JP4314417B2 - Catalytic functional materials - Google Patents

Catalytic functional materials Download PDF

Info

Publication number
JP4314417B2
JP4314417B2 JP35004198A JP35004198A JP4314417B2 JP 4314417 B2 JP4314417 B2 JP 4314417B2 JP 35004198 A JP35004198 A JP 35004198A JP 35004198 A JP35004198 A JP 35004198A JP 4314417 B2 JP4314417 B2 JP 4314417B2
Authority
JP
Japan
Prior art keywords
powder
rubber
monazite
catalytic
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35004198A
Other languages
Japanese (ja)
Other versions
JP2000167397A (en
Inventor
智仁 図越
長廣 河野
Original Assignee
株式会社三田
株式会社コウヤク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三田, 株式会社コウヤク filed Critical 株式会社三田
Priority to JP35004198A priority Critical patent/JP4314417B2/en
Publication of JP2000167397A publication Critical patent/JP2000167397A/en
Application granted granted Critical
Publication of JP4314417B2 publication Critical patent/JP4314417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒機能材料、特に、光触媒の有する抗菌や汚染防止、有害物質の分解等の機能を暗所においても発揮する触媒機能材料に関する。
【0002】
【従来の技術】
光触媒は太陽光、特に紫外線の光エネルギーを吸収して活性化し、無機物や有機物の分解等の化学反応を進める触媒作用を有する物質である。その活性作用を利用して、防カビ、抗菌、水質浄化、セルフクリーニング、脱臭、その他種々の機能を有する材料・製品が開発されている。
例えば、特開平10−204335号公報には船舶の外板や海洋構造物、魚網等に水中生物が付着するのを防止するための水中汚染防止塗料組成物が記載されている。また、特開平10−212179号公報には目地部に光触媒材料を塗布して耐汚染性および防カビ性を付与した磁器タイルパネルが記載されている。
【0003】
【発明の解決課題】
しかし、水中では水深が増すにつれて光量が乏しくなるので光触媒機能が次第に低下する。このため、光触媒材料を塗料に含有させ水中構造物や水中で使用する製品に塗布しても、十分な光活性作用を発揮できるのは水深が極めて浅い場合に限られる。また、タイルやセメント等に光触媒材料を塗布あるいは混入した場合も浄化槽や暗渠、トンネル内などのように光が届かない場所や、光量が乏しい場所では光触媒作用は実質的に発揮されない。装置内部に組み込まれる各種の機械部品や配管類なども同様である。
【0004】
一方、夜間においても抗菌性能を維持する手段として、酸化チタンを焼き付けた上に金属イオンを焼き付ける方法が試みられているが、焼き付けに手間が掛かり、しかも基材の種類が限定される問題がある。
本発明は、従来技術のこのような問題を解決したものであり、暗所においても継続的な触媒作用を発揮する触媒機能材料を提供することを目的とする。
【0005】
【課題解決の手段】
本発明は以下の[1]〜[3]の構成からなる触媒機能材料に関する。
〔1〕 光触媒粉末と放射性鉱物粉末とを基材中に含み、放射性鉱物粉末から発生する放射線によって光触媒粉末を活性化することによって暗所においても触媒機能を発揮する触媒機能材料であって、基材がガス透過性ゴム材であり、光触媒粉末が酸化チタンであり、放射性鉱物粉末がモナズ石(モナザイト)であり、酸化チタン粉末100重量部に対してモナズ石粉末20〜100重量部を含有することを特徴とする触媒機能材料。
〔2〕 光触媒粉末の酸化チタン粉末および放射性鉱物粉末のモナズ石粉末がガス透過性ゴム材からなる基材の表面付近に混在されている上記[1]に記載する触媒機能材料。
〔3〕 車輌の内部空間に装着されるゴム材、またはワイパーブレードに使用される上記[1]または上記[2]に記載する触媒機能材料。
【0006】
【発明の実施態様】
本発明の触媒機能材料は、光触媒粉末と放射性鉱物粉末とを基材中に含むものである。光触媒粉末と共に放射性鉱物粉末を含有することにより、この放射性鉱物粉末が発生する放射線によって光触媒粉末を活性化し、光触媒粉末が有する光触媒機能を明所はもとより暗所においても発揮させるようにしたものである。
【0007】
( ) 光触媒粉末
本発明の光触媒粉末は一般に光触媒材料として用いられているものである。光触媒材料は構成元素の電子が光エネルギーを吸収してエネルギーバンドを越え、価電子帯から伝導帯に励起されて電子と正孔のペアとを生成し、この材料表面に接触する物質の酸化還元を促進して、触媒作用を発揮する。このような光触媒材料の例としては、酸化チタン(TiO2)、酸化錫(SnO2)、酸化亜鉛(ZnO)、酸化バナジウム(V2O5)、酸化セリウム(CeO2)、酸化タングステン(WO3)、酸化コバルト(CoO)、酸化ルテニウム(RuO2)、α型酸化第2鉄(Fe2O3)などの金属酸化物、チタン酸ストロンチウム(Sr2TiO4)、チタン酸バリウム(Ba2TiO4)、層状のニオブ酸カリウムなどの金属酸化物が知られている。この光触媒粉末は使用環境や目的等に応じて選択すればよい。なお、酸化チタンは安価で光触媒機能に優れているので本発明においても好適である。酸化チタンはルチル型、アナターゼ型のいずれも用いることができる。また、この光触媒材料となる上記金属酸化物は天然物、合成物のいずれでもよいが、ハロゲン化物の酸化分解やアルコキシドの熱分解などの合成法によって製造すれば、粒度調整等が容易である。
【0008】
光触媒粉末として用いる酸化チタンは0.01〜10μmの粉末が一般に市販されており、本発明の触媒機能材料はこれを用いることができる。なお、表面積が大きいほど触媒活性が大きくなるため光触媒粉末の粒径は1μm以下が好ましいが、粉末の粒径が小さすぎると基材への練り混み抵抗が過大になり、取扱性が低下するので、好ましくは0.1〜1μm程度の粒径が適当である。
【0009】
光触媒粉末の含有量は、基材の種類にもよるが、通常は基材100重量部に対して10〜200重量部が適当である。好ましくは、動的な用途には10〜100重量部、静的な用途には50〜200重量部が適当である。この範囲では光触媒粉末の含有量が多いほど触媒効果が良いが、200重量部を超えると効果が大差なく、むしろ相対的に基材の含有量が少なくなるので、成形体にしたときの組成物全体の強度や塗膜にした際の成膜性が低下し、また高価な光触媒の使用量が増すと経済性も低くなる。
【0010】
(II) 放射性鉱物粉末
本発明において用いる放射性鉱物粉末とは放射線を発生する鉱物質の粉末である。放射線としては使用時の安全性を考慮するとα線が好ましい。α線は到達距離が相対的に短くβ線などよりも安全性が高い。このような放射性鉱物粉末として、モナズ石[モナザイト:(Ce,La,Th)PO4]を好適に用いることができる。モナザイトはセリウム(Ce)、ランタン(La)、イットリウム(Y)、トリウム(Th)等のリン酸塩を含有する鉱物であり、例えば、含有されるトリウムの崩壊過程においてラドンの同位体に転化し、さらにα崩壊により複数のトリウム同位体となる。このような放射線元素の崩壊によって生じるα線(ヘリウム核)は基材中において到達距離が10-3〜10-2cm程度であり、空気中でも数cm程度なので基材中に含有させた状態で十分に安全性が保たれる。一方、基材中においては、光触媒粉末の周囲に放射性鉱物粉末が混在するので、光触媒粉末はこの放射性鉱物粉末から発生される放射線のエネルギーを受けて活性化される。
【0011】
放射性鉱物粉末の粒径は基材中で良好に分散する程度であればよい。光触媒粉末と均一に混合するには光触媒粉末と同程度の粒径ないし0.1〜10倍程度の粒径であれば良い。また、放射性鉱物粉末の含有量は併用される光触媒粉末を活性化させるに十分な量であればよい。使用環境および基材中での混合状態などにもよるが、一般的には、光触媒粉末100重量部に対し1〜50重量部、好ましくは5〜40重量部が適当である。放射性鉱物粉末の含有量が少なすぎると光触媒粉末を活性化する効果が十分に得られない。一方、放射性鉱物粉末の含有量が多すぎても上記範囲を超えた光触媒効果に著しい改善はなく、むしろ経済性が低下する。
【0012】
(III)基材
光触媒粉末および放射性粉末を担持する基材はガス透過性ゴム材である。なお、基材として、ゴム、樹脂、セメントおよび塗液を用いる態様に応用することができる。触媒作用は被処理対象が光触媒粉末および放射性粉末を含有する基材と接触する表面付近で主に進行するので、光触媒粉末および放射性鉱物粉末は基材の表面付近に混在するのが好ましいが、上記基材の通常の使用態様および製品形状においては、成形体等の内部に含有される光触媒粉末でも、隣接する光触媒粉末の相互作用や基材のガス透過性等により基材表面での触媒効果を得ることができる。
【0013】
ゴム基材としては各種のゴムが使用可能である。例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレン−ブタジエンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)、アクリルゴム、エピクロロヒドリンゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴムは単独でも良く、また混合物でもよい。なお、基材内部に含まれる光触媒粉末の作用を有効に利用するにはガス透過性に優れたものが良く、例えば、シリコーンゴムやEPM、EPDMなどが好ましい。ガス透過性の良いものはα線(放射線)の透過性や拡散性も良いので、モナズ石に含まれるトリウム等の崩壊過程において生じるα線はガス透過性のよい基材では基材表面に到達しやすく、基材表面付近の光触媒粉末を活性化して触媒作用を高めることができる。
【0014】
樹脂基材としては、各種の樹脂が使用可能である。このような樹脂の例としては、スチレン樹脂、ウレタン樹脂、ビニル樹脂その他のオレフィン系樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、シリコーン樹脂等が挙げられる。
セメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、アルミナセメント、フライアッシュセメント、高炉セメント、シリカセメント、白色セメント、各種混合セメント、焼石膏など、任意の種類・組成のものが使用できる。このような本発明のセメント質基材の触媒機能材料はコンクリートブロックなどの主材料として用いることができる。また、本発明の光触媒粉末と放射性鉱物粉末を含有するセメント材料をブロック等の表面に塗布し硬化させて使用しても良く、部材相互の繋ぎ材や目地材、充填材などに用いても良い。
【0015】
また、本発明の触媒機能材料は塗液の状態を含む。塗膜の構成は通常の塗料組成物と同様であり、各種の塗膜材料を用いることができる。例えば、不飽和ポリエステル系、アクリル系、エポキシ系の無溶剤型塗料、アクリルウレタン系、アルキド樹脂系、アミノアルキド系、ウレタン系、エポキシ系の溶剤型塗料等も使用できる。また、加水分解性基を有するシリル基含有ビニル系共重合体、オルガノシランの加水分解物およびオルガノシランの加水分解物の部分縮合物からなる群より選ばれた少なくとも1種の加水分解性ケイ素化合物を結合剤とするものでもよい。有機溶剤は一般に用いられるものでよく、例えば、トルエン、キシレン等の炭化水素系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン系溶剤、メタノール、エタノール、ブタノール等のアルコール系溶剤等が代表的なものとして挙げられる。
【0016】
各種基材には慣用されている各種の添加剤や顔料等を添加することができる。添加剤の例としては架橋剤、分散剤、増粘剤、充填剤、レベリング剤、発泡防止剤、紫外線吸収剤、反応調整触媒等が挙げられる。顔料としては各種の無機顔料や有機顔料を用いることができ、また防腐剤、防黴剤、防藻剤等の防染剤を添加してもよい。なお、以上の基材の他に、場合に応じて紙や不織布等の繊維材料、ガラスやセラミック等も基材として用いることができる。
【0017】
(IV) 製造方法
本発明の触媒機能材料は、基材中に光触媒粉末と放射性鉱物粉末とを混練して得られるが、その混練方法や製造方法は限定されない。例えば、チタンテトライソプロポキシドのような光触媒化合物の前駆体を放射線源と共に塗液成分に混合し、光触媒成分を加水分解により塗液中に生成させて本発明の触媒機能材料を製造する等の方法も利用することができる。
【0018】
(V) 用途
本発明の触媒機能材料は、従来のような明所での使用の他に、特に暗所あるいは光量の乏しい場所での使用に適している。このような用途の例としては、例えば、車両等の内部空間に装着されるゴム材、排気管のライニング等、各種装置内部のゴム製品、洗濯機その他の水槽内コーティング、下水、暗渠、水道用配管のライニングやコーティング、汚水浄化槽のライニング、トンネル内設備や壁面等の暗所における使用、船底塗料、海中構造物や水質改善用ブロック材料またはコーティング材料あるいは漁網の塗装、プールの表面コーティング等の水中における使用例が挙げられる。
【0019】
また車両のワイパーブレード等はウインドガラスのように他の部分よりは明るい場所に装着されているが、その使用は降雨時などの比較的光量の乏しい時であり、また夜間での使用も多い。しかもウインドガラス等には外部の油性汚れが付着しやすく、その除去性能に優れることが求められる。ゴム材料を基材とする本発明の触媒機能材料を利用すれば、このような使用環境下においても光触媒粉末の高い触媒効果が維持されるので、優れた拭き取り効果が得られる。
【0020】
なお、本発明の触媒機能材料は従来の光触媒機能材料と同様の用途にも用いることができる。例えば、便器や浴槽のコーティング材、防カビ用コーキング材、サテライトアンテナの表面コート、街灯のカバー等の屋外施設用部材、家屋の外壁、パネル、ブロック、タイル、シート、目地材等の建材やコーティング、空気清浄機その他の各種フィルター等に適用することができる。
【0021】
【実施例】
本発明を実施例によって具体的に示す。なお、以下の例は本発明を限定するものではない。
【0022】
実施例1(油脂汚れ試験)
基材としてシリコーンゴムを用い、光触媒粉末としてルチル型酸化チタン(平均粒度0.1〜0.5μm)、放射性粉末としてモナズ石粉末(平均粒度1〜5μm)を各々用い、これらを以下の重量配合比で混合し、加硫硬化させて3種のゴム材(試料No.a,b,c)を製造した。このゴム材を用いてワイパーブレードを制作し、ワイパー試験機に取り付け、以下の試験条件下でガラス面に付着した油脂の拭き取り効果を調べた。この結果を表1に示した。なお、ワイパー試験機は車両のワイパー装置と同様の装置であり、ウインドガラス面にワイパーを摺動自在に装着したものである。
〔配合比〕(A)シリコーンゴム100部+酸化チタン30部
(B)シリコーンゴム100部+モナズ石10部
(C)シリコーンゴム100部+酸化チタン30部+モナズ石10部〔試験方法〕ウインドガラス中央に赤色クレヨン(ロウ+油脂+顔料)を10cm角の矩形状の範囲に塗り付けて人工的な油脂汚れを形成した。これに毎分1500mlの水を散水しながら標準回転でワイパーを120分間連続作動させた。これを晴天時の日中(気温22℃,湿度60%)と夜間(気温18℃,湿度40%)との2通りの条件下で行った。
【0023】
〔日中の試験結果〕試料No.Aのゴム材は油脂汚れの大部分がガラス面から払拭されたが、ブレードに少量の油脂が付着した。また、試料No.Bのゴム材は油脂汚れの50%程度がガラス面に残留し、ブレードに付着した油脂の量も多かった。一方、試料No.Cのゴム材は油脂汚れの大部分がガラス面から拭き取られており、ワイパーの折り返し位置での汚れやブレードへの油脂の付着も微量であった。
〔夜間の試験結果〕試料No.Aのゴム材は油脂汚れの20%程度が払拭されずにガラス面に残留し、ブレード全長に油脂が付着した。また、試料No.Bのゴム材は油脂汚れの70%程度がガラス面に残留し、ブレードに多量の油脂が付着し、ワイパー折り返し位置の油脂量も多かった。一方、試料No.Cのゴム材は油脂汚れの大部分がガラス面から拭き取られており、ワイパーの折り返し位置やブレードへの油脂の付着も微量であった。
〔評価〕試料No.A(酸化チタン単独混合)のゴム材は日が射す日中の試験条件では比較的良好な拭き取り効果が得られるが、夜間の試験ではブレードに付着する油脂量がやや多い。一方、試料No.C(酸化チタンとモナズ石の併用)のゴム材は夜間でも日中に近い払拭効果が得られる。なお、試料No.Bゴム材は酸化チタン粉末とモナズ石を含まないシリコーンゴム単独のラバーと同等の払拭効果であり、モナズ石を単独に混合しても払拭を高める効果が殆ど無い。このことから、酸化チタン粉末とモナズ石粉末を併用したものは、モナズ石粉末によって酸化チタンの触媒効果が向上し、これにより夜間においても優れた触媒効果が得られることがわかる。
【0024】
実施例2(ワックス汚れ試験)
実施例1と同様の3種のゴム材(試料No.a,b,c)について、クレヨン(油脂)に代えて自動車用固形ワックスを用い、ワイパーの作動時間を40分とし、日中試験の気温18℃、湿度30%、夜間試験の気温12℃、湿度40%とした他は実施例1と同様の条件で、ワックス汚れの払拭試験を行った。なお、ワックスは研磨剤、香料、色素、溶剤を含有したものを使用した。
〔日中の試験結果〕試料No.Aのゴム材はワックスの80%程度がガラス面から払拭されたが、ブレードとワイパーの折り返し位置に少量のワックスが付着し、ガラス面に油膜スジがみられた。試料No.Bのゴム材はワックスの20%程度がガラス面から払拭されたが大部分は残留し、ブレードとワイパーの折り返し位置にも多量のワックスが付着しており、油膜スジも濃い。3時間ワイパーを作動させても同じ状態であった。一方、試料No.Cのゴム材はワックスの大部分がガラス面から拭き取られており、ワイパーの折り返し位置やブレードへのワックスの付着も微量であり、油膜スジも薄く、この油膜スジはワイパーをさらに90分作動させると消滅した。
〔夜間の試験結果〕試料No.Aのゴム材はワックスの70%程度がガラス面から払拭されたが、ブレードとワイパーの折り返し位置に少量のワックスが付着し、ガラス面に油膜スジがみられた。試料No.Bのゴム材および試料No.Cのゴム材を使用したものは日中試験とほぼ同様の結果であった。
〔評価〕試料No.Aの酸化チタン粉末を単独に含むゴム材は夜間での拭き取り効果が日中よりもやや劣るが、試料No.Cの酸化チタン粉末と共にモナズ石粉末を含むゴム材を使用したものは夜間でも日中試験とほぼ同様の拭き取り効果を達成しており、酸化チタン粉末とモナズ石粉末を併用する効果が認められる。
【0025】
実施例3(防汚試験)
実施例1と同様の3種のゴム材(試料No.a,b,c)について、家庭の流し台での試験を行った。試験方法は、一般家庭の流し台の排水口の内側(光が遮断された暗所)に上記3種のゴム材を一定間隔に放射状に取り付け、4人家族一日3食の炊事から生じる生ゴミや排水が通過する状態で2月間使用し、水気を除去したゴム材の状態を観察した。なお、食器の洗浄には中性洗剤を使用し、ゴム材への影響を避けるため漂白剤の使用は禁止した。
〔試験結果〕試料No.Aのゴム材表面には粉状の白い汚れが鱗状ないしリング状に付着しており、この汚れは無臭であり水洗いによって除去できた。試料No.Bのゴム材表面には薄い灰色のぬめり気と悪臭のある汚れがエッジ部分に付着していた。この汚れは水洗により除去された。試料No.Cのゴム材は汚れが付着しておらず、また悪臭もしなかった。
【0026】
実施例4
実施例1と同様の3種のゴム材(試料No.a,b,c)について、メッキに対する触媒効果を試験した。試験方法は、鋼製線材(JIS S25C,30mm×4mmφ)にクロームメッキ(厚さ10μm)を施したものを、実施例1と同様の3種のゴム材(試料No.a,b,c)の試験片(10×30×2mm)1枚づつと共にサンプル槽(20ml)に入れ、水道水20mlを満たし空気を抜いて気密に保ち、日光の当たる明所と日光を遮断した暗所におのおの7日間気密に保持した。
〔試験結果〕試料No.Aのゴム材を入れたものはメッキが部分的に剥離し、剥離面は黒ずみ、サンプル槽の口に剥離したメッキ膜が浮遊していた。試料No.Bのゴム材を入れたものはメッキの剥離を生じなかった。一方、試料No.Cのゴム材を入れたものはメッキの剥離面が試料No.Aのゴム材よりも大きかった。これは明所でも暗所でも同様であった。
【0027】
実施例5
実施例1と同様の3種のゴム材(試料No.a,b,c)について、金属粉に対する触媒効果を試験した。試験方法は、ガラス管(20ml)に塩化第二鉄20mlと銅1gを入れ10分間放置した液体を200mlの水道水と混合して試験溶液とした。この試験溶液に実施例1と同様の3種のゴム材(試料No.a,b,c)の試験片(10×50×2mm)を1枚づつその半分が水溶液に浸るように入れ、日光の当たる明所と日光を遮断した暗所におのおの5日間放置した。
〔試験結果〕試料No.Bのゴム材を用いたものは水溶液に変化がみられない。試料No.Aのゴム材を用いたものは、水溶液が上下に分離して底部に褐色の異物が沈殿した。また、水溶液の界面と試験片およびガラス管が接触する部分には褐色のラインが付着し、水洗しても除去できなかった。試験No.Cのゴム材を用いたものは、水溶液が上下に分離して底部に褐色の異物が沈殿したが、水溶液の界面と試験片およびガラス管が接触する部分には付着した褐色のラインは水洗により容易に除去できた。これは明所でも暗所でも同様であった。
【0028】
参考例(塗料組成物)
塗料用樹脂、ルチル型酸化チタン(平均粒度0.1〜0.5μm)、モナズ石粉末(平均粒度1〜5μm)を各々用い、これらを以下の重量配合比で混合して3種の塗料組成物(A,B,C)を製造した。
〔配合比〕
(A)塗料用樹脂100g+酸化チタン100g
(B)塗料用樹脂100g+モナズ石30g
(C)塗料用樹脂100g+酸化チタン100g+モナズ石30g
〔試験方法〕
上記塗料組成物(A,B,C)を、一般家庭の流し台の排水口に嵌着されるゴム材(キクワリゴム)の裏側(光が遮断された暗所)に塗布し、実施例3と同様の条件でゴム材の汚れを調べた。
〔試験結果〕
塗料Aを塗布したゴム材には粉状の白い汚れが鱗状ないしリング状に付着していたが、この汚れは無臭であり水洗いによって除去できた。塗料Bを塗布したゴム材には薄い灰色のぬめり気と悪臭のある汚れがエッジ部分に付着していた。この汚れは水洗により除去された。塗料Cを塗布したゴム材には汚れが付着しておらず、また悪臭もしなかった。
【0029】
【発明の効果】
本発明においては、放射線(α線)によって光触媒を活性化することにより、その触媒機能を明所および暗所のいずれにおいても発揮させることができる。このため、通常の使用条件では光量が過少なため光触媒機能を発揮させることができない或いは困難な場所、例えば各種機械部品や建物の内部、水中の構造物や水中においても、触媒材料を使用することができる。また、本発明の触媒機能材料は放射性鉱物粉末の使用量は少なく、かつ基材に含まれているので安全であり、使用者や使用環境に影響を及ぼすことがない。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalytic functional material, and more particularly to a catalytic functional material that exhibits functions such as antibacterial properties, contamination prevention, and decomposition of harmful substances that a photocatalyst has even in the dark.
[0002]
[Prior art]
A photocatalyst is a substance having a catalytic action that activates by absorbing light energy of sunlight, particularly ultraviolet rays, and promotes chemical reactions such as decomposition of inorganic and organic substances. Utilizing the active action, materials and products having various functions such as mold prevention, antibacterial, water purification, self-cleaning, deodorization and the like have been developed.
For example, Japanese Patent Application Laid-Open No. 10-204335 discloses an underwater pollution prevention coating composition for preventing underwater organisms from adhering to the outer skin of a ship, marine structures, fish nets and the like. Japanese Patent Application Laid-Open No. 10-212179 describes a porcelain tile panel in which a photocatalyst material is applied to a joint portion to impart stain resistance and antifungal properties.
[0003]
[Problem to be Solved by the Invention]
However, as the water depth increases in water, the photocatalytic function gradually decreases because the amount of light becomes poor. For this reason, even if a photocatalyst material is contained in a paint and applied to an underwater structure or a product used in water, a sufficient photoactive action can be exhibited only when the water depth is extremely shallow. Even when a photocatalytic material is applied or mixed into tiles, cement, etc., the photocatalytic action is not substantially exhibited in places where light does not reach, such as in septic tanks, culverts, and tunnels, or in places where the amount of light is low. The same applies to various machine parts and piping incorporated in the apparatus.
[0004]
On the other hand, as a means for maintaining antibacterial performance even at night, a method of baking metal ions after baking titanium oxide has been tried, but it takes time to burn and there is a problem that the type of base material is limited. .
The present invention solves such problems of the prior art, and an object of the present invention is to provide a catalytic functional material that exhibits a continuous catalytic action even in a dark place.
[0005]
[Means for solving problems]
The present invention relates to a catalytic functional material having the following configurations [1] to [3].
[1] A catalytic functional material that includes a photocatalyst powder and a radioactive mineral powder in a base material and that exhibits a catalytic function even in the dark by activating the photocatalyst powder with radiation generated from the radioactive mineral powder, The material is a gas-permeable rubber material, the photocatalyst powder is titanium oxide, the radioactive mineral powder is monazite (monazite), and contains 20 to 100 parts by weight of monazite powder with respect to 100 parts by weight of titanium oxide powder. A catalytic functional material characterized by the above.
[2] The catalytic functional material according to the above [1], wherein the photocatalytic powder titanium oxide powder and the radioactive mineral powder monazite powder are mixed in the vicinity of the surface of the base material made of a gas permeable rubber material.
[3] The catalytic functional material according to the above [1] or [2], which is used for a rubber material or a wiper blade mounted in an internal space of a vehicle.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The catalytic functional material of the present invention contains a photocatalyst powder and a radioactive mineral powder in a base material. By containing the radioactive mineral powder together with the photocatalyst powder, the photocatalyst powder is activated by the radiation generated by the radioactive mineral powder, and the photocatalytic function of the photocatalyst powder is exhibited not only in the light place but also in the dark place. .
[0007]
( I ) Photocatalyst powder The photocatalyst powder of the present invention is generally used as a photocatalyst material. In the photocatalytic material, the constituent element electrons absorb light energy and exceed the energy band, and they are excited from the valence band to the conduction band to generate pairs of electrons and holes. Promotes its catalytic action. Examples of such photocatalytic materials include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), vanadium oxide (V 2 O 5 ), cerium oxide (CeO 2 ), tungsten oxide (WO 3 ), cobalt oxide (CoO), ruthenium oxide (RuO 2 ), metal oxides such as α-type ferric oxide (Fe 2 O 3 ), strontium titanate (Sr 2 TiO 4 ), barium titanate (Ba 2 Metal oxides such as TiO 4 ) and layered potassium niobate are known. What is necessary is just to select this photocatalyst powder according to a use environment, an objective, etc. Titanium oxide is suitable for the present invention because it is inexpensive and has an excellent photocatalytic function. Titanium oxide can be either a rutile type or an anatase type. The metal oxide used as the photocatalyst material may be either a natural product or a synthetic product, but if it is produced by a synthesis method such as oxidative decomposition of a halide or thermal decomposition of an alkoxide, the particle size can be easily adjusted.
[0008]
As the titanium oxide used as the photocatalyst powder, 0.01 to 10 μm powder is generally commercially available, and this can be used as the catalytic functional material of the present invention. In addition, since the catalytic activity increases as the surface area increases, the particle size of the photocatalyst powder is preferably 1 μm or less. However, if the particle size of the powder is too small, the kneading resistance to the base material becomes excessive and the handling property is reduced. Preferably, a particle size of about 0.1 to 1 μm is appropriate.
[0009]
The content of the photocatalyst powder is usually 10 to 200 parts by weight with respect to 100 parts by weight of the substrate, although it depends on the type of the substrate. Preferably, 10 to 100 parts by weight for dynamic applications and 50 to 200 parts by weight for static applications are suitable. In this range, the greater the content of the photocatalyst powder, the better the catalytic effect. However, when the amount exceeds 200 parts by weight, the effect is not much different, but the content of the base material is relatively small. The overall strength and film formability when formed into a coating film are lowered, and the economic efficiency is lowered when the amount of expensive photocatalyst used is increased.
[0010]
(II) Radioactive mineral powder The radioactive mineral powder used in the present invention is a mineral powder that generates radiation. As radiation, α rays are preferable in consideration of safety during use. α rays have a relatively short reach and are safer than β rays. As such a radioactive mineral powder, monazite [monazite: (Ce, La, Th) PO 4 ] can be suitably used. Monazite is a mineral containing phosphates such as cerium (Ce), lanthanum (La), yttrium (Y), and thorium (Th). For example, monazite is converted into radon isotopes in the decay process of contained thorium. Furthermore, it becomes a plurality of thorium isotopes by α decay. The α rays (helium nuclei) generated by the decay of such a radiation element have a reach distance of about 10 −3 to 10 −2 cm in the base material, and are about several centimeters even in air, so that they are contained in the base material. Sufficient safety is maintained. On the other hand, in the base material, since the radioactive mineral powder is mixed around the photocatalyst powder, the photocatalyst powder is activated by receiving the energy of the radiation generated from the radioactive mineral powder.
[0011]
The particle diameter of the radioactive mineral powder should just be a grade disperse | distributed favorably in a base material. In order to mix uniformly with the photocatalyst powder, the particle size may be about the same as the photocatalyst powder or about 0.1 to 10 times the particle size. Moreover, the content of the radioactive mineral powder should just be sufficient quantity to activate the photocatalyst powder used together. Although depending on the use environment and the mixed state in the substrate, generally 1 to 50 parts by weight, preferably 5 to 40 parts by weight, is appropriate for 100 parts by weight of the photocatalyst powder. If the content of the radioactive mineral powder is too small, the effect of activating the photocatalyst powder cannot be obtained sufficiently. On the other hand, even if the content of the radioactive mineral powder is too large, there is no significant improvement in the photocatalytic effect exceeding the above range, but the economic efficiency is rather lowered.
[0012]
(III) Substrate The substrate carrying the photocatalyst powder and the radioactive powder is a gas permeable rubber material. In addition, it can apply to the aspect which uses rubber | gum, resin, cement, and a coating liquid as a base material. Since the catalytic action mainly proceeds near the surface where the object to be treated comes into contact with the substrate containing the photocatalyst powder and the radioactive powder, the photocatalyst powder and the radioactive mineral powder are preferably mixed near the surface of the substrate. In the normal usage mode and product shape of the substrate, even the photocatalyst powder contained in the molded body or the like has a catalytic effect on the surface of the substrate due to the interaction of the adjacent photocatalyst powder or the gas permeability of the substrate. Obtainable.
[0013]
Various rubbers can be used as the rubber base material. For example, natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene-butadiene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), acrylic rubber, epichlorohydrin rubber, silicone Examples thereof include rubber, fluororubber, and urethane rubber. These rubbers may be used alone or as a mixture. In order to effectively use the action of the photocatalyst powder contained in the base material, a material excellent in gas permeability is preferable, and for example, silicone rubber, EPM, EPDM and the like are preferable. Those with good gas permeability also have good α-ray (radiation) permeability and diffusivity, so α-rays generated in the decay process of thorium contained in monazite reach the base material surface with good gas permeability. The photocatalytic powder near the substrate surface can be activated to enhance the catalytic action.
[0014]
Various resins can be used as the resin base material. Examples of such resins include styrene resins, urethane resins, vinyl resins and other olefinic resins, polyester resins, alkyd resins, fluororesins, silicone resins and the like.
Cement used is of any type and composition, such as ordinary Portland cement, early-strength Portland cement, medium-heated Portland cement, alumina cement, fly ash cement, blast furnace cement, silica cement, white cement, various mixed cements and calcined gypsum. it can. Such a catalytic functional material of the cementitious base material of the present invention can be used as a main material such as a concrete block. Moreover, the cement material containing the photocatalyst powder of the present invention and the radioactive mineral powder may be applied to the surface of a block or the like and cured, and may be used as a connecting material between members, a joint material, a filler, or the like. .
[0015]
Further, the catalytic functional material of the present invention includes a state of a coating liquid. The configuration of the coating film is the same as that of a normal coating composition, and various coating film materials can be used. For example, unsaturated polyester-based, acrylic-based, epoxy-based solventless coatings, acrylic urethane-based, alkyd resin-based, aminoalkyd-based, urethane-based, epoxy-based solvent-based coatings, and the like can also be used. Also, at least one hydrolyzable silicon compound selected from the group consisting of hydrolyzable silyl group-containing vinyl copolymers, hydrolysates of organosilanes, and partial condensates of hydrolysates of organosilanes May be used as a binder. Organic solvents may be those generally used, for example, hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone, methanol, Representative examples include alcohol solvents such as ethanol and butanol.
[0016]
Various additives, pigments and the like that are conventionally used can be added to the various substrates. Examples of the additive include a crosslinking agent, a dispersant, a thickener, a filler, a leveling agent, an antifoaming agent, an ultraviolet absorber, a reaction adjusting catalyst, and the like. As the pigment, various inorganic pigments and organic pigments can be used, and antistaining agents such as preservatives, antifungal agents, and algaeproofing agents may be added. In addition to the above-mentioned base materials, fiber materials such as paper and nonwoven fabric, glass, ceramics, and the like can be used as the base materials depending on circumstances.
[0017]
(IV) Production method The functional catalyst material of the present invention is obtained by kneading a photocatalyst powder and a radioactive mineral powder in a substrate, but the kneading method and production method are not limited. For example, a photocatalytic compound precursor such as titanium tetraisopropoxide is mixed with a radiation source together with a coating liquid component, and the photocatalytic component is produced in the coating liquid by hydrolysis to produce the catalytic functional material of the present invention. Methods can also be used.
[0018]
(V) Application The catalytic functional material of the present invention is suitable for use in a dark place or a place where the amount of light is low, in addition to the use in a bright place as in the prior art. Examples of such applications include, for example, rubber materials installed in interior spaces of vehicles, exhaust pipe linings, rubber products inside various devices, washing machine and other aquarium coatings, sewage, underdrains, and water supply Piping lining and coating, sewage septic tank lining, use in dark places such as tunnel equipment and walls, ship bottom paint, underwater structures, water quality improvement block materials or coating materials, fishing net painting, pool surface coating, etc. Examples of use are given.
[0019]
In addition, the windshield wiper blades and the like of the vehicle are mounted in a place brighter than the other parts, such as wind glass, but the use is performed when the amount of light is relatively low, such as when it rains, and is often used at night. In addition, it is required that external oily dirt easily adheres to the window glass and the like and has excellent removal performance. If the catalytic functional material of the present invention based on a rubber material is used, the high catalytic effect of the photocatalyst powder is maintained even in such a use environment, and thus an excellent wiping effect can be obtained.
[0020]
The catalytic functional material of the present invention can also be used for the same applications as conventional photocatalytic functional materials. For example, toilet materials and bathtub coating materials, mold caulking materials, satellite antenna surface coatings, outdoor facility materials such as streetlight covers, building exteriors, panels, blocks, tiles, sheets, joint materials, etc. It can be applied to air purifiers and other various filters.
[0021]
【Example】
The present invention is specifically illustrated by examples. The following examples are not intended to limit the present invention.
[0022]
Example 1 (oil and fat stain test)
Silicone rubber is used as the base material, rutile-type titanium oxide (average particle size 0.1 to 0.5 μm) is used as the photocatalyst powder, and monazite powder (average particle size 1 to 5 μm) is used as the radioactive powder, and these are mixed in the following weight ratio. And vulcanized and cured to produce three types of rubber materials (Sample Nos. A, b, and c). Using this rubber material, a wiper blade was produced and attached to a wiper testing machine, and the effect of wiping off oil and fat adhering to the glass surface was examined under the following test conditions. The results are shown in Table 1. The wiper tester is a device similar to the wiper device of a vehicle, and has a wiper slidably mounted on a wind glass surface.
[Blend ratio] (A) 100 parts of silicone rubber + 30 parts of titanium oxide
(B) 100 parts of silicone rubber + 10 parts of monazite
(C) 100 parts of silicone rubber + 30 parts of titanium oxide + 10 parts of monazite [Test method] Artificial oil and fat by applying red crayon (wax + oil + pigment) to the center of the window glass in a rectangular area of 10 cm square Dirt was formed. The wiper was continuously operated for 120 minutes at a normal rotation while sprinkling 1500 ml of water per minute. This was performed under two conditions: daytime (temperature 22 ° C, humidity 60%) and nighttime (temperature 18 ° C, humidity 40%) during fine weather.
[0023]
[Test results during the day] The rubber material of sample No. A was wiped off most of the oil and dirt from the glass surface, but a small amount of oil and fat adhered to the blade. In addition, in the rubber material of sample No. B, about 50% of the oil and fat stains remained on the glass surface, and the amount of oil and fat adhering to the blade was large. On the other hand, in the rubber material of sample No. C, most of the oil stains were wiped off from the glass surface, and the amount of dirt and oil adheres to the blades at the wiper folding position.
[Nighttime test results] In the rubber material of sample No. A, about 20% of the oil and fat stains remained on the glass surface without being wiped off, and the oil and fat adhered to the entire length of the blade. In addition, in the rubber material of sample No. B, about 70% of the oil stains remained on the glass surface, a large amount of oil adhered to the blade, and the amount of oil at the wiper folding position was large. On the other hand, in the rubber material of sample No. C, most of the oil and grease stains were wiped off from the glass surface, and the amount of oil and fat adhered to the folding position of the wiper and the blade was also small.
[Evaluation] The rubber material of sample No. A (mixed with titanium oxide alone) has a relatively good wiping effect under the daytime test conditions where the sun shines, but the amount of fat and oil adhering to the blade is slightly higher in the nighttime test. . On the other hand, the rubber material of sample No. C (combination of titanium oxide and monazite) has a wiping effect close to daytime even at night. The sample No. B rubber material has a wiping effect equivalent to that of a rubber of silicone rubber alone containing no titanium oxide powder and monazite, and even if monazite is mixed alone, there is almost no effect of improving wiping. From this, it can be seen that in the combination of titanium oxide powder and monazite powder, the catalytic effect of titanium oxide is improved by the monazite powder, and thereby an excellent catalytic effect can be obtained even at night.
[0024]
Example 2 (Wax stain test)
For the three types of rubber materials (sample Nos. A, b, and c) similar to Example 1, instead of crayons (oils and fats), solid wax for automobiles was used, and the wiper operating time was 40 minutes. A wax dirt wiping test was conducted under the same conditions as in Example 1 except that the temperature was 18 ° C., the humidity was 30%, and the night temperature was 12 ° C. and the humidity was 40%. In addition, the wax used what contained the abrasive | polishing agent, the fragrance | flavor, the pigment | dye, and the solvent.
[Test results during the day] About 80% of the rubber of sample No. A rubber was wiped from the glass surface, but a small amount of wax adhered to the folding position of the blade and wiper, and oil film streaks were observed on the glass surface. It was. In the rubber material of sample No. B, about 20% of the wax was wiped off from the glass surface, but most of it remained, a large amount of wax adhered to the folding position of the blade and wiper, and the oil film streaks were dark. Even if the wiper was operated for 3 hours, it was the same state. On the other hand, the rubber material of Sample No. C has most of the wax wiped from the glass surface, the wiper is folded back and the amount of wax adhering to the blade is very small, and the oil film streaks are thin. Disappeared after 90 minutes of operation.
[Nighttime test results] About 70% of the rubber material of sample No. A was wiped from the glass surface, but a small amount of wax adhered to the folding position of the blade and wiper, and oil film streaks were seen on the glass surface. It was. The samples using the rubber material of sample No. B and the rubber material of sample No. C had almost the same result as the daytime test.
[Evaluation] The rubber material containing the titanium oxide powder of sample No. A alone is slightly inferior to the daytime wiping effect, but the rubber material containing monazite powder is used together with the titanium oxide powder of sample No. C. The wiping effect achieved almost the same wiping effect as in the daytime test even at night, and the effect of using both titanium oxide powder and monazite powder was recognized.
[0025]
Example 3 (Anti-fouling test)
Three types of rubber materials (sample Nos. A, b, and c) similar to those in Example 1 were tested on a household sink. The test method consists of the above three kinds of rubber material radially attached at regular intervals inside the drain outlet of a general household sink (in the dark where light is blocked). The rubber material was used for 2 months in a state where the wastewater passed through and the water was removed, and the state of the rubber material was observed. In addition, neutral detergent was used to wash dishes, and the use of bleach was prohibited to avoid impact on rubber materials.
[Test Results] Powdery white dirt adhered to the surface of the rubber material of Sample No. A in a scale or ring shape. This dirt was odorless and could be removed by washing with water. The surface of the rubber material of sample No. B had light gray sliminess and bad odor dirt adhering to the edge portion. This stain was removed by washing with water. The rubber material of sample No. C was not soiled and did not have a bad odor.
[0026]
Example 4
Three types of rubber materials (sample Nos. A, b, and c) similar to Example 1 were tested for catalytic effects on plating. The test method was a steel wire (JIS S25C, 30 mm x 4 mmφ) with chrome plating (thickness 10 µm), and the same three rubber materials as in Example 1 (Sample Nos. A, b, c) Each test piece (10 x 30 x 2 mm) is placed in a sample tank (20 ml) and filled with 20 ml of tap water to keep it airtight and airtight. Keeped airtight for days.
[Test Results] In the sample No. A containing the rubber material, the plating was partially peeled off, the peeled surface was darkened, and the peeled plating film was floating at the mouth of the sample tank. The sample No. B containing the rubber material did not peel off the plating. On the other hand, the sample with the rubber material of sample No. C had a larger peeled surface than the rubber material of sample No. A. This was the same in both light and dark places.
[0027]
Example 5
Three types of rubber materials (sample Nos. A, b, and c) similar to Example 1 were tested for catalytic effect on metal powder. In the test method, 20 ml of ferric chloride and 1 g of copper were placed in a glass tube (20 ml) and the liquid left for 10 minutes was mixed with 200 ml of tap water to obtain a test solution. Place three test pieces (10 x 50 x 2 mm) of the same three types of rubber materials (sample No. a, b, c) as in Example 1 in this test solution so that half of each is immersed in the aqueous solution. Left for 5 days each in a dark place where the sun and sunlight were cut off.
[Test results] No change was observed in the aqueous solution of the sample No. B rubber material. In the sample No. A rubber material, the aqueous solution separated up and down, and a brown foreign material was precipitated at the bottom. Moreover, a brown line adhered to a portion where the interface of the aqueous solution was in contact with the test piece and the glass tube and could not be removed even by washing with water. For the test No. C rubber material, the aqueous solution separated up and down and brown foreign matter precipitated at the bottom, but the brown line adhered to the interface between the aqueous solution and the test piece and glass tube Was easily removed by washing with water. This was the same in both light and dark places.
[0028]
Reference example (coating composition)
Resin for paint, rutile type titanium oxide (average particle size 0.1 to 0.5 μm), monazite powder (average particle size 1 to 5 μm) were used respectively, and these were mixed at the following weight ratios to form three coating compositions (A , B, C).
[Combination ratio]
(A) Paint resin 100g + titanium oxide 100g
(B) Paint resin 100g + Monazite 30g
(C) Paint resin 100g + Titanium oxide 100g + Monazite 30g
〔Test method〕
The coating composition (A, B, C) is applied to the back side (dark place where light is blocked) of a rubber material (kiwawari rubber) fitted to the drain outlet of a general household sink. The dirt of the rubber material was examined under the following conditions.
〔Test results〕
The rubber material to which the coating material A was applied had powdery white dirt adhering to scales or rings, but this dirt was odorless and could be removed by washing with water. The rubber material to which the coating material B was applied had light gray sliminess and bad odor stains attached to the edge portion. This stain was removed by washing with water. The rubber material to which the coating material C was applied was not soiled and did not smell bad.
[0029]
【The invention's effect】
In the present invention, by activating the photocatalyst with radiation (α rays), the catalytic function can be exhibited in both a bright place and a dark place. For this reason, the catalyst material should be used even in places where the photocatalytic function cannot be exerted or difficult due to the insufficient amount of light under normal use conditions, such as various machine parts and buildings, underwater structures and water. Can do. Further, the catalytic functional material of the present invention is safe because it uses a small amount of radioactive mineral powder and is contained in the base material, and does not affect the user or the usage environment.

Claims (3)

光触媒粉末と放射性鉱物粉末とを基材中に含み、放射性鉱物粉末から発生する放射線によって光触媒粉末を活性化することによって暗所においても触媒機能を発揮する触媒機能材料であって、基材がガス透過性ゴム材であり、光触媒粉末が酸化チタンであり、放射性鉱物粉末がモナズ石(モナザイト)であり、酸化チタン粉末100重量部に対してモナズ石粉末20〜100重量部を含有することを特徴とする触媒機能材料。A catalytic functional material that contains a photocatalyst powder and a radioactive mineral powder in a base material, and that exhibits a catalytic function even in a dark place by activating the photocatalyst powder with radiation generated from the radioactive mineral powder. It is a transparent rubber material, the photocatalytic powder is titanium oxide, the radioactive mineral powder is monazite (monazite), and contains 20 to 100 parts by weight of monazite powder with respect to 100 parts by weight of titanium oxide powder. Catalytic functional material. 光触媒粉末の酸化チタン粉末および放射性鉱物粉末のモナズ石粉末がガス透過性ゴム材からなる基材の表面付近に混在されている請求項1に記載する触媒機能材料。The catalytic functional material according to claim 1, wherein the photocatalytic powder titanium oxide powder and the radioactive mineral powder monazite powder are mixed in the vicinity of the surface of the base material made of a gas permeable rubber material. 車輌の内部空間に装着されるゴム材、またはワイパーブレードに使用される請求項1または請求項2に記載する触媒機能材料。  The catalytic functional material according to claim 1 or 2, which is used for a rubber material or a wiper blade mounted in an internal space of a vehicle.
JP35004198A 1998-12-09 1998-12-09 Catalytic functional materials Expired - Fee Related JP4314417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35004198A JP4314417B2 (en) 1998-12-09 1998-12-09 Catalytic functional materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35004198A JP4314417B2 (en) 1998-12-09 1998-12-09 Catalytic functional materials

Publications (2)

Publication Number Publication Date
JP2000167397A JP2000167397A (en) 2000-06-20
JP4314417B2 true JP4314417B2 (en) 2009-08-19

Family

ID=18407838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35004198A Expired - Fee Related JP4314417B2 (en) 1998-12-09 1998-12-09 Catalytic functional materials

Country Status (1)

Country Link
JP (1) JP4314417B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254031A (en) * 2000-03-10 2001-09-18 Fuji Kihan:Kk Coated article and method for preparing it
JP3993180B2 (en) * 2004-04-22 2007-10-17 株式会社不二機販 Functional sheet
JP5244406B2 (en) * 2008-01-28 2013-07-24 オードメルス株式会社 Deodorizing composition
JP2009274015A (en) * 2008-05-15 2009-11-26 Luster Co Ltd Deodorant silicone rubber mat
JP7070954B1 (en) * 2021-05-20 2022-05-18 石見大田工業株式会社 Wall and / or ceiling construction method

Also Published As

Publication number Publication date
JP2000167397A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
Ohama et al. Application of titanium dioxide photocatalysis to construction materials: state-of-the-art report of the RILEM Technical Committee 194-TDP
KR100986860B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member
EP1712530B1 (en) Method of cleaning a substrate having an ultrahydrophilic and photocatalytic surface
US7358218B2 (en) Method for masking and removing stains from rugged solid surfaces
CN101525504A (en) Photocatalytic self-cleaning film coating agent with self-layered isolation effect and preparation method thereof
KR19990071915A (en) Photocatalyst Coating Composition and Photocatalyst Support Structure
WO1998055573A1 (en) Method for surface pretreatment before formation of photocatalytic hydrophilic film, and detergent and undercoat composition for use in the same
JP6753100B2 (en) Photocatalytic coating composition
JP4314417B2 (en) Catalytic functional materials
CN105315754A (en) Waterproof putty paste capable of removing formaldehyde
CN103619966B (en) There is the surface treatment agent of high photocatalytic and spatter property effect
JP2001064583A (en) Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
RU2678247C2 (en) Photocatalytic composition on basis of cement and its application for obtaining water emulsion paints, including external application
JP2003171601A (en) Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2001038219A (en) Aqueous photocatalyst hydrophilic composition, aqueous primer for photocatalyst and photocatalytic hydrophilic composite material using them
JP4397161B2 (en) Photocatalyst composition and photocatalyst formed therefrom
JPH10279830A (en) Wall coating material and wall coating method
JP2001106974A (en) Photocatalytic complex, coating solution for forming photocatalytic layer and photocatalyst supporting structure
JP2007302851A (en) Photocatalytic functional coating material and photocatalytic functional coated structure
CN207749753U (en) A kind of waterproof automatically cleaning outer wall coating
JP2001149855A (en) Photocatalytic colored coated article
US11964739B2 (en) Coatings that reduce or prevent barnacle attachment to a marine structure
JP4925980B2 (en) Photocatalyst and coating composition using photocatalyst
JP2001172545A (en) Coating composition
JPH11263660A (en) Cement composition for shotcrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees