウレタンフォームやOA機器などの成形品の物性に悪影響を及ぼすほどではない、極少量の場合には、精製処理は特に必要としない。従って、必要に応じて精製処理を取り入れればよい。
From the reaction mixture thus obtained, the target compound, phosphorus compound (I), can be obtained by removing the solvent and low-boiling components under reduced pressure.
Moreover, when it is desired to avoid the remaining of impurities such as nitrogen-containing basic compounds and acidic components, it is preferable to remove them by a known method. Examples of the removing method include acid washing treatment, alkali washing treatment, water washing treatment, and vacuum distillation. However, when phosphorus compound (I) is added to the resin as a flame retardant, these impurities do not adversely affect the physical properties of molded products such as polyurethane foam and OA equipment. Not particularly necessary. Therefore, a purification process may be incorporated as necessary.

酸洗浄処理では、反応混合物中の窒素含有塩基性化合物を除去することができる。具体的には、塩酸、硫酸、シュウ酸、硝酸、リン酸およびクエン酸などの酸性水を用いて、得られた反応混合物を洗浄すればよい。
アルカリ洗浄処理では、反応混合物中の酸性成分や未反応の過酸化水素を中和により除去することができる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウムなどのアルカリ水溶液を用いて、得られた反応混合物を洗浄すればよい。
In the acid washing treatment, the nitrogen-containing basic compound in the reaction mixture can be removed. Specifically, the obtained reaction mixture may be washed with acidic water such as hydrochloric acid, sulfuric acid, oxalic acid, nitric acid, phosphoric acid and citric acid.
In the alkali cleaning treatment, acidic components and unreacted hydrogen peroxide in the reaction mixture can be removed by neutralization. Specifically, the obtained reaction mixture may be washed with an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate or the like.

以上のように、本発明の好ましい実施形態を用いて本発明を説明したが、本発明は、これらの実施形態に限定して解釈されるべきものではない。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができる。本明細書において引用した特許文献は、その内容自体が具体的に本明細書に記載されているのと同様に、その内容が本明細書に対する参考として援用されるべきである。   As mentioned above, although this invention was demonstrated using preferable embodiment of this invention, this invention should not be limited and limited to these embodiment. Those skilled in the art can implement an equivalent range from the description of specific preferred embodiments of the present invention based on the description of the present invention and the common general technical knowledge. Patent documents cited in the present specification should be incorporated by reference into the present specification in the same manner as the content itself is specifically described in the present specification.

(実施例)
本発明を以下の実施例および比較例によりさらに具体的に説明するが、これらの実施例により本発明の範囲が限定されるものではない。
(Example)
The present invention will be described more specifically with reference to the following examples and comparative examples, but the scope of the present invention is not limited by these examples.

(実施例1)
(原料1の合成)
攪拌機、温度計、滴下装置、塩酸回収装置および還流管を備えた1リットルの四つ口フラスコに、ネオペンチルグリコール112.3g(1.08モル)およびトルエン123.5g(ネオペンチルグリコールに対して110重量%)を充填した。この混合溶液を窒素雰囲気下、20℃にて撹拌しながら、三塩化リン148.5g(1.08モル)を4時間かけて追加した。その後、同温度(20℃)で1時間撹拌し、最終的に60℃まで昇温し、発生する塩化水素ガスを回収した(75.6g)。その後、約33kPaに達するまで徐々に減圧し、残存する塩化水素ガスを取り除くことにより、ネオペンチレンホスホロクロリダイト(原料1)を主成分とする溶液を得た。なお、溶剤として用いたトルエンは次工程でも使用するため、ここでは回収しなかった。
Example 1
(Synthesis of raw material 1)
In a 1 liter four-necked flask equipped with a stirrer, thermometer, dropping device, hydrochloric acid recovery device and reflux tube, 112.3 g (1.08 mol) of neopentyl glycol and 123.5 g of toluene (relative to neopentyl glycol) 110% by weight). While stirring this mixed solution at 20 ° C. under a nitrogen atmosphere, 148.5 g (1.08 mol) of phosphorus trichloride was added over 4 hours. Thereafter, the mixture was stirred at the same temperature (20 ° C.) for 1 hour and finally heated to 60 ° C., and the generated hydrogen chloride gas was recovered (75.6 g). Thereafter, the pressure was gradually reduced until reaching about 33 kPa, and the remaining hydrogen chloride gas was removed to obtain a solution containing neopentylene phosphorochloridite (raw material 1) as a main component. Since toluene used as a solvent is used in the next step, it was not collected here.

(原料2の合成)
次に、攪拌機、温度計、滴下装置および還流管を備えた2リットルの四つ口フラスコに、ジブチルホスファイト213.4g(1.1モル)、トリエチルアミン5.6g(0.06モル)および塩化マグネシウム1.9g(0.020モル)を充填した。この混合溶液を40℃にて撹拌しながら、アセトン70.2g(1.2モル)を1時間かけて追加した。さらに同温度(40℃)で1時間撹拌することにより、反応を完結させた。その後、得られた反応溶液を1%希塩酸水溶液、飽和炭酸ナトリウム水溶液にて順次洗浄し、さらに水洗を2回行って、トリエチルアミンおよび塩化マグネシウムを除去した。次いで、反応混合物を80℃まで昇温加熱しつつ、約2.7kPaの減圧下で水を回収した。さらに、同条件で窒素トッピングを行い、低沸分を除去し、ジブチル(1-ヒドロキシ-1-メチルエチル)ホスホネート(原料2)254.6gを得た。
(Synthesis of raw material 2)
Next, in a 2 liter four-necked flask equipped with a stirrer, a thermometer, a dropping device and a reflux tube, 213.4 g (1.1 mol) of dibutyl phosphite, 5.6 g (0.06 mol) of triethylamine and chloride were added. 1.9 g (0.020 mol) of magnesium was charged. While stirring this mixed solution at 40 ° C., 70.2 g (1.2 mol) of acetone was added over 1 hour. Further, the reaction was completed by stirring at the same temperature (40 ° C.) for 1 hour. Thereafter, the obtained reaction solution was washed successively with a 1% dilute hydrochloric acid aqueous solution and a saturated sodium carbonate aqueous solution, and further washed twice with water to remove triethylamine and magnesium chloride. Subsequently, water was collect | recovered under the pressure reduction of about 2.7 kPa, heating up a reaction mixture to 80 degreeC heating. Further, nitrogen topping was performed under the same conditions to remove low boiling point, and 254.6 g of dibutyl (1-hydroxy-1-methylethyl) phosphonate (raw material 2) was obtained.

得られた生成物の純度を、ゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、99.0面積%であった(表2)。   When the purity of the obtained product was measured by gel permeation chromatography (GPC), it was 99.0 area% (Table 2).

(工程(1))
上記の反応終了後、原料2が残存する2リットルの四つ口フラスコに、トルエン22.5gおよびトリエチルアミン114.3g(1.13モル)を充填し、攪拌した。次いで、恒温装置により混合溶液を60℃に保持しつつ、滴下装置(追加漏斗)から原料1を含む混合溶液を2時間かけて追加した。その後、反応混合物を同温度(60℃)で1時間攪拌することにより反応を完結させた。
反応混合物に水209.1g(反応混合物に対して30重量%)を加え、同温度(60℃)で30分撹拌した後、静置して分相させた。水相を回収し、副生したトリエチルアミン塩酸塩を除去した。
(Process (1))
After completion of the above reaction, 22.5 g of a 4-liter flask with the raw material 2 remaining was charged with 22.5 g of toluene and 114.3 g (1.13 mol) of triethylamine and stirred. Subsequently, the mixed solution containing the raw material 1 was added over 2 hours from the dropping device (additional funnel) while maintaining the mixed solution at 60 ° C. with a thermostatic device. Thereafter, the reaction mixture was stirred at the same temperature (60 ° C.) for 1 hour to complete the reaction.
209.1 g of water (30% by weight based on the reaction mixture) was added to the reaction mixture, and the mixture was stirred at the same temperature (60 ° C.) for 30 minutes, and then allowed to stand for phase separation. The aqueous phase was collected and triethylamine hydrochloride formed as a by-product was removed.

(工程(2))
次いで、得られた反応溶液を20℃まで冷却し、トリエチルアミン3.0g(0.03モル)を加え、混合溶液をpH10とした。次いで、温度20〜40℃の範囲を外れないように、発熱に注意しながら滴下装置(追加漏斗)から35%過酸化水素水溶液104.9g(過酸化水素として1.08モル)を2時間かけて加えた。その後、40℃で1時間撹拌した。
その後、反応溶液を60℃まで加熱昇温し、1%希塩酸水溶液、飽和炭酸ナトリウム水溶液で順次洗浄し、最後に水洗を2回行った。次いで、反応混合物を100℃まで加熱しつつ、13.3kPaの減圧下で水とトルエンを回収した。さらに、100〜110℃で2.7kPaの減圧下で水蒸気トッピングおよび窒素トッピングを順次行い、低沸分を除去し、無色透明の液体390.3gを得た。
(Process (2))
Next, the obtained reaction solution was cooled to 20 ° C., 3.0 g (0.03 mol) of triethylamine was added, and the mixed solution was adjusted to pH 10. Next, paying attention to heat generation so as not to deviate from the temperature range of 20 to 40 ° C., 104.9 g of 35% hydrogen peroxide aqueous solution (1.08 mol as hydrogen peroxide) was taken over 2 hours from the dropping device (additional funnel). Added. Then, it stirred at 40 degreeC for 1 hour.
Thereafter, the reaction solution was heated to 60 ° C., washed successively with 1% dilute hydrochloric acid aqueous solution and saturated sodium carbonate aqueous solution, and finally washed twice with water. Subsequently, water and toluene were collect | recovered under 13.3 kPa pressure reduction, heating a reaction mixture to 100 degreeC. Further, steam topping and nitrogen topping were sequentially performed at 100 to 110 ° C. under a reduced pressure of 2.7 kPa to remove low boiling points, and 390.3 g of a colorless and transparent liquid was obtained.

得られた生成物の純度を、次の条件でガスクロマトグラフィー(GC)により測定したところ、98.6面積%であった(表1)。

Figure 0004320344
また、GCと表2の数値から収率を算出したところ、96.2%であった(表1)。
得られた生成物の構造をIR、NMR、元素分析および吸光法によるP%により決定した。When the purity of the obtained product was measured by gas chromatography (GC) under the following conditions, it was 98.6 area% (Table 1).
Figure 0004320344
The yield was calculated from GC and the values in Table 2 and found to be 96.2% (Table 1).
The structure of the resulting product was determined by IR, NMR, elemental analysis and P% by absorption.

IR(KBr):
2976,1469,1376,1306,1261,1213,1149,1056,1014,915,851,813,742,624cm-1
IR (KBr):
2976, 1469, 1376, 1306, 1261, 1213, 1149, 1056, 1014, 915, 851, 813, 742, 624 cm -1

NMR:
1H−NMR(CDCl3;400MHz);δ4.26(2H,d,JHH=10Hz,POC 2C(CH32−),4.144(2H,t,JHH=7Hz,POC 2CH2CH2CH3),4.141(2H,t,JHH=7Hz,POC 2CH2CH2CH3),3.86(2H,dd,JHH=10Hz,JPH=23Hz,POC 2C(CH32−),1.80(3H,s,PC(C 32O),1.76(3H,s,PC(C 32O),1.69(4H,m,POCH2 2CH2CH3),1.43(4H,tq,JHH=7Hz,POCH2CH2 2CH3),1.29(3H,s,POCH2C(C 32−),0.96(6H,t,JHH=7Hz,POCH2CH2CH2 3),0.86(3H,s,POCH2C(C 32−)ppm
NMR:
1 H-NMR (CDCl 3 ; 400 MHz); δ 4.26 (2H, d, J HH = 10 Hz, POC H 2 C (CH 3 ) 2 −), 4.144 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ), 4.141 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ), 3.86 (2H, dd, J HH = 10 Hz, J PH = 23Hz, POC H 2 C (CH 3) 2 -), 1.80 (3H, s, PC (C H 3) 2 O), 1.76 (3H, s, PC (C H 3) 2 O), 1.69 (4H, m, POCH 2 C H 2 CH 2 CH 3), 1.43 (4H, tq, J HH = 7Hz, POCH 2 CH 2 C H 2 CH 3), 1.29 (3H, s , POCH 2 C (C H 3 ) 2 -), 0.96 (6H, t, J HH = 7Hz, POCH 2 CH 2 CH 2 C H 3), 0.8 (3H, s, POCH 2 C (C H 3) 2 -) ppm

13C−NMR(CDCl3;100MHz);δ80.3(dd,1PC=179Hz,2PC=8Hz,P(CH32OP),77.7(d,2PC=7Hz,PO2C(CH32−),66.5(d,2PC=7Hz,PO2CH2CH2CH3),32.5(d,JPC=6Hz),31.9(d,3PC=5Hz,POCH2 (CH32−),23.3,21.7,20.1,18.6,13.4ppm 13 C-NMR (CDCl 3 ; 100 MHz); δ 80.3 (dd, 1 J PC = 179 Hz, 2 J PC = 8 Hz, P C (CH 3 ) 2 OP), 77.7 (d, 2 J PC = 7 Hz) , PO C H 2 C (CH 3) 2 -), 66.5 (d, 2 J PC = 7Hz, PO C H 2 CH 2 CH 2 CH 3), 32.5 (d, J PC = 6Hz), 31.9 (d, 3 J PC = 5 Hz, POCH 2 C (CH 3 ) 2 −), 23.3, 21.7, 20.1, 18.6, 13.4 ppm

元素分析および吸光法によるP%:
C:47.9%,H:8.5%,P:15.5%
P% by elemental analysis and absorption method:
C: 47.9%, H: 8.5%, P: 15.5%

実施例2
(原料1の合成)
実施例1の(原料1の合成)と同様にして、ネオペンチレンホスホロクロリダイト(原料1)を主成分とする溶液を得た。
(原料3の合成)
攪拌機、温度計、滴下装置および還流管を備えた2リットルの四つ口フラスコに、ジブチルホスファイト213.4g(1.1モル)、トリエチルアミン5.6g(0.06モル)および塩化マグネシウム1.05g(0.011モル)を充填した。この混合溶液を25℃にて撹拌しながら、メチルイソブチルケトン(MIBK)120.0g(1.2モル)を1時間かけて追加した。さらに同温度(25℃)で1時間撹拌することにより、反応を完結させた。その後、実施例1の(原料(2)の合成)と同様にして、洗浄および低沸分除去を行い、トリエチルアミンおよび塩化マグネシウムが除去されたジブチル(1-ヒドロキシ-1,3-ジメチルブチル)ホスホネート(原料3)298.8gを得た。
実施例1と同様にして、得られた生成物の純度を測定したところ、98.4面積%であった(表2)。
Example 2
(Synthesis of raw material 1)
A solution containing neopentylene phosphorochloridite (raw material 1) as a main component was obtained in the same manner as in Example 1 (synthesis of raw material 1).
(Synthesis of raw material 3)
In a 2 liter four-necked flask equipped with a stirrer, thermometer, dropping device and reflux tube, 213.4 g (1.1 mol) of dibutyl phosphite, 5.6 g (0.06 mol) of triethylamine and magnesium chloride were added. 05 g (0.011 mol) was charged. While stirring this mixed solution at 25 ° C., 120.0 g (1.2 mol) of methyl isobutyl ketone (MIBK) was added over 1 hour. Further, the reaction was completed by stirring at the same temperature (25 ° C.) for 1 hour. Thereafter, in the same manner as in Example 1 (synthesis of raw material (2)), dibutyl (1-hydroxy-1,3-dimethylbutyl) phosphonate from which triethylamine and magnesium chloride were removed by washing and removal of low-boiling components. (Raw material 3) 298.8 g was obtained.
It was 98.4 area% when the purity of the obtained product was measured like Example 1 (Table 2).

(工程(1))
上記の反応終了後、原料3が残存する2リットルの四つ口フラスコに、トルエン22.5gおよびトリエチルアミン114.3g(1.13モル)を充填し、攪拌した。次いで、恒温装置により混合溶液を25℃に保持しつつ、滴下装置(追加漏斗)から原料1を含む混合溶液を2時間かけて追加した。その後、反応混合物を同温度(25℃)で1時間撹拌することにより反応を完結させた。
反応混合物を60℃まで昇温し、反応混合物に水222.3g(反応混合物に対して30重量%)を加え、同温度(60℃)で30分撹拌した後、静置して分相させた。水相を回収し、副生したトリエチルアミン塩酸塩を除去した。
(Process (1))
After completion of the above reaction, 22.5 g of toluene and 114.3 g (1.13 mol) of triethylamine were charged into a 2 liter four-necked flask in which the raw material 3 remained and stirred. Subsequently, the mixed solution containing the raw material 1 was added over 2 hours from the dropping device (additional funnel), maintaining the mixed solution at 25 degreeC with a thermostat. Then, the reaction was completed by stirring the reaction mixture at the same temperature (25 ° C.) for 1 hour.
The temperature of the reaction mixture is raised to 60 ° C., 222.3 g of water (30% by weight with respect to the reaction mixture) is added to the reaction mixture, and the mixture is stirred at the same temperature (60 ° C.) for 30 minutes and then allowed to stand to cause phase separation. It was. The aqueous phase was collected and triethylamine hydrochloride formed as a by-product was removed.

(工程(2))
実施例1の(工程(2))と同様にして反応を行い、無色透明の液体433.0gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ98.1面積%および96.1%であった(表1)。
得られた生成物の構造をIR、NMR、元素分析および吸光法によるP%により決定した。
(Process (2))
The reaction was conducted in the same manner as in (Step (2)) of Example 1 to obtain 433.0 g of a colorless and transparent liquid.
When the purity of the obtained product was measured and the yield was calculated in the same manner as in Example 1, they were 98.1 area% and 96.1%, respectively (Table 1).
The structure of the resulting product was determined by IR, NMR, elemental analysis and P% by absorption.

IR(KBr):
2976,1469,1376,1306,1251,1152,1072,992,918,899,848,806,736,624cm-1
IR (KBr):
2976, 1469, 1376, 1306, 1251, 1152, 1072, 992, 918, 899, 848, 806, 736, 624 cm -1

NMR:
1H−NMR(CDCl3;400MHz);δ4.41(2H,d,JHH=10Hz,POC 2C(CH32−),4.15(4H,m,POC 2CH2CH2CH3),3.84(2H,m,POC 2C(CH32−),2.12(1H,m,CH2(CH32),1.93(2H,dd,JHH=6Hz,3PH=14Hz,POC(C 2CH(CH32)−),1.84(3H,d,3PH=16Hz,POC(C 3)(CH2CH(CH32)P),1.68(4H,m,CH2),1.43(4H,m,CH2),1.28(3H,s,POCH2C(C 32−),1.07−0.92(12H,m,C 3),0.86(3H,s,POCH2C(C 32−)ppm
NMR:
1 H-NMR (CDCl 3 ; 400 MHz); δ 4.41 (2H, d, J HH = 10 Hz, POC H 2 C (CH 3 ) 2 −), 4.15 (4H, m, POC H 2 CH 2 CH 2 CH 3), 3.84 (2H , m, POC H 2 C (CH 3) 2 -), 2.12 (1H, m, CH 2 C H (CH 3) 2), 1.93 (2H, dd, J HH = 6 Hz, 3 J PH = 14 Hz, POC (C H 2 CH (CH 3 ) 2 ) −), 1.84 (3H, d, 3 J PH = 16 Hz, POC (C H 3 ) (CH 2 CH (CH 3) 2) P), 1.68 (4H, m, CH 2), 1.43 (4H, m, CH 2), 1.28 (3H, s, POCH 2 C (C H 3 ) 2 −), 1.07 to 0.92 (12H, m, C H 3 ), 0.86 (3H, s, POCH 2 C (C H 3 ) 2 −) ppm

13C−NMR(CDCl3;100MHz);δ83.9(dd,1PC=173Hz,2PC=8Hz,P(CH3)(CH2CH(CH32)OP),77.9(d,2PC=7Hz,PO2C(CH32−),77.4(d,2PC=7Hz,PO2C(CH32−),66.7(d,2PC=7Hz,PO2CH2CH2CH3),66.2(d,2PC=8Hz,PO2CH2CH2CH3),45.9,32.6(d,JPC=6Hz),32.5(d,JPC=6Hz),31.9(d,3PC=5Hz,POCH2 (CH32),24.5,24.3,23.9(d,JPC=6Hz),21.9,21.7,20.2,18.7,13.5ppm 13 C-NMR (CDCl 3 ; 100 MHz); δ 83.9 (dd, 1 J PC = 173 Hz, 2 J PC = 8 Hz, P C (CH 3 ) (CH 2 CH (CH 3 ) 2 ) OP), 77. 9 (d, 2 J PC = 7Hz, PO C H 2 C (CH 3) 2 -), 77.4 (d, 2 J PC = 7Hz, PO C H 2 C (CH 3) 2 -), 66. 7 (d, 2 J PC = 7 Hz, PO C H 2 CH 2 CH 2 CH 3 ), 66.2 (d, 2 J PC = 8 Hz, PO C H 2 CH 2 CH 2 CH 3 ), 45.9, 32.6 (d, J PC = 6 Hz), 32.5 (d, J PC = 6 Hz), 31.9 (d, 3 J PC = 5 Hz, POCH 2 C (CH 3 ) 2 ), 24.5, 24.3, 23.9 (d, J PC = 6 Hz), 21.9, 21.7, 20.2, 18.7, 13.5 ppm

元素分析および吸光法によるP%:
C:51.5%,H:9.2%,P:13.9%
P% by elemental analysis and absorption method:
C: 51.5%, H: 9.2%, P: 13.9%

実施例3
(原料1の合成)
実施例1の(原料1の合成)と同様にして、ネオペンチレンホスホロクロリダイト(原料1)を主成分とする溶液を得た。
(原料4の合成)
アセトンの代わりにシクロヘキサノン117.6g(1.2モル)を用いること以外は、実施例1の(原料2の合成)と同様に合成を行って、ジブチル(1-ヒドロキシシクロヘキシル)ホスホネート(原料4)297.4gを得た。
実施例1と同様にして、得られた生成物の純度を測定したところ、98.2面積%であった(表2)。
Example 3
(Synthesis of raw material 1)
A solution containing neopentylene phosphorochloridite (raw material 1) as a main component was obtained in the same manner as in Example 1 (synthesis of raw material 1).
(Synthesis of raw material 4)
Synthesis was carried out in the same manner as in Example 1 (synthesis of raw material 2) except that 117.6 g (1.2 mol) of cyclohexanone was used instead of acetone, and dibutyl (1-hydroxycyclohexyl) phosphonate (raw material 4) 297.4 g was obtained.
When the purity of the obtained product was measured in the same manner as in Example 1, it was 98.2 area% (Table 2).

(工程(1))および(工程(2))
上記の反応終了後、原料2の代わりに原料4を用いること以外は、実施例1と同様にして反応を行い、無色透明の液体432.8gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ98.4面積%および96.8%であった(表1)。
得られた生成物の構造をIR、NMR、元素分析および吸光法によるP%により決定した。
(Step (1)) and (Step (2))
After completion of the above reaction, the reaction was performed in the same manner as in Example 1 except that the raw material 4 was used instead of the raw material 2 to obtain 432.8 g of a colorless and transparent liquid.
The purity of the obtained product was measured in the same manner as in Example 1, and the yield was calculated to be 98.4 area% and 96.8%, respectively (Table 1).
The structure of the resulting product was determined by IR, NMR, elemental analysis and P% by absorption.

IR(KBr):
2960,1469,1376,1309,1248,1152,1075,1008,922,896,883,848,816,784,726,659,618,582cm-1
IR (KBr):
2960, 1469, 1376, 1309, 1248, 1152, 1075, 1008, 922, 896, 883, 848, 816, 784, 726, 659, 618, 582cm -1

NMR:
1H−NMR(CDCl3;400MHz);δ4.26(2H,d,JHH=10Hz,POC 2C(CH32−),4.14(2H,t,JHH=7Hz,POC 2CH2CH2CH3),4.12(2H,t,JHH=7Hz,POC 2CH2CH2CH3),3.84(2H,dd,JHH=10Hz,JPH=23Hz,POC 2C(CH32−),2.37(2H,m,cyclo−C 2),1.91(2H,m,cyclo−C 2),1.69(10H,m,CH2),1.41(4H,fq,JHH=7Hz,POCH2CH2 2CH3),1.28(3H,s,POCH2C(C 32−),0.95(6H,t,JHH=7Hz,POCH2CH2CH2 3),0.85(3H,s,POCH2C(C 32−)ppm
NMR:
1 H-NMR (CDCl 3 ; 400 MHz); δ 4.26 (2H, d, J HH = 10 Hz, POC H 2 C (CH 3 ) 2 −), 4.14 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ), 4.12 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ), 3.84 (2H, dd, J HH = 10 Hz, J PH = 23Hz, POC H 2 C (CH 3) 2 -), 2.37 (2H, m, cyclo-C H 2), 1.91 (2H, m, cyclo-C H 2), 1.69 (10H, m, CH 2), 1.41 ( 4H, fq, J HH = 7Hz, POCH 2 CH 2 C H 2 CH 3), 1.28 (3H, s, POCH 2 C (C H 3) 2 -), 0.95 (6H, t, J HH = 7Hz, POCH 2 CH 2 CH 2 C H 3), 0.85 (3H, s, POCH 2 (C H 3) 2 -) ppm

13C−NMR(CDCl3;100MHz);δ83.7(dd,1PC=171Hz,2PC=9Hz,POP),77.6(d,2PC=7Hz,PO2C(CH32−),66.5(d,2PC=7Hz,PO2CH2CH2CH3),32.6(d,3PC=6Hz,POCH2 2CH2CH3),31.9(d,3PC=6Hz,POCH2 (CH32−),31.3(d,m,cycloCH2),24.6,22.0,21.0,20.9,20.2,18.7,13.6ppm 13 C-NMR (CDCl 3; 100MHz); δ83.7 (dd, 1 J PC = 171Hz, 2 J PC = 9Hz, P C OP), 77.6 (d, 2 J PC = 7Hz, PO C H 2 C (CH 3) 2 -) , 66.5 (d, 2 J PC = 7Hz, PO C H 2 CH 2 CH 2 CH 3), 32.6 (d, 3 J PC = 6Hz, POCH 2 C H 2 CH 2 CH 3 ), 31.9 (d, 3 J PC = 6 Hz, POCH 2 C (CH 3 ) 2 −), 31.3 (d, m, cycloCH 2 ), 24.6, 22.0, 21 0.0, 20.9, 20.2, 18.7, 13.6 ppm

元素分析および吸光法によるP%:
C:51.8%,H:8.8%,P:14.0%
P% by elemental analysis and absorption method:
C: 51.8%, H: 8.8%, P: 14.0%

実施例4
(原料1の合成)
実施例1の(原料1の合成)と同様にして、ネオペンチレンホスホロクロリダイト(原料1)を主成分とする溶液を得た。
(原料2の合成)
ジブチルホスファイト194.0g(1.0モル)、トリエチルアミン5.1g(0.05モル)、塩化マグネシウム1.7g(0.018モル)およびアセトン63.8g(1.1モル)を用いること、洗浄および低沸分除去を行わず、トリエチルアミンおよび塩化マグネシウムを除去しないこと以外は、実施例1の(原料2の合成)と同様にして合成を行い、ジブチル(1-ヒドロキシ-1-メチルエチル)ホスホネート(原料2)を主成分とする溶液264.6gを得た。
(工程(1)および工程(2))
実施例1と同様にして反応を行い、無色透明の液体393.0gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ96.8面積%および95.1%であった(表1)。
また、実施例1で得られた生成物を用いて同定した。
Example 4
(Synthesis of raw material 1)
A solution containing neopentylene phosphorochloridite (raw material 1) as a main component was obtained in the same manner as in Example 1 (synthesis of raw material 1).
(Synthesis of raw material 2)
Using 194.0 g (1.0 mol) of dibutyl phosphite, 5.1 g (0.05 mol) of triethylamine, 1.7 g (0.018 mol) of magnesium chloride and 63.8 g (1.1 mol) of acetone, Synthesis was carried out in the same manner as in Example 1 (Synthesis of raw material 2) except that washing and low-boiling removal were not performed and triethylamine and magnesium chloride were not removed, and dibutyl (1-hydroxy-1-methylethyl) was obtained. 264.6 g of a solution containing phosphonate (raw material 2) as a main component was obtained.
(Step (1) and Step (2))
Reaction was carried out in the same manner as in Example 1 to obtain 393.0 g of a colorless and transparent liquid.
When the purity of the obtained product was measured and the yield was calculated in the same manner as in Example 1, they were 96.8 area% and 95.1%, respectively (Table 1).
Moreover, it identified using the product obtained in Example 1.

実施例5(参考例)
(原料1の合成)
実施例1の(原料1の合成)と同様にして、ネオペンチレンホスホロクロリダイト(原料1)を主成分とする溶液を得た。
(原料5の合成)
ジブチルホスファイト194.0g(1.0モル)、トリエチルアミン5.1g(0.05モル)および塩化マグネシウム0.14g(0.0015モル)を用いること、アセトンの代わりにアセトアルデヒド48.4g(1.1モル)を用いること、洗浄および低沸分除去を行わず、トリエチルアミンおよび塩化マグネシウムを除去しないこと以外は、実施例1の(原料2の合成)と同様にして合成を行い、ジブチル(1-ヒドロキシエチル)ホスホネート(原料5)を主成分とする溶液を247.6g得た。
(工程(1)および工程(2))
原料2の代わりに原料5を用いること以外は、実施例1と同様にして反応を行い、無色透明の液体381.8gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ96.1面積%および95.1%であった(表1)。
得られた生成物の構造をIR、NMR、元素分析および吸光法によるP%により決定した。
Example 5 (Reference Example)
(Synthesis of raw material 1)
A solution containing neopentylene phosphorochloridite (raw material 1) as a main component was obtained in the same manner as in Example 1 (synthesis of raw material 1).
(Synthesis of raw material 5)
Use 194.0 g (1.0 mol) of dibutyl phosphite, 5.1 g (0.05 mol) of triethylamine and 0.14 g (0.0015 mol) of magnesium chloride, and 48.4 g (1. 1 mol), washing and low-boiling removal are not performed, and triethylamine and magnesium chloride are not removed, and synthesis is performed in the same manner as in Example 1 (synthesis of raw material 2), and dibutyl (1- 247.6 g of a solution mainly composed of hydroxyethyl) phosphonate (raw material 5) was obtained.
(Step (1) and Step (2))
A reaction was carried out in the same manner as in Example 1 except that the raw material 5 was used instead of the raw material 2 to obtain 381.8 g of a colorless and transparent liquid.
The purity of the obtained product was measured in the same manner as in Example 1, and the yield was calculated to be 96.1 area% and 95.1%, respectively (Table 1).
The structure of the resulting product was determined by IR, NMR, elemental analysis and P% by absorption.

IR(KBr):
2976,1469,1376,1302,1248,1120,1056,1014,918,854,838,742,624cm-1
IR (KBr):
2976, 1469, 1376, 1302, 1248, 1120, 1056, 1014, 918, 854, 838, 742, 624 cm -1

NMR:
1H−NMR(CDCl3;400MHz);δ4.56(1H,m,POC(CH3)P),4.26(2H,d,JHH=10Hz,POC 2C(CH32−),4.14(2H,t,JHH=7Hz,POC 2CH2CH2CH3),4.12(2H,t,JHH=7Hz,POC 2CH2CH2CH3),3.86(2H,dd,JHH=10Hz,JPH=23Hz,POC 2C(CH32−),1.98(3H,d,JHH=7Hz,POCH(C 3)P),1.43(4H,tq,JHH=7Hz,POCH2CH2 2CH3),1.29(3H,s,POCH2C(C 32−),0.98(6H,t,JHH=7Hz,POCH2CH2CH2 3),0.86(3H,s,POCH2C(C 32−)ppm
NMR:
1 H-NMR (CDCl 3 ; 400 MHz); δ 4.56 (1H, m, POC H (CH 3 ) P), 4.26 (2H, d, J HH = 10 Hz, POC H 2 C (CH 3 ) 2 −), 4.14 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ), 4.12 (2H, t, J HH = 7 Hz, POC H 2 CH 2 CH 2 CH 3 ) 3.86 (2H, dd, J HH = 10 Hz, J PH = 23 Hz, POC H 2 C (CH 3 ) 2 −), 1.98 (3H, d, J HH = 7 Hz, POCH (C H 3 ) P), 1.43 (4H, tq , J HH = 7Hz, POCH 2 CH 2 C H 2 CH 3), 1.29 (3H, s, POCH 2 C (C H 3) 2 -), 0.98 (6H, t, J HH = 7Hz, POCH 2 CH 2 CH 2 C H 3), 0.86 (3H, s, POCH 2 C (C H 3) 2 -) Ppm

13C−NMR(CDCl3;100MHz);δ79.4(dd,1PC=180Hz,2PC=8Hz,PH(CH3)OP),77.7(d,2PC=7Hz,PO2C(CH32−),66.5(d,2PC=7Hz,PO2CH2CH2CH3),32.5(d,3PC=6Hz,POCH2 2CH2CH3),31.9(d,3PC=5Hz,POCH2 (CH32−),23.3,21.7,20.1,13.4ppm 13 C-NMR (CDCl 3; 100MHz); δ79.4 (dd, 1 J PC = 180Hz, 2 J PC = 8Hz, P C H (CH 3) OP), 77.7 (d, 2 J PC = 7Hz , PO C H 2 C (CH 3) 2 -), 66.5 (d, 2 J PC = 7Hz, PO C H 2 CH 2 CH 2 CH 3), 32.5 (d, 3 J PC = 6Hz, POCH 2 C H 2 CH 2 CH 3), 31.9 (d, 3 J PC = 5Hz, POCH 2 C (CH 3) 2 -), 23.3,21.7,20.1,13.4ppm

元素分析および吸光法によるP%:
C:46.6%,H:7.8%,P:16.1%
P% by elemental analysis and absorption method:
C: 46.6%, H: 7.8%, P: 16.1%

比較例1
(原料6の合成)
攪拌機、温度計、滴下装置、塩酸回収装置および還流管を備えた1リットルの四つ口フラスコに、ネオペンチルグリコール117.5g(1.13モル)およびトルエン129.3g(ネオペンチルグリコールに対して110重量%)を充填した。この混合溶液を50℃にて撹拌しながら、オキシ塩化リン171.9g(1.12モル)を1時間かけて追加した。追加終了後、1時間かけて75℃まで昇温し反応させることで、発生する塩化水素ガスを回収した(70.9g)。その後、約33kPaに達するまで徐々に減圧し、残存する塩化水素ガスを取り除くことにより、ネオペンチレンホスホロクロリデート(原料6)を主成分とする溶液を得た。なお、溶剤として用いたトルエンは次の工程でも使用するため、ここでは回収しなかった。
(原料2の合成)
実施例4の(原料2の合成)と同様にして、ジブチル(1-ヒドロキシ-1-メチルエチル)
ホスホネート(原料2)を主成分とする溶液を得た。
Comparative Example 1
(Synthesis of raw material 6)
In a 1 liter four-necked flask equipped with a stirrer, thermometer, dropping device, hydrochloric acid recovery device and reflux tube, 117.5 g (1.13 mol) of neopentyl glycol and 129.3 g of toluene (relative to neopentyl glycol) 110% by weight). While stirring this mixed solution at 50 ° C., 171.9 g (1.12 mol) of phosphorus oxychloride was added over 1 hour. After completion of the addition, the temperature was raised to 75 ° C. over 1 hour to react, thereby recovering the generated hydrogen chloride gas (70.9 g). Thereafter, the pressure was gradually reduced until reaching about 33 kPa, and the remaining hydrogen chloride gas was removed to obtain a solution containing neopentylene phosphorochloridate (raw material 6) as a main component. In addition, since toluene used as a solvent is used in the next step, it was not recovered here.
(Synthesis of raw material 2)
In the same manner as in Example 4 (synthesis of raw material 2), dibutyl (1-hydroxy-1-methylethyl)
A solution containing phosphonate (raw material 2) as a main component was obtained.

上記の反応終了後、原料6を主成分とする溶液に、原料2を主成分とする溶液および塩化マグネシウム3.2g(0.03モル)を充填し、撹拌した。次いで、恒温装置により混合溶液を50℃に保持しつつ、滴下装置(追加漏斗)からトリエチルアミン113.1g(1.12モル)を2時間かけて追加した。その後、反応混合物を同温度(50℃)にて12時間撹拌した。
その後、2.5%希塩酸水溶液を加えて撹拌し、過剰のトリエチルアミンを中和処理してトリエチルアミンの塩酸塩として除去し、さらに水洗を行って残存する塩酸塩を除去した。次いで、飽和炭酸ナトリウム水溶液にて、副生したネオペンチレンピロホスフェートを分解処理し、さらに水洗を2回行って不純物を除去した。次いで、反応混合物を100℃まで加熱しつつ、13.3kPaの減圧下で水とトルエンを回収した。さらに、100〜110℃で2.7kPaの減圧下で、水蒸気トッピングおよび窒素トッピングを順次行い、低沸分を除去し、無色透明の液体275.3gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ86.8面積%および59.7%であった(表1)。
また、実施例1で得られた生成物を用いて同定した。
After completion of the above reaction, a solution containing raw material 6 as a main component was charged with a solution containing raw material 2 as a main component and 3.2 g (0.03 mol) of magnesium chloride and stirred. Subsequently, while maintaining the mixed solution at 50 ° C. with a thermostatic device, 113.1 g (1.12 mol) of triethylamine was added from the dropping device (additional funnel) over 2 hours. Thereafter, the reaction mixture was stirred at the same temperature (50 ° C.) for 12 hours.
Thereafter, 2.5% dilute hydrochloric acid aqueous solution was added and stirred, and the excess triethylamine was neutralized to remove it as triethylamine hydrochloride, followed by washing with water to remove the remaining hydrochloride. Subsequently, by-product neopentylene pyrophosphate was decomposed with a saturated aqueous sodium carbonate solution, and further washed twice with water to remove impurities. Subsequently, water and toluene were collect | recovered under 13.3 kPa pressure reduction, heating a reaction mixture to 100 degreeC. Further, steam topping and nitrogen topping were sequentially performed at 100 to 110 ° C. under a reduced pressure of 2.7 kPa to remove low boiling points, and 275.3 g of a colorless and transparent liquid was obtained.
When the purity of the obtained product was measured and the yield was calculated in the same manner as in Example 1, they were 86.8% by area and 59.7%, respectively (Table 1).
Moreover, it identified using the product obtained in Example 1.

比較例2
(原料6の合成)
比較例1の(原料6の合成)と同様にして、ネオペンチレンホスホロクロリデート(原料6)を主成分とする溶液を得た。
(原料5の合成)
実施例5の(原料5の合成)と同様にして、ジブチル(1-ヒドロキシエチル)ホスホネート(原料5)を主成分とする溶液を得た。
Comparative Example 2
(Synthesis of raw material 6)
In the same manner as in Comparative Example 1 (synthesis of raw material 6), a solution containing neopentylene phosphorochloridate (raw material 6) as a main component was obtained.
(Synthesis of raw material 5)
In the same manner as in Example 5 (synthesis of raw material 5), a solution containing dibutyl (1-hydroxyethyl) phosphonate (raw material 5) as a main component was obtained.

上記の反応終了後、原料6を主成分とする溶液に、原料5を主成分とする溶液および塩化マグネシウム1.2g(0.013モル)を充填し、攪拌した。次いで、恒温装置により混合溶液を40℃に保持しつつ、滴下装置(追加漏斗)からトリエチルアミン113.1g(1.12モル)を2時間かけて追加した。その後、反応混合物を同温度(40℃)にて4時間撹拌した。
その後、1.0%希塩酸水溶液を加えて攪拌し、過剰のトリエチルアミンを中和処理してトリエチルアミンの塩酸塩として除去し、さらに水洗を行って残存する塩酸塩を除去した。次いで、飽和炭酸ナトリウム水溶液にて、副生したネオペンチレンピロホスフェートを分解処理し、さらに水洗を2回行って不純物を除去した。次いで、反応混合物を100℃まで加熱しつつ、13.3kPaの減圧下で水とトルエンを回収した。さらに、100〜110℃で2.7kPaの減圧下で、水蒸気トッピングおよび窒素トッピングを順次行い、低沸分を除去し、茶褐色透明の液体342.4gを得た。
実施例1と同様にして、得られた生成物の純度を測定し、収率を算出したところ、それぞれ96.6面積%および85.7%であった(表1)。
また、実施例5で得られた生成物を用いて同定した。
After completion of the above reaction, a solution containing the raw material 6 as a main component was charged with a solution containing the raw material 5 as a main component and 1.2 g (0.013 mol) of magnesium chloride and stirred. Next, while maintaining the mixed solution at 40 ° C. with a thermostatic device, 113.1 g (1.12 mol) of triethylamine was added from the dropping device (additional funnel) over 2 hours. Thereafter, the reaction mixture was stirred at the same temperature (40 ° C.) for 4 hours.
Thereafter, 1.0% dilute hydrochloric acid aqueous solution was added and stirred, and the excess triethylamine was neutralized to remove it as a triethylamine hydrochloride, followed by washing with water to remove the remaining hydrochloride. Subsequently, by-product neopentylene pyrophosphate was decomposed with a saturated aqueous sodium carbonate solution, and further washed twice with water to remove impurities. Subsequently, water and toluene were collect | recovered under 13.3 kPa pressure reduction, heating a reaction mixture to 100 degreeC. Further, steam topping and nitrogen topping were sequentially performed at 100 to 110 ° C. under a reduced pressure of 2.7 kPa to remove low boiling point, and 342.4 g of a brownish brown transparent liquid was obtained.
When the purity of the obtained product was measured and the yield was calculated in the same manner as in Example 1, they were 96.6 area% and 85.7%, respectively (Table 1).
Moreover, it identified using the product obtained in Example 5.

比較例3
洗浄および低沸分除去を行ってトリエチルアミンと塩化マグネシウムを除去して精製した原料5を用いたこと、その精製された原料5と原料6を主成分とする溶液との反応時に塩化マグネシウムを用いなかったこと以外は、比較例2と同様にして反応を試みた。
しかし、反応終了後の溶液をGCにて分析したところ、目的物は生成しておらず、ネオペンチレンピロホスフェートの副生のみで、反応は進行しなかった。
Comparative Example 3
Using raw material 5 purified by removing triethylamine and magnesium chloride by washing and removal of low-boiling components, and not using magnesium chloride in the reaction between the purified raw material 5 and the solution containing raw material 6 as the main component The reaction was attempted in the same manner as in Comparative Example 2 except that.
However, when the solution after completion of the reaction was analyzed by GC, the target product was not produced, and only the by-product of neopentylene pyrophosphate was produced, and the reaction did not proceed.

比較例4(英国特許第941706号明細書、実施例57の類似反応)
攪拌機、温度計、滴下装置および還流管を備えた1リットルの四つ口フラスコに、トリブチルホスファイト(東京化成工業株式会社製)250.0g(1.0モル)および原料1を主成分とする溶液を精製して得られたネオペンチレンホスホロクロリダイト168.5g(1.0モル)を充填し、攪拌した。次いで、恒温装置により混合溶液を10℃に保持しつつ、滴下装置(追加漏斗)からアセトン58.0g(1.0モル)を1時間かけて追加した。
追加終了後の反応混合物、およびさらに70℃まで昇温し、同温度(70℃)で1時間保持させた後の反応混合物をGCにて分析したところ、目的化合物が全く生成していないことがわかり、目的化合物は得られないものと判断した。
Comparative Example 4 (GBP 941706, similar reaction of Example 57)
In a 1 liter four-necked flask equipped with a stirrer, thermometer, dropping device and reflux tube, 250.0 g (1.0 mol) of tributyl phosphite (manufactured by Tokyo Chemical Industry Co., Ltd.) and raw material 1 are the main components. 168.5 g (1.0 mol) of neopentylene phosphorochloridite obtained by purifying the solution was charged and stirred. Next, 58.0 g (1.0 mol) of acetone was added over 1 hour from the dropping device (additional funnel) while maintaining the mixed solution at 10 ° C. with a thermostatic device.
When the reaction mixture after the addition was completed and the reaction mixture was further heated to 70 ° C. and kept at the same temperature (70 ° C.) for 1 hour were analyzed by GC, it was found that the target compound was not produced at all. It was understood that the target compound could not be obtained.

比較例5(英国特許第941706号明細書、実施例57の類似反応の改良法)
攪拌機、温度計、滴下装置および還流管を備えた1リットルの四つ口フラスコに、トリブチルホスファイト(東京化成工業株式会社製)250.0g(1.0モル)および原料1を主成分とする溶液を精製して得られたネオペンチレンホスホロクロリダイト168.5g(1.0モル)を充填し、攪拌した。次いで、恒温装置により混合溶液を10℃に保持しつつ、滴下装置(追加漏斗)からアセトン58.0g(1.0モル)およびトリエチルアミン101.0g(1.0モル)の混合溶液を1時間かけて追加した。
追加終了後の反応混合物、およびさらに70℃まで昇温し、同温度(70℃)で1時間
保持させた後の反応混合物をGCにて分析したところ、不明成分が約10%程度生成し、ほとんどが原料のまま残存していることがわかり、目的化合物は得られないものと判断した。
Comparative Example 5 (British Patent No. 941706, improved method of similar reaction of Example 57)
In a 1 liter four-necked flask equipped with a stirrer, thermometer, dropping device and reflux tube, 250.0 g (1.0 mol) of tributyl phosphite (manufactured by Tokyo Chemical Industry Co., Ltd.) and raw material 1 are the main components. 168.5 g (1.0 mol) of neopentylene phosphorochloridite obtained by purifying the solution was charged and stirred. Next, while maintaining the mixed solution at 10 ° C. with a thermostatic device, a mixed solution of 58.0 g (1.0 mol) of acetone and 101.0 g (1.0 mol) of triethylamine was added from the dropping device (additional funnel) over 1 hour. Added.
When the reaction mixture after the addition was completed and the reaction mixture was further heated to 70 ° C. and kept at the same temperature (70 ° C.) for 1 hour were analyzed by GC, about 10% of an unknown component was produced. It was found that most of the raw material remained, and it was judged that the target compound could not be obtained.

Figure 0004320344
Figure 0004320344

Figure 0004320344
Figure 0004320344

表1の結果から、アルコール性ヒドロキシ基を有するホスホネートとジ置換ホスホロハリダイトを、窒素含有塩基性化合物の存在下で脱ハロゲン化水素反応に付し、得られた反応生成物を酸化することにより、塩化マグネシウムのような触媒を必要とすることなしに高純度かつ高収率でホスフェート−ホスホネートを合成できることがわかる(実施例1〜5)。
特に、原料として、反応性の低い3級アルコール(実施例1)や立体的に障害があり、さらに反応性の低いことが予想される3級アルコール(実施例2および3)を用いた場合でも、それらの反応性が良好で、高純度かつ高収率でホスフェート−ホスホネートを合成できることがわかる。
From the results in Table 1, the phosphonate having an alcoholic hydroxy group and a disubstituted phosphorohalidite are subjected to a dehydrohalogenation reaction in the presence of a nitrogen-containing basic compound, and the resulting reaction product is oxidized. It can be seen that phosphate-phosphonates can be synthesized in high purity and yield without the need for a catalyst such as magnesium chloride (Examples 1-5).
In particular, even when a tertiary alcohol having low reactivity (Example 1) or a tertiary alcohol that is sterically hindered and expected to have low reactivity (Examples 2 and 3) is used as a raw material. It can be seen that the phosphate-phosphonate can be synthesized with good reactivity and high purity and high yield.

また、工程(1)の反応において未精製品の原料を用いた場合でも、高純度かつ高収率でホスフェート−ホスホネートを合成できることがわかる(実施例4および5)。
さらに、原料として、ジブチル(ヒドロキシメチル)ホスホネートのような1級アルコールを用いた場合でも、当然のことながら上記と同様の効果が得られる。
It can also be seen that phosphate-phosphonate can be synthesized with high purity and high yield even when raw material is used in the reaction of step (1) (Examples 4 and 5).
Further, even when a primary alcohol such as dibutyl (hydroxymethyl) phosphonate is used as a raw material, the same effect as described above can be obtained.

一方、原料として、3価のリン化合物(ジ置換ホスホロハリダイト)の代わりに5価のリン化合物を用いた場合(比較例1および2)は、酸化反応が不要であり、反応工程数が少なくなるという利点を有しているが、実施例1〜5と比較して、純度および収率のいずれにおいても劣っている。
比較例1および2では、次式で示されるネオペンチレンピロホスフェートが副生する。
この化合物は、水蒸気トッピングや窒素トッピングにより目的化合物から除去することができず、アルカリを用いた加水分解によってのみ除去することができる。しかしながら、この加水分解では目的化合物もいくらか分解を起こすために、収率が低下してしまう。
On the other hand, when a pentavalent phosphorus compound is used as a raw material instead of the trivalent phosphorus compound (disubstituted phosphorohalidite) (Comparative Examples 1 and 2), the oxidation reaction is unnecessary and the number of reaction steps is reduced. Although it has the advantage of reducing, it is inferior in purity and a yield compared with Examples 1-5.
In Comparative Examples 1 and 2, neopentylene pyrophosphate represented by the following formula is by-produced.
This compound cannot be removed from the target compound by steam topping or nitrogen topping, and can only be removed by hydrolysis using an alkali. However, this hydrolysis also causes some degradation of the target compound, resulting in a decrease in yield.

Figure 0004320344
Figure 0004320344

3価のリン化合物の代わりに5価のリン化合物を用い、窒素含有塩基性化合物としてトリエチルアミンのみを使用し、触媒として塩化マグネシウムを使用しなかった場合(比較例3)には、反応が全く進行しなかった。
このことから、原料として5価のリン化合物を用いる場合には、触媒として塩化マグネシウムを使用せざるを得ず、しかも比較例1および2と同様に、副生成物が発生して収率が低下することがわかる。
When a pentavalent phosphorus compound is used in place of the trivalent phosphorus compound, only triethylamine is used as the nitrogen-containing basic compound, and magnesium chloride is not used as the catalyst (Comparative Example 3), the reaction proceeds at all. I did not.
Therefore, when a pentavalent phosphorus compound is used as a raw material, magnesium chloride must be used as a catalyst, and, as in Comparative Examples 1 and 2, by-products are generated and the yield is reduced. I understand that

英国特許第941706号明細書に記載の合成法およびその改良法(比較例4および5)は、原料となるアルコール性ヒドロキシ基を有するホスホネートの合成と工程(1)とを1工程に省略できる効率のよい方法であり、触媒が不要という利点を有しているが、試験では目的化合物を得ることができなかった。
比較例4では、反応雰囲気が強酸性下であり、仮に目的化合物が生成されたとしても直ちに分解してしまうことが想定される。このため、比較例5では、トリエチルアミンを用いて反応雰囲気を塩基性下として目的化合物の分解を阻止しようと試みたが、比較例4と同様に、不明成分が得られただけで目的化合物を得ることができなかった。
The synthesis method described in British Patent No. 941706 and its improved methods (Comparative Examples 4 and 5) are efficient in that the synthesis of the phosphonate having an alcoholic hydroxy group as a raw material and the step (1) can be omitted in one step. However, it was not possible to obtain the target compound in the test.
In Comparative Example 4, it is assumed that the reaction atmosphere is strongly acidic, and even if the target compound is produced, it is immediately decomposed. For this reason, in Comparative Example 5, an attempt was made to prevent decomposition of the target compound using triethylamine under a basic reaction atmosphere. However, as in Comparative Example 4, the target compound was obtained only by obtaining an unknown component. I couldn't.

本発明は、2004年11月2日に出願された日本特許出願、第2004−319529に関し、これを優先権主張して出願するものであり、この内容を参照としてここに入れる。   The present invention relates to a Japanese patent application No. 2004-319529 filed on November 2, 2004, and claims the priority thereof, the contents of which are hereby incorporated by reference.

Claims (10)

一般式(II):
Figure 0004320344
(式中、R1およびR2は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはアリール基であるか、またはR1とR2はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成し、R3およびR4は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基またはアリール基であるか、またはR3とR4はそれらが結合する炭素原子と一緒になって環状構造を形成する)
で表されるアルコール性ヒドロキシ基を有するホスホネートと、一般式(III):
Figure 0004320344
(式中、R5およびR6は、互いに同一または異なって、直鎖状もしくは分岐状のアルキル基でありかつ5とR6はそれらが結合する酸素原子およびリン原子と一緒になって環状構造を形成し、Xはハロゲン原子である)
で表されるジ置換ホスホロハリダイトとを、窒素含有塩基性化合物の存在下で脱ハロゲン化水素反応に付して、一般式(I’)
Figure 0004320344
(式中、R1、R2、R3、R4、R5およびR6は、上記と同じ意味を有する)
で表される反応生成物を得、次いで、反応生成物(I’)を酸化して、一般式(I):
Figure 0004320344
(式中、R1、R2、R3、R4、R5およびR6は、上記と同じ意味を有する)
で表されるホスフェート−ホスホネート結合を有するリン化合物を得ることを特徴とするリン化合物の製造方法。
General formula (II):
Figure 0004320344
Wherein R 1 and R 2 are the same or different from each other, and are a linear or branched alkyl group, cycloalkyl group or aryl group, or R 1 and R 2 are oxygen atoms to which they are bonded. and together with the phosphorus atom to form a cyclic structure, R 3 and R 4 are the same or different from each other, a straight or branched alkyl group or an aryl group, or R 3 and R 4, the Together with the carbon atoms to which they are attached form a cyclic structure)
A phosphonate having an alcoholic hydroxy group represented by formula (III):
Figure 0004320344
(In the formula, R 5 and R 6 are the same or different from each other, and are linear or branched alkyl groups , and R 5 and R 6 are cyclic together with the oxygen atom and phosphorus atom to which they are bonded. Form a structure, X is a halogen atom)
Is subjected to a dehydrohalogenation reaction in the presence of a nitrogen-containing basic compound to give a compound of the general formula (I ′)
Figure 0004320344
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the same meaning as above)
Then, the reaction product (I ′) is oxidized to give a general formula (I):
Figure 0004320344
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the same meaning as above)
A method for producing a phosphorus compound comprising obtaining a phosphorus compound having a phosphate-phosphonate bond represented by formula (1):
窒素含有塩基性化合物が、脂肪族第3級アミンである請求項1に記載のリン化合物の製造方法。  The method for producing a phosphorus compound according to claim 1, wherein the nitrogen-containing basic compound is an aliphatic tertiary amine. 脂肪族第3級アミンが、トリエチルアミンである請求項2に記載のリン化合物の製造方法。  The method for producing a phosphorus compound according to claim 2, wherein the aliphatic tertiary amine is triethylamine. ホスホネート(II)のR1とR2が一緒になって環状構造を形成する請求項1〜3のいずれか1つに記載のリン化合物の製造方法。The method for producing a phosphorus compound according to any one of claims 1 to 3, wherein R 1 and R 2 of the phosphonate (II) are combined to form a cyclic structure. ホスホネート(II)が、式(IV):
Figure 0004320344
(式中、R3およびR4は上記と同じ意味を有する)
で表される化合物、R1およびR2が共にn-ブチル基である化合物およびR1およびR2が共に2-エチルヘキシル基である化合物から選択される請求項4に記載のリン化合物の製造方法。
The phosphonate (II) has the formula (IV):
Figure 0004320344
(Wherein R 3 and R 4 have the same meaning as above)
5. The method for producing a phosphorus compound according to claim 4, selected from a compound represented by the formula: a compound in which R 1 and R 2 are both n-butyl groups, and a compound in which R 1 and R 2 are both 2-ethylhexyl groups. .
ジ置換ホスホロハリダイト(III)が、式(V):
Figure 0004320344
(式中、Xはハロゲン原子である)
で表される請求項4に記載のリン化合物の製造方法。
The disubstituted phosphorohalidite (III) has the formula (V):
Figure 0004320344
(Wherein X is a halogen atom)
The manufacturing method of the phosphorus compound of Claim 4 represented by these.
ホスホネート(II)のR3およびR4に含まれる炭素原子数がそれぞれ1以上であり、かつR3およびR4に含まれる炭素原子数の和が2〜12である請求項1〜6のいずれか1つに記載のリン化合物の製造方法。The number of carbon atoms contained in R 3 and R 4 of phosphonate (II) is 1 or more, respectively, and the sum of the number of carbon atoms contained in R 3 and R 4 is from 2 to 12. The manufacturing method of the phosphorus compound as described in any one. ホスホネート(II)のR3およびR4、メチル基とメチル基、メチル基とエチル基、メチル基とイソブチル基、フェニル基とメチル基、フェニル基とフェニル基の組み合わせ、およびR3およびR4がそれらが結合する炭素原子と一緒になって6員環を形成する連結基から選択される請求項1〜6のいずれか1つに記載のリン化合物の製造方法。R 3 and R 4 of phosphonate (II) is a combination of methylation group and methyl group, a methyl group and an ethyl group, a methyl group and an isobutyl group, full Eniru group and methyl group, a phenyl group and a phenyl group, and R 3 and The method for producing a phosphorus compound according to any one of claims 1 to 6, wherein R 4 is selected from a linking group which forms a 6-membered ring together with the carbon atom to which they are bonded. 窒素含有塩基性化合物の使用量が、ジ置換ホスホロハリダイト(III)1モルに対して1.0〜1.2モルである請求項1〜のいずれか1つに記載のリン化合物の製造方法。The amount of the nitrogen-containing basic compound used is 1.0 to 1.2 mol with respect to 1 mol of the disubstituted phosphorohalidite (III). The phosphorus compound according to any one of claims 1 to 8 Production method. 反応生成物(I’)1モルに対して1.0〜1.5モルの過酸化水素を用いて反応生成物(I’)を酸化する請求項1〜のいずれか1つに記載のリン化合物の製造方法。The reaction product (I ') 1 reaction product with 1.0 to 1.5 moles of hydrogen peroxide relative to the molar (I') according to any one of claims 1 to 9 to oxidize A method for producing a phosphorus compound.
JP2006543011A 2004-11-02 2005-10-18 Method for producing phosphorus compound having phosphate-phosphonate bond Active JP4320344B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004319529 2004-11-02
JP2004319529 2004-11-02
PCT/JP2005/019132 WO2006049011A1 (en) 2004-11-02 2005-10-18 Method for producing phosphorus compound having phosphate-phosphonate bond

Publications (2)

Publication Number Publication Date
JPWO2006049011A1 JPWO2006049011A1 (en) 2008-05-29
JP4320344B2 true JP4320344B2 (en) 2009-08-26

Family

ID=36319025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543011A Active JP4320344B2 (en) 2004-11-02 2005-10-18 Method for producing phosphorus compound having phosphate-phosphonate bond

Country Status (8)

Country Link
US (1) US7728162B2 (en)
EP (1) EP1808437B1 (en)
JP (1) JP4320344B2 (en)
KR (1) KR101345181B1 (en)
CN (1) CN100577670C (en)
MY (1) MY143324A (en)
TW (1) TWI355387B (en)
WO (1) WO2006049011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178142B1 (en) * 2004-11-02 2012-08-29 다이하치 카가쿠 고교 가부시키가이샤 Method for producing phosphonate having alcoholic hydroxy group
WO2010025165A1 (en) * 2008-08-28 2010-03-04 Dow Global Technologies Inc. Phosphorus-containing compounds and polymeric compositions comprising same
CN102549004A (en) * 2009-10-01 2012-07-04 大八化学工业株式会社 Processes for production of cyclic alkylene phosphohalidate and cyclic phosphoric acid ester
CN103739626A (en) * 2013-10-18 2014-04-23 内蒙古大学 Method for synthesis of hydroxy-containing reactive type phosphonate ester flame retardant agent without catalyst and through one-pot method
CN109053806A (en) * 2018-08-22 2018-12-21 浙江万盛股份有限公司 A kind of preparation method of phosphate phosphonate ester
KR102377102B1 (en) 2018-09-13 2022-03-21 재단법인 대구경북첨단의료산업진흥재단 Method of preparing Quinoline-5,8-dione derivatives for TGase 2 inhibitor
KR20230060027A (en) * 2021-10-27 2023-05-04 솔브레인 주식회사 Method for preparing nonsymmetric phosphate based compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1244625A (en) 1958-12-15 1960-09-19 Monsanto Chemicals Esters of trivalent phosphorus of hydroxy-phosphonates, their preparation and applications, in particular as additives against auto-ignition in fuels
JPS516128B2 (en) 1973-04-11 1976-02-25
JPS5636512A (en) * 1979-08-31 1981-04-09 Daihachi Kagaku Kogyosho:Kk Flame retardant for polyurethane foam
US4697030A (en) * 1985-05-23 1987-09-29 Stauffer Chemical Company Phosphate-containing and phosphonate-containing phosphate esters
JPH02273688A (en) 1989-04-14 1990-11-08 Sanyo Kagaku Kenkyusho:Kk Cyclic phosphorous acid ester derivative
JP3383198B2 (en) 1996-11-21 2003-03-04 大八化学工業株式会社 Method for producing organic phosphorus compound
EP1632497B1 (en) * 2003-06-09 2012-04-18 Daihachi Chemical Industry Co., Ltd. Organophosphorus compound having phosphate-phosphonate bond, and flame-retardant polyester fiber and flame-retardant polyurethane resin composition each containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor

Also Published As

Publication number Publication date
CN100577670C (en) 2010-01-06
JPWO2006049011A1 (en) 2008-05-29
US20090062554A1 (en) 2009-03-05
US7728162B2 (en) 2010-06-01
KR101345181B1 (en) 2013-12-27
KR20070084573A (en) 2007-08-24
EP1808437A4 (en) 2010-03-10
TWI355387B (en) 2012-01-01
EP1808437A1 (en) 2007-07-18
MY143324A (en) 2011-04-29
WO2006049011A1 (en) 2006-05-11
EP1808437B1 (en) 2013-09-11
TW200626606A (en) 2006-08-01
CN101048420A (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4320344B2 (en) Method for producing phosphorus compound having phosphate-phosphonate bond
JP4320343B2 (en) Method for producing phosphonate having alcoholic hydroxy group
JP2012528127A (en) Process for the preparation of phosphonoalkyliminodiacetic acids
KR101743003B1 (en) Processes for production of cyclic alkylene phosphorohalidite and cyclic phosphoric acid ester
US8829222B2 (en) Process for the manufacture of dialkylphosphites
US20120172614A1 (en) Method for the manufacture of dialkyl phosphites
EP2435448B1 (en) Method for the manufacture of dialkylphosphites
JP4132327B2 (en) Phenylenebis (phosphonic acid) compound and method for producing the same
KR20130095639A (en) Phosphoric acid ester production method
EP2766376B1 (en) Method for the esterification of p-o components
JP4460333B2 (en) Method for producing organic phosphonic dihalide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4320344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150605

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250