JP4315406B2 - Processing method of Mg evaporation material - Google Patents

Processing method of Mg evaporation material Download PDF

Info

Publication number
JP4315406B2
JP4315406B2 JP2000007880A JP2000007880A JP4315406B2 JP 4315406 B2 JP4315406 B2 JP 4315406B2 JP 2000007880 A JP2000007880 A JP 2000007880A JP 2000007880 A JP2000007880 A JP 2000007880A JP 4315406 B2 JP4315406 B2 JP 4315406B2
Authority
JP
Japan
Prior art keywords
pellets
processing
cutting
evaporation
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000007880A
Other languages
Japanese (ja)
Other versions
JP2001192814A (en
Inventor
倉内  利春
宗人 箱守
一也 内田
三沢  俊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000007880A priority Critical patent/JP4315406B2/en
Publication of JP2001192814A publication Critical patent/JP2001192814A/en
Application granted granted Critical
Publication of JP4315406B2 publication Critical patent/JP4315406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空蒸着、イオンプレーティングに使用するMg蒸発材料の加工方法に関する。
【0002】
【従来の技術】
従来、Mgは割れやすい材料であるために、線状あるいは板状に加工する際には約400℃に加熱しながら線引き加工や圧延加工などを行うのが通常である。真空蒸着の蒸発材料として使用されるMgは、ペレット状に形成され、フロン洗浄を施して所定量ずつ梱包される。Mgペレットをルツボに供給する場合、純水希釈1%HNO3などの水で希釈した酸により化学的エッチングを施し、続いて純水中で洗浄し乾燥してその表面の付着物を除去してから供給している。
【0003】
【発明が解決しようとする課題】
従来のMgペレットを使用すると、蒸着膜にピンホールなどの欠陥が発生する欠点があり、その原因は、ルツボ内に残る酸化物がダストとなって飛散するためであることが分かった。Mgは昇華して蒸発するものであるが、蒸気圧が高い金属成分だけが蒸発し、ルツボ内には蒸気圧の低い酸化物が残り、これが飛散して上記欠点をもたらす。この酸化物は、Mgペレットの表面に形成された厚い酸化膜で、この酸化膜は、線引き加工等の加工時に該表面が大気と接触することにより、あるいは、該表面に切削加工時に使用した水溶性の切削油、機械加工後の洗浄に使用した有機溶剤などの水分が付着して反応することにより、形成されてしまうものである。また、上記のMgペレットの純水による洗浄や乾燥中でも水と反応して厚い酸化膜が形成されてしまう。
【0004】
本発明は、ダストの発生を防止し得るMg蒸発材料の加工方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明では、Mgの押出し原料を熱間押出して線材とし、これを適当な長さに切断して得たMgペレットをMg蒸発材料として密封状態に梱包する加工方法に於いて、該熱間押出し及び切断を乾燥窒素やアルゴンなどの不活性ガス雰囲気中で行い、その切断後ただちに梱包することにより、Mgペレットの表面の酸化膜の発生を防ぎ上記の目的を達成するようにした。該梱包時に梱包容器中を脱気して乾燥窒素を封入することが好ましい。また、梱包されたMgペレットを開梱して蒸発源に供給するに先立ち、該Mgペレットを水を使わない化学研磨液により表面研磨してその表面の酸化膜の厚さを低減することによっても、上記の目的を達成できる。この場合、該化学研磨液に高純度のアセトンを使用し、その表面研磨後にジクロロメタンの蒸気でMgペレットを乾燥させることが有利である。該熱間押出しした線材の表面層を除去する場合にも、乾燥窒素やアルゴンなどの不活性ガス雰囲気中で行なうことが好ましい。
【0006】
【発明の実施の形態】
99.9%の高純度のMgは市販(Timinco社他)されており、その直径88.6mm、長さ300mmのビレットとして販売されている。これをMgペレットに加工する場合、図1に示すように、400℃の熱間押出し工程1により例えば直径6mmの線材とし、これを巻き取り工程2にてコイル状に巻き取り、切断工程3により長さ6mmに切断してMgペレットを得、これを直ちに所定量例えば1kgずつ梱包工程4において気密に梱包し、Mg蒸発材料としてストックされる。
【0007】
これを更に説明すると、該ビレット5を図2に示すような熱間押出し機の400℃に加熱されたコンテナ6に入れ、ラム7により直径6mmのダイス8の前方へ押出し、直径6mmのMg線材9に加工する。この寸法のビレットからは長さ2.7mの線材が得られ、これをコイルに巻き取り、切断機により長さ6mmに切断し、続いて梱包機により所定量ずつガラス瓶やアルミパックなどの密封容器に梱包される。このダイス8から押し出された線材9に乾燥窒素やアルゴンなどの不活性ガスをノズル10で吹き付けて不活性ガス雰囲気とし、該線材9の表面が空気と接触により酸化することを防止しながらコイルに巻き取り、これを切断機にかけ同様の不活性ガス雰囲気中で切断をする。梱包もこの雰囲気で行うが、その際、梱包容器の内部を脱気し乾燥窒素を封入し、密封して空気との接触を断つ。尚、該線材9をコイルに巻き取り後、乾燥窒素やアルゴンなどの不活性ガス中で該線材の表面をダイスにより切削すると、更に酸化膜の少ないものが得られる。
【0008】
こうして加工されたMgペレットを開梱してそのまま蒸発材料として通常の蒸着に使用したところ、形成された蒸着膜にはピンホールなどの欠陥の発生がなく、ルツボ内にも酸化物の発生が見られなかった。梱包されていたMgペレットの表面の酸化膜の厚さを電子線マイクロアナライザーで測定したところ、約3nmでサンプル間のバラツキが小さかった。前記従来の方法により加工されたMgペレットの酸化膜は、100〜500nmでサンプル間のバラツキも大きく、本発明の方法で水分を使用せずに加工され空気との接触時間の短いものの方が大幅に薄かった。
【0009】
また、本発明の上記方法により加工されたMgペレットであっても、開梱後の時間が経つと、空気中の湿気などで表面に酸化膜が形成され、このようなものを蒸発材料として使用すると、前記したように酸化物がルツボ内に残ってダスト発生の原因になるので、このようなMgペレットを使用するときは、例えばアセトン希釈1%HNO3液などの水を使わない化学研磨液にMgペレットを漬けて該酸化膜を化学的エッチングにより除去し、アセトン液により付着した化学研磨液を洗浄し、更にジクロロメタン蒸気を吹き付けて乾燥させる表面処理を施す。
【0010】
この処理を施したMgペレットの表面の酸化膜の厚さを電子線マイクロアナライザーで測定したところ、約3nmでサンプル間のバラツキも小さかった。前記従来の水で希釈した酸でエッチングし、純水で洗浄したMgペレットは、厚さ300〜700nmの酸化膜を持ち、蒸着時にダストの原因になる酸化物が残存する不都合を生じるが、これも本発明の表面処理を施すことにより酸化膜を3nm程度の厚さに減少させ得た。従って、図1の加工方法を経て梱包されたMgペレットを開梱後すぐに蒸発材料として使用するか、開梱後時間が経ったものや図1以外の方法で加工されたものを上記表面処理することで、ダストの発生がなく蒸着膜にピンホールを発生させない蒸着を行える。
【0011】
尚、市販のMgビレットは表面に黒皮を持っており、熱間押出しの際には、この黒皮を機械加工により削除するか巻き込まないように熱間押出しする。
【0012】
【発明の効果】
以上のように本発明によるときは、Mgの押出し原料を熱間押出して線材とする工程とこれをペレットに切断する工程を不活性ガスの雰囲気中で行い、その切断後ただちに梱包するようにしたので、該ペレットをMg蒸発材料として使用したとき酸化物が残存せず、従ってダストの発生による装置の汚染を防止でき、ピンホールのない蒸着膜を成膜できる等の効果があり、その梱包後に梱包容器中を脱気して乾燥窒素を封入することで表面の酸化膜の成長を抑止して長期間の保存ができ、Mgペレットを開梱して蒸発源に供給するに先立ち、該Mgペレットを水を使わない化学研磨液により表面研磨してその表面の酸化膜の厚さを低減することで、Mgペレットの酸化膜を除去してダストの発生や蒸着膜のピンホールの発生のない蒸発材料として使用することができる効果がある。尚、線材の表面層を除去する場合も不活性ガス雰囲気中で行うことで前記効果が得られる。
【図面の簡単な説明】
【図1】本発明の加工方法の説明図
【図2】図1の熱間押出しの説明図
【符号の説明】
1 熱間押出し工程、3 切断工程、4 梱包工程、8 Mg線材、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for processing a Mg evaporation material used for vacuum deposition and ion plating.
[0002]
[Prior art]
Conventionally, Mg is a fragile material, and therefore, drawing or rolling is usually performed while heating to about 400 ° C. when processing into a line or plate. Mg used as an evaporation material for vacuum deposition is formed into pellets, and is packed with a predetermined amount after chlorofluorocarbon cleaning. When supplying Mg pellets to the crucible, chemical etching is performed with an acid diluted with water such as 1% pure HNO 3 diluted with pure water, followed by washing in pure water and drying to remove deposits on the surface. Is supplied from.
[0003]
[Problems to be solved by the invention]
It has been found that when conventional Mg pellets are used, defects such as pinholes occur in the deposited film, and the cause is that the oxide remaining in the crucible is scattered as dust. Mg sublimates and evaporates, but only the metal component with a high vapor pressure evaporates, and an oxide with a low vapor pressure remains in the crucible, which scatters and causes the above-mentioned drawbacks. This oxide is a thick oxide film formed on the surface of the Mg pellet. This oxide film is a water-soluble material used when the surface is in contact with the atmosphere during processing such as drawing, or when the surface is used for cutting. It forms when water, such as a characteristic cutting oil and the organic solvent used for washing | cleaning after machining, adheres and reacts. In addition, a thick oxide film is formed by reacting with water even during cleaning or drying of the Mg pellets with pure water.
[0004]
An object of this invention is to provide the processing method of Mg evaporation material which can prevent generation | occurrence | production of dust.
[0005]
[Means for Solving the Problems]
In the present invention, in a processing method in which Mg extrusion raw material is hot-extruded to form a wire, and Mg pellets obtained by cutting the wire into an appropriate length are packaged in a sealed state as Mg evaporation material. Then, the cutting was performed in an inert gas atmosphere such as dry nitrogen or argon, and packing was performed immediately after the cutting, thereby preventing the generation of an oxide film on the surface of the Mg pellet and achieving the above-mentioned purpose. It is preferable to deaerate the inside of the packing container and enclose dry nitrogen during the packing. In addition, prior to unpacking the packed Mg pellets and supplying them to the evaporation source, the Mg pellets are surface-polished with a chemical polishing liquid that does not use water to reduce the thickness of the oxide film on the surface. The above-mentioned purpose can be achieved. In this case, it is advantageous to use high-purity acetone for the chemical polishing liquid and dry the Mg pellets with dichloromethane vapor after the surface polishing. Even when the surface layer of the hot-extruded wire is removed, it is preferably performed in an inert gas atmosphere such as dry nitrogen or argon.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
99.9% high-purity Mg is commercially available (Timinco, et al.) And is sold as a billet with a diameter of 88.6 mm and a length of 300 mm. When this is processed into Mg pellets, as shown in FIG. 1, a wire having a diameter of, for example, 6 mm is formed by a hot extrusion process 1 at 400 ° C., and this is wound into a coil shape by a winding process 2, and by a cutting process 3 It is cut into a length of 6 mm to obtain Mg pellets, which are immediately packed in a predetermined amount, for example, 1 kg, in a packing step 4 in an airtight manner and stocked as Mg evaporating material.
[0007]
To explain this further, the billet 5 is placed in a container 6 heated to 400 ° C. in a hot extruder as shown in FIG. 2 and extruded by a ram 7 to the front of a die 8 having a diameter of 6 mm, and an Mg wire having a diameter of 6 mm. 9 is processed. A billet with a length of 2.7 m is obtained from a billet of this size, wound on a coil, cut into a length of 6 mm by a cutting machine, and then sealed containers such as glass bottles and aluminum packs by a predetermined amount by a packing machine. Will be packed. An inert gas atmosphere such as dry nitrogen or argon is blown to the wire 9 extruded from the die 8 with a nozzle 10 to form an inert gas atmosphere, and the surface of the wire 9 is prevented from being oxidized by contact with air and applied to the coil. It winds up, this is applied to a cutting machine, and it cut | disconnects in the same inert gas atmosphere. Packing is also performed in this atmosphere, but at that time, the inside of the packing container is deaerated, sealed with dry nitrogen, sealed, and disconnected from air. When the wire 9 is wound around a coil and then the surface of the wire is cut with a die in an inert gas such as dry nitrogen or argon, an oxide film with less oxide film can be obtained.
[0008]
When the Mg pellets processed in this way are unpacked and used as they are for normal evaporation as evaporation materials, there is no occurrence of defects such as pinholes in the deposited film, and oxide is also observed in the crucible. I couldn't. When the thickness of the oxide film on the surface of the packed Mg pellet was measured with an electron beam microanalyzer, the variation between samples was small at about 3 nm. The oxide film of Mg pellets processed by the conventional method has a large variation between samples at 100 to 500 nm, and the one processed without using moisture by the method of the present invention has a shorter contact time with air. It was thin.
[0009]
In addition, even in the case of Mg pellets processed by the above method of the present invention, after a period of time after unpacking, an oxide film is formed on the surface due to moisture in the air, and such a thing is used as an evaporation material. Then, as described above, the oxide remains in the crucible and causes dust generation. Therefore, when using such Mg pellets, for example, a chemical polishing liquid that does not use water such as acetone diluted 1% HNO 3 liquid. Then, Mg pellets are soaked and the oxide film is removed by chemical etching, the chemical polishing liquid adhering to the acetone liquid is washed, and further a surface treatment is performed by spraying dichloromethane vapor to dry.
[0010]
When the thickness of the oxide film on the surface of the Mg pellet subjected to this treatment was measured with an electron beam microanalyzer, the variation between the samples was small at about 3 nm. The conventional Mg pellets etched with acid diluted with water and washed with pure water have an oxide film with a thickness of 300-700 nm, which causes the inconvenience that oxides that cause dust remain during deposition. In addition, the oxide film can be reduced to a thickness of about 3 nm by performing the surface treatment of the present invention. Accordingly, the Mg pellets packed through the processing method of FIG. 1 are used as an evaporating material immediately after unpacking, or those that have been processed by a method other than FIG. By doing so, it is possible to perform vapor deposition without generating dust and generating no pinholes in the vapor deposition film.
[0011]
In addition, the commercially available Mg billet has a black skin on the surface, and in the case of hot extrusion, the black skin is hot-extruded so as to be removed by machining or not to be caught.
[0012]
【The invention's effect】
As described above, according to the present invention, the process of hot-extrusion of the extruded material of Mg to form a wire and the process of cutting this into pellets are performed in an inert gas atmosphere, and immediately after the cutting, packing is performed. Therefore, when the pellet is used as an Mg evaporation material, no oxide remains, and therefore, contamination of the device due to generation of dust can be prevented, and an evaporated film without pinholes can be formed. By degassing the inside of the packing container and encapsulating dry nitrogen, the growth of the oxide film on the surface can be suppressed and storage can be performed for a long time. Prior to unpacking the Mg pellet and supplying it to the evaporation source, the Mg pellet By polishing the surface with a chemical polishing liquid that does not use water to reduce the thickness of the oxide film on the surface, the oxide film of the Mg pellets is removed, and evaporation without generation of dust or pinholes in the deposited film Material and There is an effect that can be used Te. In addition, when removing the surface layer of a wire, the said effect is acquired by carrying out in inert gas atmosphere.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a processing method of the present invention. FIG. 2 is an explanatory view of hot extrusion in FIG. 1.
1 hot extrusion process, 3 cutting process, 4 packing process, 8 Mg wire,

Claims (5)

Mgの押出し原料を熱間押出して線材とし、これを適当な長さに切断して得たMgペレットをMg蒸発材料として密封状態に梱包する加工方法に於いて、該熱間押出し及び切断を乾燥窒素やアルゴンの不活性ガス雰囲気中で行い、その切断後ただちに梱包することを特徴とするMg蒸発材料の加工方法。In a processing method in which Mg pellets obtained by extruding Mg extrusion raw material into a wire rod and cutting it into an appropriate length are packaged in a sealed state as Mg evaporation material, the hot extrusion and cutting are dried. A method for processing an Mg evaporating material, which is performed in an inert gas atmosphere of nitrogen or argon, and packed immediately after the cutting. 上記梱包時に梱包容器中を脱気して乾燥窒素を封入することを特徴とする請求項1に記載のMg蒸発材料の加工方法。The method for processing an Mg evaporating material according to claim 1, wherein the inside of the packing container is degassed during the packing and dry nitrogen is enclosed. 梱包されたMgペレットを開梱して蒸発源に供給するに先立ち、該Mgペレットを水を使わない化学研磨液により表面研磨してその表面の酸化膜の厚さを低減することを特徴とするMg蒸発材料の加工方法。Prior to unpacking the packed Mg pellets and supplying them to the evaporation source, the Mg pellets are surface-polished with a chemical polishing liquid that does not use water to reduce the thickness of the oxide film on the surface. Processing method of Mg evaporation material. 上記化学研磨液に高純度のアセトンを使用し、上記表面研磨後にジクロロメタンの蒸気で上記Mgペレットを乾燥させることを特徴とする請求項3に記載のMg蒸発材料の加工方法。4. The method for processing an Mg evaporation material according to claim 3, wherein high-purity acetone is used for the chemical polishing liquid, and the Mg pellets are dried with a vapor of dichloromethane after the surface polishing. 上記熱間押出し後に上記線材の表面層を乾燥窒素やアルゴンの不活性ガス雰囲気中で除去することを特徴とする請求項1に記載のMg蒸発材料の加工方法。The method for processing an Mg evaporative material according to claim 1, wherein the surface layer of the wire is removed in an inert gas atmosphere of dry nitrogen or argon after the hot extrusion.
JP2000007880A 2000-01-17 2000-01-17 Processing method of Mg evaporation material Expired - Lifetime JP4315406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007880A JP4315406B2 (en) 2000-01-17 2000-01-17 Processing method of Mg evaporation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007880A JP4315406B2 (en) 2000-01-17 2000-01-17 Processing method of Mg evaporation material

Publications (2)

Publication Number Publication Date
JP2001192814A JP2001192814A (en) 2001-07-17
JP4315406B2 true JP4315406B2 (en) 2009-08-19

Family

ID=18536239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007880A Expired - Lifetime JP4315406B2 (en) 2000-01-17 2000-01-17 Processing method of Mg evaporation material

Country Status (1)

Country Link
JP (1) JP4315406B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183794A (en) * 2001-12-19 2003-07-03 Sankyo Alum Ind Co Ltd Method for manufacturing magnesium alloy material
JP4786282B2 (en) * 2005-10-05 2011-10-05 株式会社アルバック Evaporating material manufacturing method and evaporating material storage method
US20090110807A1 (en) * 2007-10-25 2009-04-30 Applied Materials, Inc. Method for coating and apparatus
US9802233B2 (en) * 2014-05-01 2017-10-31 Praxair S. T. Technology, Inc. Gold evaporative sources with reduced contaminants and methods for making the same
JP6786782B2 (en) * 2015-09-25 2020-11-18 株式会社豊田自動織機 Press roll cleaning method and press roll equipment
KR102631775B1 (en) * 2022-12-20 2024-02-01 (주)에프엠 Alkali metal alloy for electronic device and method for manufacturing same, method for manufacturing electronic device having alkali metal thin film formed therethrough, and electronic device including alkali metal thin film
WO2024136376A1 (en) * 2022-12-20 2024-06-27 (주)에프엠 Lithium alloy for vacuum deposition, method for manufacturing lithium alloy for vacuum deposition, method for manufacturing lithium thin film for photoelectric device, and photoelectric device containing lithium thin film produced thereby

Also Published As

Publication number Publication date
JP2001192814A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
US20220263137A1 (en) Solid-state laminate electrode assemblies and methods of making
JP4315406B2 (en) Processing method of Mg evaporation material
JP4444910B2 (en) Mask cleaning method
JP6638401B2 (en) Gas barrier film laminate and method for producing the same
US2681402A (en) Method of welding aluminum and aluminum alloys
JPH0461069B2 (en)
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP2001184956A (en) Method of fabricating superconducting wire rod
WO2020153340A1 (en) Polycrystalline silicon lump, packaging body thereof, and method for producing same
JPS60174863A (en) Surface treatment of aluminum substrate for forming thin film
KR101654043B1 (en) Method for manufacturing graphene
JP5501460B2 (en) Vacuum dryer and drying method using the same
JPS6140747B2 (en)
EP1440482A1 (en) Parting agents for metal-clad high-temperature superconductor wires and tapes
JP7417534B2 (en) Antifouling method for polysilicon
JPH02101157A (en) Production of copper-based material for vacuum vapor deposition
JPH11300876A (en) Gas barrier material, its production and package
JPH02129364A (en) Manufacture of copper base material for vacuum vapor deposition
Jung et al. Fabrication of gold dot and tubular gold arrays using anodic aluminum oxide film as template
JPS6140748B2 (en)
JPH0328515B2 (en)
JPH02133557A (en) Manufacture of copper base material for vacuum vapor deposition
JP4703803B2 (en) Method for electrolytic polishing of aluminum material
JP2000202940A (en) Gas barrier material and its manufacture
JP2008081811A (en) Method for producing aluminum foil for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4315406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term