JP4314678B2 - Rolling structure with reduced roll - Google Patents

Rolling structure with reduced roll Download PDF

Info

Publication number
JP4314678B2
JP4314678B2 JP20442799A JP20442799A JP4314678B2 JP 4314678 B2 JP4314678 B2 JP 4314678B2 JP 20442799 A JP20442799 A JP 20442799A JP 20442799 A JP20442799 A JP 20442799A JP 4314678 B2 JP4314678 B2 JP 4314678B2
Authority
JP
Japan
Prior art keywords
floating body
box
shaped floating
gravity
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20442799A
Other languages
Japanese (ja)
Other versions
JP2001030984A (en
Inventor
誠也 山下
正泰 板橋
達雄 蒲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP20442799A priority Critical patent/JP4314678B2/en
Publication of JP2001030984A publication Critical patent/JP2001030984A/en
Application granted granted Critical
Publication of JP4314678B2 publication Critical patent/JP4314678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Machines (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、横揺れ低減浮体構造物に関し、特に作業船のような海上で停船状態で稼働する箱形浮体の波浪中の横揺れを、各種の減揺装置や付加物を用いることなしに低減できるようにした横揺れ低減浮体構造物に関するものである。
【0002】
【従来の技術】
船体の波浪中での横揺れを低減するために、近年、各種の新しい形式の能動型減揺装置の研究が多く行われ、それらの減揺装置の中にはすでに実用化された装置もある。能動型減揺装置は減揺効果の点からは、受動型減揺装置より明らかに優れている。
【0003】
【発明が解決しようとする課題】
しかし船体の横揺れを低減するための種々の能動型減揺装置は、一般に複雑、大型、大重量であり、しかも大きな設置スペースを必要とし、経済上、スペース上の点から一般的な採用は困難となっている。
【0004】
このために、船体の要目や形状の工夫等によって減揺を行うようにした受動型減揺装置の研究が種々なされているが、箱形浮体の横揺れに対する効果的な受動型減揺装置は出現していない。
【0005】
本発明は、かかる従来の問題点を解決すべくなしたもので、能動型減揺装置を備えることなしに、箱形浮体の横揺れが低減できるようにした横揺れ低減浮体構造物を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、箱形浮体固有のモーメントレバーl(K)が
l(K)=k 2 20 −(1+k 2 )l wo
であり、ここで、
2 は、左右揺れ付加質量と浮体質量との比である左右揺れ付加質量係数、
20 は、左右揺れと横揺れとの連成の付加質量と左右揺れ付加質量との比である流体力レバー(喫水線を通る原点Oまわりの値)、
w 0 は、横揺れ波強制モーメントと左右揺れ波強制力との比である波強制レバー(喫水線を通る原点Oまわりの値)、
であり、前記モーメントレバーl(K)と箱形浮体の重心高さとが略等しくなるように箱形浮体の重心位置を設定したことを特徴とする横揺れ低減浮体構造物、に係るものである。
【0007】
上記箱形浮体の重心高さを箱形浮体固有のモーメントレバーと略等しくするために、箱形浮体上に架台を設け、架台上に重量物を配置するようにしてもよい。
【0008】
本発明によれば、箱形浮体に搭載する荷等の重量物の位置を選定して、箱形浮体の重心高さが箱形浮体固有のモーメントレバーに略等しくなるように、箱形浮体の重心位置を設定したことにより、特別な装置構成を要することなしに、箱形浮体の横揺れを著しく低減できる。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施の形態について図を参照しつつ説明する。
【0010】
図2は箱形浮体を後方から見た場合の形状の一例を示したものであり、図2の箱形浮体1は、幅B、喫水dを有しており、箱形浮体1の上には荷等の重量物2が載置されていて、一般的に箱形浮体1の重心Gは、喫水線を通る原点O付近、例えば原点Oより少し高いところに位置している。
【0011】
このような箱形浮体1に横波が作用すると、箱形浮体1は重心Gの周りに回転するように横揺れ3を生じることになる。
【0012】
本発明は、このように幅Bと喫水dの比が大きい(幅喫水比が大きい)箱形浮体1における横揺れ低減を目的として考察し、箱形浮体1の重心の位置を移動することによって、横揺れが低減できる技術を確立したものである。
【0013】
これらの考察の理論的な基礎は、左右揺れとの連成影響を含む横揺れの1自由度運動方程式である。ここで、左右揺れとは、箱形浮体1が左右水平方向に移動する揺れであり、また横揺れとは、箱形浮体1が重心Gの周りを回転するように移動する揺れである。1自由運動方程式は簡明な形に表わされるため、横揺れ低減の見通しを立てる上で役立つ。
【0014】
左右横揺れとの連成が考慮された横揺れの1自由度運動方程式は、横揺れと左右揺れとの連成運動方程式から、
【数1】

Figure 0004314678
と与えられる。ただし、X4は横揺れ振幅、Hj(j=2,4)はKochin関数、Dj及びD24は流体力から決まる係数である。j=2及び4は、それぞれ左右揺れ及び横揺れを意味する。
【0015】
式(1)の右辺は左右揺れの影響を含む広義の横揺れ波強制モーメントであり、有効波傾斜係数γとの間に
【数2】
Figure 0004314678
の関係が成り立つ。
【0016】
次に、左右揺れ付加質量と浮体質量との比である左右揺れ付加質量係数k2左右揺れと横揺れとの連成の付加質量と左右揺れ付加質量との比である流体力レバーl2 (喫水線を通る原点Oまわりの値)、横揺れ波強制モーメントと左右揺れ波強制力との比である波強制レバーl w (喫水線を通る原点Oまわりの値)
【数3】
Figure 0004314678
と定義する。l2及びlwは箱形浮体1の重心Gから力の作用点までの距離を表わし、上方に向かって正とする。
【0017】
また、l20及びlwoを原点Oに対して定義されたモーメントレバーとして
【数4】
l(K)=k220−(1+k2)lwo ・・・(4)
とおき、また
【数5】
γs=(i/K▽){H2/(1+k2)} ・・・(5)
とすれば、式(2)は
【数6】
γ・GM=γs{OG−l(K)} ・・・(6)
と書きかえられる。ただしOGは喫水線を通る原点Oから重心Gまでの距離であり、重心Gが原点Oの下方にあるときを正とする。
【0018】
γsは単独左右揺れ振幅の近似値に相当し、またモーメントレバーl(K)は重心位置に無関係な量であって、どちらも箱形浮体1の形状と動揺周波数で決まる。
【0019】
有効波傾斜係数を構成する成分γs及びl(K)を、箱形浮体1について計算により求めた。計算対象箱形浮体1は、B/d=2.5,5,7.5,10,12.5,20の6種類である。計算には2次元領域分割法を用いており、流体力に対する3次元影響は考慮されていない。
【0020】
γsの計算値を図3に示す。図3の横軸は無次元周波数K(B/2)(K=ω2/g)である。ここで、K=ω2/g、ω=2π/Tであり、ωは周波数、Tは波周期である。
【0021】
γsは、図3に示すように周波数の増加とともに単調に減少する。箱形浮体1の幅喫水比によるγsの変化は小さく、B/dが5以上の浅喫水箱形浮体では同程度の値とみなすことができる。
【0022】
図4は、モーメントレバーl(K)と半幅B/2との比、即ちl(K)/(B/2)を示す。この値は幅喫水比によってかなり異なり、B/dが大きいほどその絶対値は大きくなる。一方、周波数に対する変化は比較的小さい。前述のとおり、l(K)は重心位置に無関係であるから、箱形浮体1の幅喫水比が与えられれば、図4を用いて一義的に決めることができる。
【0023】
箱形浮体1の波浪中動揺を低減させるための一つの方法は、箱形浮体1に作用する波強制力を減らすことである。連成運動方程式(1)について言うと、式(1)の右辺の値を小さくすることであり、式(2)から明らかなように、そのためにはγ・GMを小さくすればよい。ところでγ・GMは式(6)のように表わされるから、ある周波数で
【数7】
γs=0 ・・・(7)
もしくは
【数8】
OG=l(K) ・・・(8)
となるならばγ・GM=0である。本発明ではこの考え方を用いて横揺れ低減を達成している。
【0024】
まず、γs=0とするためにはH2(K)=0としなければならないが、これは理論的には左右揺れ波無し形状を選ぶと実現可能である。しかし幅喫水比の大きい箱形浮体では現実的な形状は得られないと推察される。
【0025】
一方、後者の条件式(8)は重心高さOGの選び方で実現可能なものである。従来、波長が比較的長い領域では式(8)を成り立たせるのは難しいと言われているが、それは通常の船型を対象とした場合である。
【0026】
浅喫水の箱形浮体1の場合、図4から、例えばB/d=12.5でK(B/2)=0.5〜1(λ/B=6.2〜3.1)の範囲では、OGを半幅の1.2〜1.5倍に選べばγ・GM=0となり得る。そこで、既存の作業船に近い要目をもつ表1の箱形浮体を対象に、いまの考え方のもとに重心位置を選定してみる。
【0027】
【表1】
L(m)(船長) 52
B(m)(船幅) 26
d(m)(喫水) 2.1
KG(m)(重心高さ) 7.3
GM(m)(メタセンタ高さ) 20.6
kxx(m)(回転半径) 7.5
Tφ(s)(横揺れ固有周期) 5.7
【0028】
仮に、波周期7.2sに相当するK(B/2)=1でγ・GM=0となるように重心高さを選ぶと、図4から大略OG=−16.2m(KG=18.3m)となる。
【0029】
従って、図1に示すように、箱形浮体1の上部に架台4を設け、該架台4上に荷等の重量物2を載置して、箱形浮体1の重心Gが16.2m(KG=18.3m)の高さになるように設定すると、箱形浮体1の重心高さOGがモーメントレバーl(K)に一致した状態となる。
【0030】
図5にこの状態に対する横揺れ振幅の計算値を破線で示す。図5ではOG=l(K)とした効果が、当初設定した周期7.2sより短い波周期領域で顕著に現れ、この範囲で横揺れ振幅は非常に小さい。図5には比較のため、通常の重心高さKG=7.3mに対する横揺れ振幅の計算値を実線で示すが、今回のように重心Gがモーメントレバーl(K)に一致するように高くすると、従来に比べ短周期領域で横揺れ低減の著しいことが明らかである。
【0031】
上記したように、箱形浮体1に荷等の重量物2を載置する際に、略OG=l(K)となるように重量物2の載置方法を工夫することによって、箱形浮体1の横揺れを著しく低減できることが明らかである。
【0032】
【発明の効果】
本発明によれば、箱形浮体に搭載する荷等の重量物の位置を選定して、箱形浮体の重心高さが箱形浮体固有のモーメントレバーに略等しくなるように、箱形浮体の重心位置を設定したことにより、特別な装置構成を要することなしに、箱形浮体の横揺れを著しく低減できるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の横揺れ低減浮体構造物の形態の一例を示す背面図である。
【図2】一般的な箱形浮体の一例を示す背面図である。
【図3】無次元周波数K(B/2)と有効波傾斜係数を構成する成分γsとの関係を示す線図である。
【図4】モーメントレバーl(K)と半幅B/2との比を示す線図である。
【図5】箱形浮体の重心高さをモーメントレバーに一致させた状態のときの横揺れ振幅の計算値と通常の重心高さに対する横揺れ振幅の計算値を比較して示した線図である。
【符号の説明】
1 箱形浮体
2 重量物
4 架台
G 重心
OG 重心高さ
l(K) モーメントレバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roll-reducing floating body structure, and in particular, reduces rolling in a wave of a box-shaped floating body operating in a stopped state at sea, such as a work ship, without using various types of vibration reduction devices or additions. The present invention relates to a roll-reducing floating structure that can be rolled.
[0002]
[Prior art]
In recent years, various new types of active vibration reducers have been studied in order to reduce the rolling of the hull in the waves. Some of these vibration reducers have already been put into practical use. . The active type vibration reduction device is clearly superior to the passive type vibration reduction device in terms of the vibration reduction effect.
[0003]
[Problems to be solved by the invention]
However, various active vibration reduction devices for reducing the roll of the hull are generally complex, large, and heavy, and require a large installation space. It has become difficult.
[0004]
For this reason, various researches have been conducted on passive vibration reduction devices that reduce vibrations by devising the outline and shape of the hull. Has not appeared.
[0005]
The present invention has been made to solve the conventional problems, and provides a roll-reducing floating body structure that can reduce the roll of a box-shaped floating body without providing an active vibration reduction device. The purpose is that.
[0006]
[Means for Solving the Problems]
In the present invention, the moment lever l (K) unique to the box-shaped floating body is
l (K) = k 2 l 20 − (1 + k 2 ) l wo
And where
k 2 is the ratio of the left and right additional vibration mass which is the ratio of the left and right additional mass to the floating body mass,
l 20 is a fluid force lever (value around the origin O passing through the water line), which is the ratio of the additional mass of left-right and side-roll coupled mass to the additional mass of left-right oscillation,
l w 0 is a wave forcing lever (value around the origin O passing through the water line), which is the ratio of the rolling wave forcing moment and the left and right forcing wave forcing force,
And the center of gravity position of the box-shaped floating body is set so that the moment lever 1 (K) and the height of the center of gravity of the box-shaped floating body are substantially equal to each other. .
[0007]
In order to make the height of the center of gravity of the box-shaped floating body substantially equal to the moment lever unique to the box-shaped floating body, a frame may be provided on the box-shaped floating body, and a heavy object may be arranged on the frame.
[0008]
According to the present invention, the position of a heavy load such as a load mounted on the box-shaped floating body is selected, and the height of the center of gravity of the box-shaped floating body is substantially equal to the moment lever unique to the box-shaped floating body. By setting the position of the center of gravity, the roll of the box-shaped floating body can be remarkably reduced without requiring a special device configuration.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0010]
FIG. 2 shows an example of the shape when the box-shaped floating body is viewed from the rear. The box-shaped floating body 1 in FIG. 2 has a width B and a draft d, and is placed on the box-shaped floating body 1. A heavy object 2 such as a load is placed, and the center of gravity G of the box-shaped floating body 1 is generally located near the origin O passing through the water line, for example, slightly higher than the origin O.
[0011]
When a transverse wave acts on such a box-shaped floating body 1, the box-shaped floating body 1 generates a roll 3 so as to rotate around the center of gravity G.
[0012]
The present invention considers the purpose of reducing rolling in the box-shaped floating body 1 having a large ratio of the width B and the draft d (the width draft ratio is large) and moving the position of the center of gravity of the box-shaped floating body 1. The technology that can reduce rolling is established.
[0013]
The theoretical basis for these considerations is a one-degree-of-freedom motion equation of roll that includes a coupled effect with left-right swing. Here, the left-right swing is a swing in which the box-shaped floating body 1 moves in the horizontal direction, and the roll is a swing in which the box-shaped floating body 1 moves so as to rotate around the center of gravity G. Since the one-free-motion equation is expressed in a simple form, it helps to make a prospect of rolling reduction.
[0014]
The one-degree-of-freedom motion equation for rolling considering the coupling with left and right rolling is based on the coupled equation of motion of rolling and left and right.
[Expression 1]
Figure 0004314678
And given. However, X 4 is rolling amplitude, Hj (j = 2,4) are Kochin function, Dj and D 24 are coefficients determined from the fluid force. j = 2 and 4 mean left-right and side-roll, respectively.
[0015]
The right-hand side of equation (1) is the rolling wave forced moment in a broad sense including the effect of left and right shaking.
Figure 0004314678
The relationship holds.
[0016]
Next, the left / right additional vibration coefficient k 2 , which is the ratio of the left / right additional mass to the floating body mass, and the hydrodynamic lever l 2, which is the ratio between the additional mass of the left / right / horizontal movement and the additional left / right additional mass. (Value around the origin O passing through the waterline), and the wave forcing lever l w (value around the origin O passing through the waterline) , which is the ratio of the rolling wave forced moment and the left-right wave forced force,
Figure 0004314678
It is defined as l 2 and l w represent the distance from the center of gravity G of the box-shaped floating body 1 to the point of application of the force, and are positive upward.
[0017]
Also, let l 20 and l wo be moment levers defined with respect to the origin O.
l (K) = k 2 l 20 − (1 + k 2 ) l wo (4)
Toki, again [5]
γs = (i / K ▽) {H 2 / (1 + k 2 )} (5)
Then, the formula (2) is:
γ · GM = γs {OG-1 (K)} (6)
It can be rewritten. However, OG is the distance from the origin O passing through the water line to the center of gravity G, and is positive when the center of gravity G is below the origin O.
[0018]
γs corresponds to an approximate value of the single left / right swing amplitude, and the moment lever l (K) is an amount irrelevant to the position of the center of gravity, and both are determined by the shape of the box-shaped floating body 1 and the oscillation frequency.
[0019]
The components γs and l (K) constituting the effective wave slope coefficient were obtained for the box-shaped floating body 1 by calculation. There are six types of calculation target box-shaped floating bodies 1 of B / d = 2.5, 5, 7.5, 10, 12.5, and 20. The calculation uses a two-dimensional domain decomposition method and does not consider the three-dimensional effect on the fluid force.
[0020]
The calculated value of γs is shown in FIG. The horizontal axis in FIG. 3 is the dimensionless frequency K (B / 2) (K = ω 2 / g). Here, K = ω 2 / g, ω = 2π / T, ω is a frequency, and T is a wave period.
[0021]
As shown in FIG. 3, γs monotonously decreases as the frequency increases. The change in γs due to the width draft ratio of the box-shaped floating body 1 is small, and it can be regarded as a comparable value for a shallow draft box-shaped floating body having a B / d of 5 or more.
[0022]
FIG. 4 shows the ratio of the moment lever l (K) to the half width B / 2, ie l (K) / (B / 2). This value varies considerably depending on the width draft ratio, and the absolute value increases as B / d increases. On the other hand, the change with respect to the frequency is relatively small. As described above, since l (K) is independent of the position of the center of gravity, if the width draft ratio of the box-shaped floating body 1 is given, it can be uniquely determined using FIG.
[0023]
One method for reducing the wave-like sway of the box-shaped floating body 1 is to reduce the wave forcing force acting on the box-shaped floating body 1. Regarding the coupled equation of motion (1), the value on the right side of the equation (1) is reduced. As is apparent from the equation (2), γ · GM may be reduced. By the way, γ · GM is expressed as shown in equation (6).
γs = 0 (7)
Or [Equation 8]
OG = 1 (K) (8)
Then, γ · GM = 0. In the present invention, roll reduction is achieved using this concept.
[0024]
First, in order to set γs = 0, it is necessary to set H 2 (K) = 0, but this can be theoretically realized by selecting a shape without a left / right wave. However, it is assumed that a realistic shape cannot be obtained with a box-shaped floating body with a large width draft ratio.
[0025]
On the other hand, the latter conditional expression (8) can be realized by selecting the center-of-gravity height OG. Conventionally, it has been said that it is difficult to satisfy the equation (8) in a region where the wavelength is relatively long, but this is a case where a normal hull form is targeted.
[0026]
In the case of the shallow draft box-shaped floating body 1, from FIG. 4, for example, B / d = 12.5 and K (B / 2) = 0.5 to 1 (λ / B = 6.2 to 3.1) Then, if OG is selected to be 1.2 to 1.5 times the half width, γ · GM = 0 can be obtained. Therefore, the position of the center of gravity is selected based on the current concept for the box-shaped floating body shown in Table 1, which has a similar point to an existing work ship.
[0027]
[Table 1]
L (m) (Captain) 52
B (m) (ship width) 26
d (m) (draft) 2.1
KG (m) (center of gravity height) 7.3
GM (m) (metacenter height) 20.6
kxx (m) (turning radius) 7.5
Tφ (s) (rolling natural period) 5.7
[0028]
If the height of the center of gravity is selected so that γ · GM = 0 when K (B / 2) = 1 corresponding to a wave period of 7.2 s, approximately OG = −16.2 m (KG = 18.2. 3m).
[0029]
Accordingly, as shown in FIG. 1, a gantry 4 is provided on the top of the box-shaped floating body 1, and a heavy object 2 such as a load is placed on the gantry 4 so that the center of gravity G of the box-shaped floating body 1 is 16.2 m ( When the height is set to be KG = 18.3 m), the center of gravity height OG of the box-shaped floating body 1 is in a state of being coincident with the moment lever l (K).
[0030]
FIG. 5 shows a calculated value of the roll amplitude for this state by a broken line. In FIG. 5, the effect of OG = 1 (K) appears remarkably in the wave period region shorter than the initially set period of 7.2 s, and the roll amplitude is very small in this range. For comparison, FIG. 5 shows the calculated value of the roll amplitude with respect to the normal center-of-gravity height KG = 7.3 m as a solid line. Then, it is clear that the rolling reduction is remarkable in the short period region compared to the conventional case.
[0031]
As described above, when the heavy object 2 such as a load is placed on the box-shaped floating body 1, the box-shaped floating body is devised by devising the method of placing the heavy object 2 so that approximately OG = 1 (K). It is clear that the roll of 1 can be significantly reduced.
[0032]
【The invention's effect】
According to the present invention, the position of a heavy load such as a load mounted on the box-shaped floating body is selected, and the height of the center of gravity of the box-shaped floating body is substantially equal to the moment lever unique to the box-shaped floating body. By setting the position of the center of gravity, it is possible to achieve an excellent effect that the roll of the box-shaped floating body can be remarkably reduced without requiring a special device configuration.
[Brief description of the drawings]
FIG. 1 is a rear view showing an example of a form of a rolling reduction floating structure according to the present invention.
FIG. 2 is a rear view showing an example of a general box-shaped floating body.
FIG. 3 is a diagram showing a relationship between a dimensionless frequency K (B / 2) and a component γs constituting an effective wave slope coefficient.
FIG. 4 is a diagram showing a ratio between a moment lever l (K) and a half width B / 2.
FIG. 5 is a diagram comparing the calculated value of the roll amplitude when the height of the center of gravity of the box-shaped floating body is matched with the moment lever and the calculated value of the roll amplitude with respect to the normal height of the center of gravity. is there.
[Explanation of symbols]
1 Box-shaped floating body 2 Heavy object 4 Mounting base G Center of gravity OG Center of gravity height l (K) Moment lever

Claims (2)

箱形浮体固有のモーメントレバーl(K)が
l(K)=k 2 20 −(1+k 2 )l wo
であり、ここで、
2 は、左右揺れ付加質量と浮体質量との比である左右揺れ付加質量係数、
20 は、左右揺れと横揺れとの連成の付加質量と左右揺れ付加質量との比である流体力レバー(喫水線を通る原点Oまわりの値)、
w 0 は、横揺れ波強制モーメントと左右揺れ波強制力との比である波強制レバー(喫水線を通る原点Oまわりの値)、
であり、前記モーメントレバーl(K)と箱形浮体の重心高さとが略等しくなるように箱形浮体の重心位置を設定したことを特徴とする横揺れ低減浮体構造物。
The moment lever l (K) unique to the box-shaped floating body is
l (K) = k 2 l 20 − (1 + k 2 ) l wo
And where
k 2 is the ratio of the left and right additional vibration mass which is the ratio of the left and right additional mass to the floating body mass,
l 20 is a fluid force lever (value around the origin O passing through the water line), which is the ratio of the additional mass of left-right and side-roll coupled mass to the additional mass of left-right oscillation,
l w 0 is a wave forcing lever (value around the origin O passing through the water line), which is the ratio of the rolling wave forcing moment and the left and right forcing wave forcing force,
The roll-reducing floating structure according to claim 1, wherein the center of gravity of the box-shaped floating body is set so that the moment lever l (K) and the height of the center of gravity of the box-shaped floating body are substantially equal.
箱形浮体の重心高さを箱形浮体固有のモーメントレバーと略等しくするために、箱形浮体上に架台を設け、架台上に重量物を配置したことを特徴とする請求項1記載の横揺れ低減浮体構造物。The horizontal structure according to claim 1, wherein a frame is provided on the box-shaped floating body and a heavy object is arranged on the frame to make the height of the center of gravity of the box-shaped floating body substantially equal to the moment lever unique to the box-shaped floating body. Floating structure with reduced shaking.
JP20442799A 1999-07-19 1999-07-19 Rolling structure with reduced roll Expired - Fee Related JP4314678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20442799A JP4314678B2 (en) 1999-07-19 1999-07-19 Rolling structure with reduced roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20442799A JP4314678B2 (en) 1999-07-19 1999-07-19 Rolling structure with reduced roll

Publications (2)

Publication Number Publication Date
JP2001030984A JP2001030984A (en) 2001-02-06
JP4314678B2 true JP4314678B2 (en) 2009-08-19

Family

ID=16490369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20442799A Expired - Fee Related JP4314678B2 (en) 1999-07-19 1999-07-19 Rolling structure with reduced roll

Country Status (1)

Country Link
JP (1) JP4314678B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492387B1 (en) * 2018-08-27 2019-04-03 株式会社救命 GM calculation system, method and program

Also Published As

Publication number Publication date
JP2001030984A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP4931272B2 (en) Rolling reduction structure of box-shaped floating body
CN103402865B (en) A kind of method of ring float and elimination buoyancy aid heave movement
JP4314678B2 (en) Rolling structure with reduced roll
JP2004513830A (en) High efficiency bilge keel
CN102910264B (en) A kind of antirolling apparatus of ship mooring state
JP2008062677A (en) Rolling reduction structure for float
CN112303446A (en) Marine stable platform with bearing capacity
JP4144716B2 (en) Work ship suspension load suppression device
JP2002284087A (en) Anti-rolling device
Fukuda et al. Active suppression control method of fluid vibrations in a container(2 nd report, vibration control of the liquid in transferring a container by considering the rotational motion).
JP3191142B2 (en) Ship rocking device
JP2001233286A (en) Floating body structure
Sørheim Analysis of motion in single-point mooring systems
JP2611573B2 (en) Offshore structure rocking device
US20120304819A1 (en) Inertial traction device
JP2003212185A (en) Pitch and roll reducing device of floating body
JPH0748474Y2 (en) Superstructure shaking absorption type ship
JP2561724Y2 (en) Rocking mechanism
JP3368564B2 (en) Hull structure to receive anti-vibration stay of main engine
JP2516464Y2 (en) Anti-vibration tank
JPH0550982A (en) Anti-rolling water tank apparatus for vessel
JP2514454B2 (en) Sway buoy damping device
JP2005067530A (en) Chain floating body
Kostyk et al. The effect of sound waves on spectral line profiles in the solar atmosphere- Observations and theory
JPH09142379A (en) Antirolling device for float structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees