JP4310641B2 - Failure determination device for exhaust pressure raising means - Google Patents

Failure determination device for exhaust pressure raising means Download PDF

Info

Publication number
JP4310641B2
JP4310641B2 JP2004199683A JP2004199683A JP4310641B2 JP 4310641 B2 JP4310641 B2 JP 4310641B2 JP 2004199683 A JP2004199683 A JP 2004199683A JP 2004199683 A JP2004199683 A JP 2004199683A JP 4310641 B2 JP4310641 B2 JP 4310641B2
Authority
JP
Japan
Prior art keywords
intake
pressure
exhaust
value
pulsation wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199683A
Other languages
Japanese (ja)
Other versions
JP2006022672A (en
Inventor
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004199683A priority Critical patent/JP4310641B2/en
Publication of JP2006022672A publication Critical patent/JP2006022672A/en
Application granted granted Critical
Publication of JP4310641B2 publication Critical patent/JP4310641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排気圧上昇手段の故障判定装置に係り、詳しくは、排気中の有害成分の低減を図るべく排気圧を上昇させる排気圧上昇手段の故障判定技術に関する。   The present invention relates to a failure determination device for exhaust pressure increasing means, and more particularly to a failure determination technique for exhaust pressure increasing means for increasing exhaust pressure in order to reduce harmful components in exhaust gas.

排気中に含まれるHC及びCO等の未燃物並びにNOx等の有害成分を低減させる技術として、触媒による反応を利用した排気浄化技術が知られている。また、近年、触媒が活性化されるまでの間にHC等の未燃物が大気中に放出されるのを防止することを目的として、排気流動を制御する技術が開発されている。
排気流動の制御としては、例えば内燃機関の排気通路に触媒の下流に位置して設けられた排気圧上昇手段によって排気圧を上昇させる手法が知られている。この排気圧上昇手段は、排気絞り弁と該排気絞り弁を作動させるアクチュエータ等から構成されており、排気絞り弁の開度を変化させて排気通路の流路面積を変化させることにより、排気絞り弁の上流側の排気圧の上昇を図ることが可能である。これにより、燃焼室から触媒に至る排気系において、上記HC等の未燃物と残存酸素との反応を促進させるようにして排気浄化性能の向上を図ることができ、また触媒の早期活性を実現させることが可能である。
As a technique for reducing unburned substances such as HC and CO and harmful components such as NOx contained in the exhaust, an exhaust purification technique using a reaction by a catalyst is known. In recent years, a technique for controlling exhaust flow has been developed for the purpose of preventing unburned substances such as HC from being released into the atmosphere before the catalyst is activated.
As a control of the exhaust flow, for example, a method is known in which the exhaust pressure is increased by an exhaust pressure increasing means provided in the exhaust passage of the internal combustion engine and positioned downstream of the catalyst. This exhaust pressure increasing means is composed of an exhaust throttle valve and an actuator for operating the exhaust throttle valve, etc., and by changing the opening area of the exhaust throttle valve to change the flow passage area of the exhaust passage, It is possible to increase the exhaust pressure upstream of the valve. As a result, in the exhaust system from the combustion chamber to the catalyst, the exhaust purification performance can be improved by promoting the reaction between the unburned matter such as HC and the residual oxygen, and the early activation of the catalyst is realized. It is possible to make it.

このように、排気圧上昇手段は、排気中のHC等の未燃物の排出抑制及び触媒の早期活性を実現するために重要なものであり、当該排気圧上昇手段の故障に対しては迅速かつ的確に対応する必要がある。
排気圧上昇手段の故障を判定する手法としては、排気通路に排気圧センサを配設し、当該排気圧センサで検出された排気圧が所定範囲内であるか否かによって故障を判定する方法が考えられ、例えば排気通路から分岐されたポート(冷却管)の先端部分に排気圧センサを配設した構成が公知である(特許文献1等参照)。
特開平8−210123号公報
As described above, the exhaust pressure increasing means is important for realizing the emission suppression of unburned substances such as HC in the exhaust and the early activation of the catalyst. It is necessary to respond appropriately and accurately.
As a method for determining a failure of the exhaust pressure increasing means, an exhaust pressure sensor is provided in the exhaust passage, and a failure is determined based on whether or not the exhaust pressure detected by the exhaust pressure sensor is within a predetermined range. For example, a configuration in which an exhaust pressure sensor is disposed at the tip of a port (cooling pipe) branched from an exhaust passage is known (see Patent Document 1, etc.).
JP-A-8-210123

ところで、上記排気圧センサは、高温の排ガスの圧力を検出することから耐熱性が要求される。また、排ガス中の凝縮水による耐腐食性も要求される。特に、硫黄(S)濃度の高い燃料が使用される内燃機関においては、凝縮水の酸性度が強く、排気圧センサが腐食し易いという問題がある。
このようなことから、排ガスの吸気系への吹き返しが排気圧に応じて増減することを利用し、吸気系に取り付けた圧力センサで当該吹き返し圧力を検出することが考えられており、これにより安価にして凝縮水等による腐食の問題もなく排気圧を検出可能である。
By the way, the exhaust pressure sensor is required to have heat resistance because it detects the pressure of high-temperature exhaust gas. Moreover, the corrosion resistance by the condensed water in waste gas is also requested | required. In particular, in an internal combustion engine using a fuel having a high sulfur (S) concentration, there is a problem that the acidity of condensed water is strong and the exhaust pressure sensor is easily corroded.
For this reason, it is considered to detect the blowback pressure with a pressure sensor attached to the intake system by utilizing the fact that the exhaust gas blowback to the intake system increases or decreases according to the exhaust pressure. Thus, the exhaust pressure can be detected without the problem of corrosion due to condensed water or the like.

しかしながら、上記吹き返し圧力は、吸気系に生じる吸気脈動の影響を受けるため、内燃機関の機関速度変化、EGR(排気再循環)等による吸気管内温度の変化等により、同一排気圧であっても圧力値が変動し、画一的に排気圧を検出することが困難になるという問題がある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、吸気系への吹き返し圧力を用いて吸気脈動の影響を抑制しつつ排気圧を検出でき、精度よく排気圧上昇手段の故障判定を実現可能な排気圧上昇手段の故障判定装置を提供することにある。
However, since the blowback pressure is affected by intake air pulsation that occurs in the intake system, the pressure of the internal combustion engine changes due to changes in the engine speed, changes in the intake pipe temperature due to EGR (exhaust gas recirculation), etc. There is a problem that the value fluctuates and it becomes difficult to detect the exhaust pressure uniformly.
The present invention has been made to solve such problems, and the object of the present invention is to detect exhaust pressure while suppressing the influence of intake pulsation by using the blowback pressure to the intake system, and accurately. An object of the present invention is to provide a failure determination device for exhaust pressure raising means that can realize failure judgment for exhaust pressure raising means.

上記した目的を達成するために、請求項1の排気圧上昇手段の故障判定装置では、内燃機関の気筒に連通する吸気通路及び排気通路と、該排気通路の排気系圧力を上昇させる排気圧上昇手段と、前記吸気通路に設けられ、吸気系圧力を検出する吸気系圧力検出手段と、該吸気系圧力検出手段の検出情報に基づき、前記吸気通路の吹き返し吸気脈動波圧またはその相関値を検出する吸気脈動波圧検出手段と、前記吸気脈動波圧検出手段により検出される前記排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値を比較し、比較値が所定値より小さいか否かに基づいて前記排気圧上昇手段の故障を判定する故障判定手段とを備え、前記吹き返し吸気脈動波圧は、吸気弁開時期から所定期間において前記吸気系圧力検出手段により検出される吸気系圧力の最大値及び最小値の少なくとも一方であって、前記吹き返し吸気脈動波圧の相関値は、これら最大値及び最小値の少なくとも一方を含む指標であることを特徴とする。 In order to achieve the above object, in the failure determination device for exhaust pressure increasing means according to claim 1, an exhaust pressure increase for increasing the exhaust system pressure in the exhaust passage and the exhaust passage communicating with the cylinder of the internal combustion engine and the exhaust passage Means, an intake system pressure detecting means for detecting an intake system pressure provided in the intake passage, and detecting a blow back intake pulsation wave pressure in the intake passage or a correlation value thereof based on detection information of the intake system pressure detecting means. Comparing the intake pulsating wave pressure detecting means and the exhaust pressure increasing means detected by the intake pulsating wave pressure detecting means before and after the operation, or a correlation value thereof , and whether the comparison value is smaller than a predetermined value and a determining failure determining means a failure of the exhaust pressure increasing device based on whether the blowback intake pulsation wave pressure detection by said intake system pressure detecting means in a predetermined time period from the intake valve opening timing Is the a at least one of the maximum value and the minimum value of intake system pressure, the correlation value of the blow-back air pulse wave pressure is characterized by an indicator comprising at least one of these maximum and minimum values.

即ち、吸気系圧力検出手段により検出される吸気系圧力に基づき吸気脈動波圧検出手段により検出される排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値の比較値が所定値より小さいか否かに基づいて排気圧上昇手段の故障が故障判定手段によって判定されるため、他の排気圧変動となる要因の影響を最少に抑えて排気圧上昇手段による排気圧変動により当該排気圧上昇手段の故障が判定される。
この際、吸気弁開時期から所定期間における吹き返し吸気脈動波圧を代表する吸気系圧力の最大値及び最小値の少なくとも一方が吹き返し吸気脈動波圧とされ、或いはこれら最大値及び最小値の少なくとも一方を含む指標が吹き返し吸気脈動波圧の相関値とされる。これにより、吸気弁開時期から所定期間における吸気系圧力の最大値や最小値の他、例えばこれら最大値と最小値との差、最大値と最小値との比、最大値と平均値との差、平均値と最小値との差、最大値と平均値との比、平均値と最小値との比等に基づき、容易にして精度よく排気圧上昇手段の故障が判定される。
That is, the comparison value of the blow back intake pulsation wave pressure before and after the operation of the exhaust pressure increasing means detected by the intake pulsation wave pressure detection means based on the intake system pressure detected by the intake system pressure detection means or the correlation value thereof is more than a predetermined value. Since failure of the exhaust pressure increasing means is determined by the failure determining means based on whether it is small or not, the influence of other exhaust pressure fluctuation factors is minimized and the exhaust pressure fluctuation by the exhaust pressure increasing means A failure of the raising means is determined.
At this time, at least one of the maximum value and the minimum value of the intake system pressure representing the blowback intake pulsation wave pressure in a predetermined period from the intake valve opening timing is set as the blowback intake pulsation wave pressure, or at least one of these maximum value and minimum value The index including the air pressure is used as the correlation value of the backflow intake pulsation wave pressure. As a result, in addition to the maximum and minimum values of the intake system pressure during a predetermined period from the intake valve opening timing, for example, the difference between these maximum and minimum values, the ratio between the maximum and minimum values, the maximum and average values Based on the difference, the difference between the average value and the minimum value, the ratio between the maximum value and the average value, the ratio between the average value and the minimum value, etc., the failure of the exhaust pressure raising means is determined easily and accurately.

また、請求項2の排気圧上昇手段の故障判定装置では、前記故障判定手段は、内燃機関の運転条件を判定する運転条件判定手段を有し、該運転条件判定手段により内燃機関の運転条件が略同一の範囲内にあると判定されている間の前記排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値に基づいて前記排気圧上昇手段の故障を判定することを特徴とする。   Further, in the failure determination device for the exhaust pressure increase means according to claim 2, the failure determination means has an operation condition determination means for determining an operation condition of the internal combustion engine, and the operation condition of the internal combustion engine is determined by the operation condition determination means. The failure of the exhaust pressure increasing means is determined based on the blow-back intake pulsation wave pressure before and after the operation of the exhaust pressure increasing means or the correlation value while it is determined to be within the substantially same range. .

即ち、吸気系圧力検出手段により検出される吸気系圧力に基づき吸気脈動波圧検出手段により検出される排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値に基づいて排気圧上昇手段の故障が故障判定手段によって判定されるが、この際、吹き返し吸気脈動波圧またはその相関値の検出は運転条件判定手段により内燃機関の運転条件が略同一の範囲内にあると判定されている間に限定されるため、排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値は共に同一の吸気脈動の影響下での値となり、吸気脈動の影響を抑制した吹き返し吸気脈動波圧またはその相関値に基づいて確実に排気圧上昇手段の故障が判定される。   That is, the exhaust pressure increasing means based on the blow back intake pulsation wave pressure before or after the operation of the exhaust pressure increasing means detected by the intake pulsation wave pressure detecting means based on the intake system pressure detected by the intake system pressure detecting means or the correlation value thereof In this case, the detection of the blow-back intake pulsation wave pressure or its correlation value is determined by the operating condition determining means that the operating condition of the internal combustion engine is within the substantially same range. Therefore, the blowback intake pulsation wave pressure before and after the operation of the exhaust pressure raising means or the correlation value thereof is a value under the influence of the same intake pulsation, and the blowback intake pulsation wave pressure suppressing the influence of the intake pulsation Alternatively, the failure of the exhaust pressure increasing means is reliably determined based on the correlation value.

また、請求項の排気圧上昇手段の故障判定装置では、請求項1または2において、前記吸気脈動波圧検出手段は、前記吸気系圧力検出手段により検出される吸気系圧力の最大値をピークホールドし或いは最小値をボトムホールドすることにより前記吹き返し吸気脈動波圧またはその相関値を検出することを特徴とする。
即ち、吸気脈動波は高周波であるため、一般の数百Hz程度の低いサンプリング周波数では吸気系圧力の最大値及び最小値を正確に検出することが困難であるところ、これら吸気系圧力の最大値及び最小値をピークホールド或いはボトムホールドすることにより、アナログ情報をデジタル情報として取り込むことが可能となり、サンプリング周波数が低い場合であっても、吸気系圧力の最大値及び最小値が正確に検出され、吹き返し吸気脈動波圧またはその相関値が正確に検出される。
Furthermore, a failure determination device for the exhaust pressure increasing device according to claim 3, in claim 1 or 2, wherein the intake air pulsation wave pressure detecting means, the peak the maximum value of intake system pressure detected by said intake system pressure detecting means By holding or holding the minimum value at the bottom, the blow-back intake pulsation wave pressure or its correlation value is detected.
In other words, since the intake pulsation wave is a high frequency, it is difficult to accurately detect the maximum and minimum values of the intake system pressure at a general sampling frequency of about several hundred Hz. And by holding the peak or bottom of the minimum value, it becomes possible to capture analog information as digital information, and even when the sampling frequency is low, the maximum and minimum values of the intake system pressure are accurately detected, The blow-back intake pulsation wave pressure or its correlation value is accurately detected.

請求項1の排気圧上昇手段の故障判定装置によれば、排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値の比較値が所定値より小さいか否かに基づいて排気圧上昇手段の故障を判定するので、他の要因による排気圧変動の影響を極力抑制した吹き返し吸気脈動波圧またはその相関値に基づき、安価にして良好に排気圧上昇手段の故障を判定することができる。
そして、この際、吸気弁開時期から所定期間における吹き返し吸気脈動波圧を代表する吸気系圧力の最大値及び最小値の少なくとも一方を吹き返し吸気脈動波圧とし、或いはこれら最大値及び最小値の少なくとも一方を含む指標を吹き返し吸気脈動波圧の相関値とするので、吸気弁開時期から所定期間における吸気系圧力の最大値や最小値の他、例えばこれら最大値と最小値との差、最大値と最小値との比、最大値と平均値との差、平均値と最小値との差、最大値と平均値との比、平均値と最小値との比等に基づき、容易にして精度よく排気圧上昇手段の故障を判定することができる。
請求項2の排気圧上昇手段の故障判定装置によれば、運転条件判定手段により内燃機関の運転条件が略同一の範囲内にあると判定されている間に検出される排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値に基づいて排気圧上昇手段の故障を判定するので、排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値を共に同一の吸気脈動の影響下での値にするようにでき、吸気脈動の影響を抑制した吹き返し吸気脈動波圧またはその相関値に基づき、安価にして確実に排気圧上昇手段の故障を判定することができる。
According to the failure determination apparatus for exhaust pressure increasing means according to claim 1, the exhaust pressure increases based on whether the comparison value of the blowback intake pulsation wave pressure before and after the operation of the exhaust pressure increasing means or the correlation value thereof is smaller than a predetermined value. Since the failure of the means is determined, it is possible to determine the failure of the exhaust pressure increasing means well at a low cost based on the blow-back intake pulsation wave pressure or the correlation value in which the influence of the exhaust pressure fluctuation due to other factors is suppressed as much as possible. .
At this time, at least one of the maximum value and the minimum value of the intake system pressure representing the blow-back intake pulsation wave pressure in the predetermined period from the intake valve opening timing is set as the blow-back intake pulsation wave pressure, or at least these maximum and minimum values Since the index including one is used as the correlation value of the blow back intake pulsation wave pressure, in addition to the maximum and minimum values of the intake system pressure in the predetermined period from the intake valve opening timing, for example, the difference between these maximum and minimum values, the maximum value Easily and accurately based on the ratio between the minimum value, the difference between the maximum value and the average value, the difference between the average value and the minimum value, the ratio between the maximum value and the average value, the ratio between the average value and the minimum value, etc. A failure of the exhaust pressure raising means can be determined well.
According to the failure determination device for the exhaust pressure increasing means of claim 2, the operation of the exhaust pressure increasing means detected while the operating condition determining means determines that the operating condition of the internal combustion engine is within the substantially same range. The failure of the exhaust pressure increase means is determined based on the front and rear blow-back intake pulsation wave pressure or the correlation value thereof, so that both the blow-back intake pulsation wave pressure and the correlation value before and after the operation of the exhaust pressure increase means are affected by the same intake pulsation. Based on the blow-back intake pulsation wave pressure suppressing the influence of the intake pulsation or its correlation value, it is possible to determine the failure of the exhaust pressure increasing means at a low cost.

請求項の排気圧上昇手段の故障判定装置によれば、吸気系圧力の最大値及び最小値をピークホールド或いはボトムホールドするので、アナログ情報をデジタル情報として取り込むことができ、サンプリング周波数が低い場合であっても、吸気系圧力の最大値及び最小値を正確に検出することができ、吹き返し吸気脈動波圧またはその相関値を正確に検出することができる。 According to the failure determination device for the exhaust pressure increasing device according to claim 3, since the peak hold or bottom hold the maximum value and the minimum value of the intake air system pressure may accept analog information as digital information, a low sampling frequency Even in this case, the maximum value and the minimum value of the intake system pressure can be accurately detected, and the blow-back intake pulsation wave pressure or its correlation value can be accurately detected.

以下、図面に基づき本発明の実施形態について説明する。
図1を参照すると、車両に搭載された本発明に係る排気圧上昇手段の故障判定装置を含むシステムの概略構成図が示されており、以下同図に基づき本発明に係る排気圧上昇手段の故障判定装置の構成を説明する。
内燃機関(以下、エンジン)1としては、例えば、吸気ポート9を介した燃料噴射が実施可能なマルチポイントインジェクションエンジン(MPI型エンジン)が採用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of a system including a failure determination device for exhaust pressure increasing means according to the present invention mounted on a vehicle. Hereinafter, the exhaust pressure increasing means according to the present invention will be described with reference to FIG. The configuration of the failure determination device will be described.
As the internal combustion engine (hereinafter referred to as an engine) 1, for example, a multipoint injection engine (MPI engine) capable of performing fuel injection via the intake port 9 is employed.

同図に示すように、エンジン1のシリンダヘッド2には、各気筒毎に略水平方向に吸気ポート9が形成されており、各吸気ポート9の燃焼室5側には、各吸気ポート9と燃焼室5との連通と遮断とを行う吸気弁11がそれぞれ設けられている。吸気弁11は、エンジン回転に応じて回転するカムシャフト12のカム12aに倣って吸気口9aを開閉作動する。各吸気ポート9には、各気筒毎に燃料噴射を行う電磁式のインジェクタ6が取り付けられており、インジェクタ6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。   As shown in the figure, the cylinder head 2 of the engine 1 is formed with an intake port 9 in a substantially horizontal direction for each cylinder, and each intake port 9 is connected to each intake port 9 on the combustion chamber 5 side. An intake valve 11 is provided for communicating with and blocking from the combustion chamber 5. The intake valve 11 opens and closes the intake port 9a following the cam 12a of the camshaft 12 that rotates according to engine rotation. Each intake port 9 is provided with an electromagnetic injector 6 for injecting fuel for each cylinder. A fuel supply device (not shown) having a fuel tank via a fuel pipe 7 is attached to the injector 6. Is connected.

また、各吸気ポート9には吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には吸気系圧力を検出する吸気管圧力センサ(吸気系圧力検出手段)3が設けられている。
また、吸気管圧力センサ3の上流部分には、吸入空気量を調節する電磁式のスロットル弁17が設けられ、スロットル弁17よりも上流部分には、吸入空気量Qaを検出するためにカルマン渦式のエアフローセンサ19が設けられている。
Each intake port 9 is connected to one end of an intake manifold 10. The intake manifold 10 is provided with an intake pipe pressure sensor (intake system pressure detecting means) 3 for detecting an intake system pressure.
An upstream portion of the intake pipe pressure sensor 3 is provided with an electromagnetic throttle valve 17 that adjusts the amount of intake air. A portion of the upstream side of the throttle valve 17 is a Karman vortex in order to detect the amount of intake air Qa. An airflow sensor 19 of the type is provided.

シリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4は高電圧を出力する点火コイル8に接続されている。
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポート13が形成されており、各排気ポート13の燃焼室5側には、各排気ポート13と燃焼室5との連通と遮断とを行う排気弁15がそれぞれ設けられている。
A spark plug 4 is attached to the cylinder head 2 for each cylinder, and the spark plug 4 is connected to an ignition coil 8 that outputs a high voltage.
Further, the cylinder head 2 is formed with an exhaust port 13 in a substantially horizontal direction for each cylinder. On the combustion chamber 5 side of each exhaust port 13, communication between the exhaust port 13 and the combustion chamber 5 is cut off. Exhaust valves 15 for performing the above are provided.

そして、各排気ポート13には排気マニホールド14の一端がそれぞれ接続されている。排気マニホールド14の他端には排気管(排気通路)20が接続されており、排気管20には、ストイキオ近傍においてHC、CO、NOxを高効率で浄化可能な三元触媒23が介装されている。
さらに、三元触媒23の下流部分には、排気管20の流路面積を調節可能な排気圧上昇装置(排気圧上昇手段)が設けられている。この排気圧上昇装置は、例えば密閉型開閉弁40と該密閉型開閉弁40を作動させるアクチュエータ(図示しない)等からなり、排気系圧力を上昇させるべく排気管20の流路面積を変化させ、HC、CO等の未燃物の他、NOx等を含む排ガス物質の低減を促進させることを目的とする装置から構成されている。また、密閉型開閉弁40としては種々の方式が考えられるが、本実施形態では一例としてバタフライ弁が採用されている。該バタフライ弁は、排気管20を貫通する軸回りに円盤を回転させ、排気管20の流路面積を調節するように構成されている。なお、密閉型開閉弁40を迂回するバイパス通路を設け、バタフライ弁とともに当該バイパス通路に圧力調整弁を設けるようにしてもよい。
One end of an exhaust manifold 14 is connected to each exhaust port 13. An exhaust pipe (exhaust passage) 20 is connected to the other end of the exhaust manifold 14, and the exhaust pipe 20 is provided with a three-way catalyst 23 capable of purifying HC, CO, and NOx with high efficiency in the vicinity of the stoichiometric. ing.
Further, an exhaust pressure increasing device (exhaust pressure increasing means) capable of adjusting the flow passage area of the exhaust pipe 20 is provided in the downstream portion of the three-way catalyst 23. This exhaust pressure raising device is composed of, for example, a closed type on-off valve 40 and an actuator (not shown) for operating the closed type on-off valve 40, and changes the flow passage area of the exhaust pipe 20 to increase the exhaust system pressure. In addition to unburned materials such as HC and CO, it is composed of an apparatus intended to promote the reduction of exhaust gas substances including NOx and the like. Various methods are conceivable as the sealed on-off valve 40. In this embodiment, a butterfly valve is employed as an example. The butterfly valve is configured to rotate a disk around an axis passing through the exhaust pipe 20 to adjust the flow passage area of the exhaust pipe 20. A bypass passage that bypasses the hermetic on-off valve 40 may be provided, and a pressure regulating valve may be provided in the bypass passage together with the butterfly valve.

また、シリンダヘッド2には、カム12aやカム16aを進角或いは遅角操作することで吸気弁11や排気弁15の開閉時期を油圧調整によって可変させる可変動弁機構30が設けられている。この可変動弁機構30としては、例えばカムシャフト12、16を揺動させる振り子式可変バルブタイミング機構が適用される。なお、振り子式可変バルブタイミング機構は公知であり、ここではその構成の詳細については説明を省略する。   Further, the cylinder head 2 is provided with a variable valve mechanism 30 that varies the opening / closing timing of the intake valve 11 and the exhaust valve 15 by hydraulic adjustment by operating the cam 12a and the cam 16a to advance or retard. As the variable valve mechanism 30, for example, a pendulum variable valve timing mechanism that swings the camshafts 12 and 16 is applied. The pendulum type variable valve timing mechanism is well known, and the description of the details of the configuration is omitted here.

電子コントロールユニット(ECU)50は、入出力装置、記憶装置(RAM、ROM)、中央処理装置(CPU)等を備えており、当該ECU50により、エンジン1の他、故障判定装置の総合的な制御が行われる。
ECU50の入力側には、上記吸気管圧力センサ3、エアフローセンサ19等の他、エンジン1の冷却水温度を検出する水温センサ18やクランク角を検出するクランク角センサ22等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ22からの情報に基づきエンジン回転速度Neが検出される。
The electronic control unit (ECU) 50 includes an input / output device, a storage device (RAM, ROM), a central processing unit (CPU), and the like. The ECU 50 provides comprehensive control of the failure determination device in addition to the engine 1. Is done.
In addition to the intake pipe pressure sensor 3 and the air flow sensor 19, various sensors such as a water temperature sensor 18 for detecting the coolant temperature of the engine 1 and a crank angle sensor 22 for detecting the crank angle are connected to the input side of the ECU 50. Detection information from these sensors is input. The engine speed Ne is detected based on information from the crank angle sensor 22.

一方、ECU50の出力側には、上記インジェクタ6、点火コイル8、スロットル弁17、可変動弁機構30、故障警告灯24、密閉型開閉弁40のアクチュエータ等の各種出力デバイスが接続されており、インジェクタ6、点火コイル8、スロットル弁17には、上記各種センサ類からの検出情報に応じて燃料噴射量、燃料噴射時期、点火時期、スロットル開度の各信号がそれぞれ出力される。これにより、インジェクタ6からは適正量の燃料が適正時期で噴射され、点火プラグ4により適正時期で火花点火が実施され、さらに、スロットル開度が適正な開度に制御され、密閉型開閉弁40が適宜制御され、可変動弁機構30に対して適正なバルブタイミング指令が行われる。また、故障警告灯24を点灯或いは点滅させて排気圧上昇装置の故障を運転者に知らせる。   On the other hand, on the output side of the ECU 50, various output devices such as the injector 6, the ignition coil 8, the throttle valve 17, the variable valve mechanism 30, the failure warning lamp 24, and the actuator of the sealed on-off valve 40 are connected. The injector 6, the ignition coil 8, and the throttle valve 17 output fuel injection amount, fuel injection timing, ignition timing, and throttle opening signals in accordance with detection information from the various sensors. As a result, an appropriate amount of fuel is injected from the injector 6 at an appropriate time, spark ignition is performed at an appropriate time by the spark plug 4, and the throttle opening is controlled to an appropriate opening. Is appropriately controlled, and an appropriate valve timing command is issued to the variable valve mechanism 30. Further, the failure warning lamp 24 is turned on or blinked to notify the driver of the failure of the exhaust pressure increasing device.

特に、本発明の排気圧上昇手段の故障判定装置では、ECU50には、吸気管圧力センサ3による吸気系圧力情報に基づいて排気圧上昇装置を故障判定する故障判定部51が設けられている。故障判定部51では、吸気系への吹き返し吸気脈動波圧を吸気系圧力情報として検出し、これを排気系圧力と擬制して排気圧上昇装置を故障判定するようにしている(故障判定手段)。   In particular, in the failure determination device for exhaust pressure increase means of the present invention, the ECU 50 is provided with a failure determination unit 51 that determines failure of the exhaust pressure increase device based on intake system pressure information from the intake pipe pressure sensor 3. The failure determination unit 51 detects the blowback intake pulsation wave pressure to the intake system as intake system pressure information, and simulates this as the exhaust system pressure to determine the failure of the exhaust pressure increasing device (failure determination means). .

以下、このように構成された本発明に係る故障判定装置の故障判定制御内容について説明する。
図2乃至図5を参照すると、ECU50の実行する本発明に係る故障判定制御の制御ルーチンがフローチャートで示されており、以下、これらのフローチャートに沿い説明する。具体的には、図2はエンジン1の運転条件を判定するルーチンであり、図3は吹き返し吸気脈動波圧情報を検出するルーチンであり、図4は排気圧上昇装置を作動制御するルーチンであり、図5は故障判定部51において最終的に排気圧上昇装置の故障を判定するルーチンである。
Hereinafter, the failure determination control contents of the failure determination apparatus according to the present invention configured as described above will be described.
Referring to FIGS. 2 to 5, the control routine of the failure determination control according to the present invention executed by the ECU 50 is shown in flowcharts, and will be described below with reference to these flowcharts. Specifically, FIG. 2 is a routine for determining the operating conditions of the engine 1, FIG. 3 is a routine for detecting blow-back intake air pulsation wave pressure information, and FIG. 4 is a routine for controlling the operation of the exhaust pressure raising device. FIG. 5 is a routine for finally determining the failure of the exhaust pressure raising device in the failure determination unit 51.

先ず、エンジン1の運転条件の判定を行うべく、図2のステップS10では、エンジン回転速度Neの変化量の絶対値が所定値ΔN1より小であり、且つ、エンジン回転速度Neが所定値Ne1より大きく所定値Ne2より小さく、且つ、吸入空気量Qaの変化量の絶対値が所定値ΔQ1より小さく、且つ、吸入空気量Qaが所定値Qa1より大きく所定値Qa2より小さいか否かを判別する(運転条件判定手段)。   First, in order to determine the operating condition of the engine 1, in step S10 of FIG. 2, the absolute value of the change amount of the engine rotational speed Ne is smaller than the predetermined value ΔN1, and the engine rotational speed Ne is smaller than the predetermined value Ne1. It is determined whether or not the absolute value of the change amount of the intake air amount Qa is smaller than a predetermined value ΔQ1 and the intake air amount Qa is larger than the predetermined value Qa1 and smaller than the predetermined value Qa2 (larger than the predetermined value Ne2). Operating condition determination means).

即ち、当該故障判定制御では吸気系への吹き返し吸気脈動波圧を吸気系圧力情報として用いるのであるが、ここでは、エンジン1の運転条件が略同一の範囲内にあり、即ちエンジン1が同一条件下で比較的安定した状態にあり、吸気系に発生する吹き返し吸気脈動が略一定の状態にあるか否かを判別する。判別結果が偽(No)の場合には、ステップS14において異条件と判定し、真(Yes)の場合にはステップS12において同一条件と判定する。   That is, in the failure determination control, the blow back intake pulsation wave pressure to the intake system is used as the intake system pressure information. Here, the operating conditions of the engine 1 are within the substantially same range, that is, the engine 1 is in the same condition. It is determined whether or not the blowback intake pulsation generated in the intake system is in a substantially constant state. If the determination result is false (No), it is determined as a different condition in step S14, and if it is true (Yes), it is determined as the same condition in step S12.

なお、このルーチンを実行することにより確実な故障判定が行えるが、排気圧上昇装置の作動前後において排気圧上昇装置以外の排気圧変動の要因がないものとみなし、このルーチンを省くことも可能である。
このようにエンジン1の運転条件の判定が実施されると、図3のステップS20においてエンジン1の運転条件の判別を行い、当該判別により異条件と判定された場合はそのまま当該ルーチンを抜ける。一方、当該判別により同一条件と判定された場合には、ステップS22に進む。
Although it is possible to make a reliable failure determination by executing this routine, it is possible to omit this routine because it is assumed that there is no cause for exhaust pressure fluctuations other than the exhaust pressure increasing device before and after the operation of the exhaust pressure increasing device. is there.
When the determination of the operating condition of the engine 1 is performed as described above, the operating condition of the engine 1 is determined in step S20 of FIG. 3, and if it is determined that the condition is different, the routine is directly exited. On the other hand, if it is determined by the determination that the conditions are the same, the process proceeds to step S22.

ステップS22では、排気圧上昇装置が作動しているか否かを判別する。故障判定を実施する前は排気圧上昇装置については作動させておらず、最初の判別結果は偽(No)であって非作動と判定され、ステップS26に進む。
ステップS26では、排気圧上昇装置が非作動状態であるときの吹き返し吸気脈動波圧情報dP0を吸気管圧力センサ3からの吸気圧情報に基づき検出する(吸気脈動波圧検出手段)。
In step S22, it is determined whether or not the exhaust pressure increasing device is operating. Before performing the failure determination, the exhaust pressure increasing device is not operated, the first determination result is false (No), it is determined to be inactive, and the process proceeds to step S26.
In step S26, the blow-back intake pulsation wave pressure information dP0 when the exhaust pressure increasing device is in an inoperative state is detected based on the intake pressure information from the intake pipe pressure sensor 3 (intake pulsation wave pressure detection means).

具体的には、図6に吸気圧の時間変化を示すように、吸気管圧力センサ3からの吸気圧はエンジン1の回転に応じて周期的に変動しており、ここでは、吸気脈動が生じるエンジン1が吸気行程にある期間のうち、吸気弁11が開弁を開始してから所定期間における吸気圧の最大値と最小値とを検出し、或いは吸気圧の最大値及び最小値のいずれか一方を検出し、これら最大値と最小値或いは最大値または最小値に基づいて吹き返し吸気脈動波圧情報dP0を検出する。なお、吸気圧の最大値や最小値の検出値については、瞬時値であっても所定期間の平均値であってもよく、排気圧上昇装置が非作動状態になった直後である場合には、吸気圧が不安定であるため、所定期間に亘り吹き返し吸気脈動波圧情報dP0を検出しないようにしてもよい。   Specifically, as shown in FIG. 6, the intake pressure from the intake pipe pressure sensor 3 periodically varies according to the rotation of the engine 1, and intake pulsation occurs here. During the period in which the engine 1 is in the intake stroke, the maximum value and the minimum value of the intake pressure in the predetermined period after the intake valve 11 starts to open is detected, or either the maximum value or the minimum value of the intake pressure One of them is detected, and the blow-back intake air pulsation wave pressure information dP0 is detected based on the maximum value and the minimum value or the maximum value or the minimum value. Note that the detected value of the maximum value or the minimum value of the intake pressure may be an instantaneous value or an average value for a predetermined period, and in the case of immediately after the exhaust pressure increasing device becomes inactive. Since the intake pressure is unstable, it is possible not to detect the respiration intake pulsation wave pressure information dP0 for a predetermined period.

詳しくは、吸気脈動波は高周波であり、一般の数百Hz程度の低いサンプリング周波数では吸気圧の最大値や最小値を正確に検出することが困難であることから、ここでは、これら吸気圧の最大値、最小値については、図6に示すようにピークホールド、ボトムホールドするようにし、即ちアナログ情報をデジタル情報として取り込むようにし、ピークホールド値、ボトムホールド値に基づいて吹き返し吸気脈動波圧情報dP0を検出する。   Specifically, the intake pulsation wave is a high frequency, and it is difficult to accurately detect the maximum and minimum values of the intake pressure at a low sampling frequency of about several hundred Hz. As for the maximum value and the minimum value, peak hold and bottom hold are performed as shown in FIG. 6, that is, analog information is taken in as digital information, and the blow back intake pulsation wave pressure information is based on the peak hold value and bottom hold value. Detect dP0.

吹き返し吸気脈動波圧情報dP0については、吸気圧の最大値や最小値の検出値そのものを検出するようにしてもよいし、吸気脈動波圧の相関値として吸気圧の最大値と最小値との差、最大値と最小値との比を検出するようにしてもよく、また、吸気圧の平均値を求めておき、最大値と平均値との差、平均値と最小値との差、最大値と平均値との比、平均値と最小値との比等の指標を検出するようにしてもよい。   As for the blow-back intake pulsation wave pressure information dP0, the detection value itself of the maximum value or the minimum value of the intake pressure may be detected, or the correlation between the intake pulsation wave pressure and the maximum value and the minimum value of the intake pressure. It is also possible to detect the difference, the ratio between the maximum value and the minimum value, and obtain the average value of the intake pressure, the difference between the maximum value and the average value, the difference between the average value and the minimum value, the maximum An index such as a ratio between the value and the average value and a ratio between the average value and the minimum value may be detected.

このように吹き返し吸気脈動波圧情報dP0が検出されたら、図4のステップS30では、排気圧を上昇させる条件が成立したか否かを判別し、判別結果が真(Yes)で排気圧を上昇させる条件が成立したと判定された場合には、ステップS32に進む。なお、排気圧を上昇させる条件が成立したか否かは例えば排気浄化システムに応じて適宜設定される。   When the blow back intake pulsation wave pressure information dP0 is detected in this way, in step S30 in FIG. 4, it is determined whether or not a condition for increasing the exhaust pressure is satisfied, and the exhaust pressure is increased when the determination result is true (Yes). If it is determined that the condition to be satisfied is established, the process proceeds to step S32. Note that whether or not the condition for increasing the exhaust pressure is satisfied is appropriately set according to, for example, the exhaust purification system.

ステップS32では、吹き返し吸気脈動波圧情報dP0の検出が完了しているか否かを判別する。ここでは、上記ステップS26において排気圧上昇装置が非作動状態であるときの吹き返し吸気脈動波圧情報dP0については検出しているので、判別結果は真(Yes)となり、ステップS34に進み、排気圧上昇装置を作動させる。
このように排気圧上昇装置を作動させると、上記ステップS22の判別結果は真(Yes)となり、ステップS24に進む。
In step S32, it is determined whether or not the detection of the blow-back intake pulsation wave pressure information dP0 has been completed. Here, since the blow-back intake air pulsation wave pressure information dP0 when the exhaust pressure increasing device is in the non-operating state is detected in step S26, the determination result is true (Yes), and the process proceeds to step S34. Activate the lifting device.
When the exhaust pressure increasing device is operated in this way, the determination result in step S22 is true (Yes), and the process proceeds to step S24.

ステップS24では、排気圧上昇装置が作動状態であるときの吹き返し吸気脈動波圧情報dP1を吸気管圧力センサ3からの吸気圧情報に基づき、上記吹き返し吸気脈動波圧情報dP0の場合と同様に検出する(吸気脈動波圧検出手段)。なお、上記同様、排気圧上昇装置が作動状態になった直後である場合には、吸気圧が不安定であるため、所定期間に亘り吹き返し吸気脈動波圧情報dP1を検出しないようにしてもよい。   In step S24, the blowback intake pulsation wave pressure information dP1 when the exhaust pressure increasing device is in operation is detected based on the intake pressure information from the intake pipe pressure sensor 3 in the same manner as the blowback intake pulsation wave pressure information dP0. (Intake pulsation wave pressure detecting means). In the same manner as described above, when the exhaust pressure increasing device is immediately after being activated, the intake pressure is unstable, and therefore it may not be detected that the intake pulsating wave pressure information dP1 is blown back for a predetermined period. .

このように吹き返し吸気脈動波圧情報dP1が検出されたら、図4のステップS30において、改めて排気圧を上昇させる条件が成立したか否かを判別し、判別結果が偽(No)で排気圧を上昇させる条件が成立しなくなったと判定された場合には、ステップS36に進む。
ステップS36では、吹き返し吸気脈動波圧情報dP1の検出が完了しているか否かを判別する。ここでは、上記ステップS24において排気圧上昇装置が作動状態であるときの吹き返し吸気脈動波圧情報dP1については検出しているので、判別結果は真(Yes)となり、ステップS38に進み、排気圧上昇装置を非作動とする。
When the blow-back intake pulsation wave pressure information dP1 is detected in this way, in step S30 in FIG. 4, it is determined whether or not the condition for increasing the exhaust pressure is satisfied, and the determination result is false (No). If it is determined that the condition for increasing is no longer satisfied, the process proceeds to step S36.
In step S36, it is determined whether or not the detection of the blow-back intake pulsation wave pressure information dP1 has been completed. Here, since the blow-back intake air pulsation wave pressure information dP1 when the exhaust pressure increasing device is in operation is detected in step S24, the determination result is true (Yes), and the process proceeds to step S38, where the exhaust pressure increases. Deactivate the device.

このように、排気圧上昇装置が非作動状態にあるときの吹き返し吸気脈動波圧情報dP0と排気圧上昇装置が作動状態にあるときの吹き返し吸気脈動波圧情報dP1とがそれぞれ検出されると、図5のステップS40における吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との検出完了判別において、判別結果が真(Yes)となり、ステップS42に進む。   Thus, when the blow-back intake air pulsation wave pressure information dP0 when the exhaust pressure raising device is in the non-operating state and the blow-back intake air pulsation wave pressure information dP1 when the exhaust pressure raising device is in the active state are detected, respectively. In the detection completion determination of the blowback intake pulsation wave pressure information dP0 and the blowback intake pulsation wave pressure information dP1 in step S40 of FIG. 5, the determination result is true (Yes), and the process proceeds to step S42.

ステップS42では、吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との差の絶対値が所定値以上(|dP1−dP0|≧所定値)であるか否かを判別する。即ち、排気圧上昇装置が非作動状態にあるときと排気圧上昇装置が作動状態にあるときとで吸気脈動波圧に差異が生じているか否かを判別する。
なお、ここでは吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との差に基づき判別を行っているが、吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との比に基づき判別を行うようにしてもよく、これら差と比の組み合わせ等に基づいて判別してもよく、また、排気圧上昇装置の作動前後の吸気管圧力センサ3からの吸気圧情報に基づけば如何なる態様の判別を行ってもよい。
In step S42, it is determined whether or not the absolute value of the difference between the blowback intake pulsation wave pressure information dP0 and the blowback intake pulsation wave pressure information dP1 is equal to or greater than a predetermined value (| dP1−dP0 | ≧ predetermined value). That is, it is determined whether or not there is a difference in the intake pulsation wave pressure between when the exhaust pressure increasing device is in an inoperative state and when the exhaust pressure increasing device is in an operating state.
Here, the determination is made based on the difference between the blow-back intake air pulsation wave pressure information dP0 and the blow-back intake air pulsation wave pressure information dP1, but the ratio between the blow-back intake air pulsation wave pressure information dP0 and the blow-back intake air pulsation wave pressure information dP1 The determination may be performed based on a combination of these differences and ratios, and any determination may be made based on the intake pressure information from the intake pipe pressure sensor 3 before and after the operation of the exhaust pressure increasing device. The mode may be determined.

ステップS42の判別結果が真(Yes)で、吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との差の絶対値が所定値以上であり、排気圧上昇装置の作動前後で吸気脈動波圧に十分差異が生じてると判定された場合には、排気圧上昇装置は故障なく正常に機能していると判断でき、この場合にはステップS46に進み、故障していないと判定し、故障警告灯24を消灯状態とする。   The determination result of step S42 is true (Yes), the absolute value of the difference between the blow-back intake air pulsation wave pressure information dP0 and the blow-back intake air pulsation wave pressure information dP1 is not less than a predetermined value, and the intake air pulsation before and after the operation of the exhaust pressure raising device is performed. If it is determined that there is a sufficient difference in the wave pressure, it can be determined that the exhaust pressure increasing device is functioning normally without a failure. In this case, the process proceeds to step S46, where it is determined that there is no failure, The failure warning lamp 24 is turned off.

一方、ステップS42の判別結果が偽(No)で、吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1との差が所定値未満であり、排気圧上昇装置の作動前後で吸気脈動波圧に差異が殆ど生じていないと判定された場合には、排気圧上昇装置は何らかの要因によって正常に機能していない、即ち故障していると判断でき、この場合にはステップS44に進み、故障と判定し、故障警告灯24を点灯或いは点滅する。   On the other hand, the determination result in step S42 is false (No), the difference between the blow-back intake air pulsation wave pressure information dP0 and the blow-back intake air pulsation wave pressure information dP1 is less than a predetermined value, and the intake pulsation wave before and after the operation of the exhaust pressure raising device is performed. If it is determined that there is almost no difference in pressure, it can be determined that the exhaust pressure increasing device is not functioning normally due to some factor, that is, it has failed. In this case, the process proceeds to step S44, where the failure occurs. And the failure warning lamp 24 is turned on or blinked.

そして、ステップS44、S46において故障判定を終了したらステップS48に進み、吹き返し吸気脈動波圧情報dP0と吹き返し吸気脈動波圧情報dP1とをリセットし、次回の故障判定に備える。
このように、本発明の排気圧上昇手段の故障判定装置では、エンジン1の運転条件が略同一の範囲内にあり、吸気系に発生する吹き返し吸気脈動が略一定の状態にあるときに限定して排気圧上昇装置の作動前後の吹き返し吸気脈動波圧情報dP0、dP1を検出し、これら吹き返し吸気脈動波圧情報dP0、dP1に基づいて排気圧上昇装置の故障を判定するようにしている。
When the failure determination is completed in steps S44 and S46, the process proceeds to step S48, where the blow-back intake pulsation wave pressure information dP0 and the blow-back intake pulsation wave pressure information dP1 are reset to prepare for the next failure determination.
As described above, the failure determination device for exhaust pressure increasing means according to the present invention is limited to the case where the operating condition of the engine 1 is within the substantially same range and the blow-back intake air pulsation generated in the intake system is in a substantially constant state. Thus, the blow-back intake air pulsation wave pressure information dP0 and dP1 before and after the operation of the exhaust pressure increase device is detected, and a failure of the exhaust pressure increase device is determined based on the blow-back intake air pulsation wave pressure information dP0 and dP1.

従って、排気圧上昇装置の作動前後の吹き返し吸気脈動波圧情報dP0、dP1を共に同一の吸気脈動の影響下での値にすることができ、吸気脈動の影響を抑制した吹き返し吸気脈動波圧情報dP0、dP1に基づいて、安価な構成にして確実に排気圧上昇装置の故障、例えばバタフライ弁の固着等を判定することができる。
また、この際、吸気弁11が開弁を開始してから所定期間における吸気圧の最大値及び最小値の少なくとも一方を検出し、吸気圧の最大値や最小値の検出値そのもの、或いは、吸気圧の最大値と最小値との差、最大値と最小値との比、最大値と平均値との差、平均値と最小値との差、最大値と平均値との比、平均値と最小値との比等の指標からなる吸気脈動波圧の相関値を吹き返し吸気脈動波圧情報dP0、dP1として検出するようにしているので、吹き返し吸気脈動波圧を代表する吸気圧の最大値や最小値に基づいて吹き返し吸気脈動波圧情報dP0、dP1を検出でき、容易にして精度よく排気圧上昇装置の故障を判定することができる。
Therefore, the blow-back intake air pulsation wave pressure information dP0 and dP1 before and after the operation of the exhaust gas pressure increasing device can be both set to values under the influence of the same intake air pulsation, and the blow-back intake air pulsation wave pressure information in which the influence of the intake air pulsation is suppressed. Based on dP0 and dP1, it is possible to reliably determine the failure of the exhaust gas pressure raising device, for example, the butterfly valve sticking, etc., with an inexpensive configuration.
At this time, at least one of the maximum value and the minimum value of the intake pressure in a predetermined period after the intake valve 11 starts to open is detected, and the detected value of the maximum value or the minimum value of the intake pressure itself, or the intake pressure is detected. The difference between the maximum and minimum pressure, the ratio between the maximum and minimum, the difference between the maximum and average, the difference between the average and minimum, the ratio between the maximum and average, the average and Since the correlation value of the intake pulsation wave pressure, which is an index such as a ratio with the minimum value, is detected as the blow-back intake pulsation wave pressure information dP0, dP1, the maximum value of the intake pressure representative of the blow-back intake pulsation wave pressure, The blow-back intake air pulsation wave pressure information dP0 and dP1 can be detected based on the minimum value, and the failure of the exhaust pressure raising device can be determined easily and accurately.

また、吸気系圧力の最大値をピークホールドするとともに最小値をボトムホールドし、ピークホールド値やボトムホールド値に基づいて吹き返し吸気脈動波圧情報dP0、dP1を検出するようにしているので、上記故障判定制御のサンプリング周波数が低い場合であっても、吸気圧の最大値及び最小値を正確に検出することができ、吹き返し吸気脈動波圧情報dP0、dP1を正確に検出することが可能である。   Further, since the maximum value of the intake system pressure is peak-held and the minimum value is bottom-held, the blow-back intake pulsation wave pressure information dP0 and dP1 is detected based on the peak hold value and the bottom hold value. Even when the sampling frequency of the determination control is low, the maximum value and the minimum value of the intake pressure can be accurately detected, and the blow-back intake pulsation wave pressure information dP0 and dP1 can be accurately detected.

以上で本発明に係る排気圧上昇手段の故障判定装置の実施形態の説明を終えるが、実施形態は上記に限られるものではない。
例えば、上記実施形態では、エンジン1の運転条件の判定を行うにあたり、ステップS10において、エンジン回転速度Neの変化量の絶対値が所定値ΔN1より小であり、且つ、エンジン回転速度Neが所定値Ne1より大きく所定値Ne2より小さく、且つ、吸入空気量Qaの変化量の絶対値が所定値ΔQ1より小さく、且つ、吸入空気量Qaが所定値Qa1より大きく所定値Qa2より小さいか否かを判別するようにしたが、これら4つの条件のうちの少なくとも一つの条件を判別するようなものであってもよい。
This is the end of the description of the embodiment of the failure determination device for exhaust pressure increasing means according to the present invention, but the embodiment is not limited to the above.
For example, in the above embodiment, in determining the operating condition of the engine 1, in step S10, the absolute value of the change amount of the engine rotation speed Ne is smaller than the predetermined value ΔN1, and the engine rotation speed Ne is a predetermined value. It is determined whether or not the absolute value of the change amount of the intake air amount Qa is smaller than the predetermined value ΔQ1 and the intake air amount Qa is larger than the predetermined value Qa1 and smaller than the predetermined value Qa2 larger than Ne1 and smaller than the predetermined value Ne2. However, at least one of these four conditions may be determined.

また、運転条件の判定において吸入空気量Qaを用いるようにしたが、吸入空気量Qaの代わりにスロットル開度、吸気管圧、体積効率、正味平均有効圧、アイドルスピードコントロールバルブ開度を用いるようにしてもよいし、その他の異なる条件を加えてもよい。例えば、エアコンスイッチOFF、パワーステアリングスイッチOFF、電機負荷スイッチOFF、バルブオーバラップが所定範囲、吸気弁11の開弁時期が所定範囲、排気弁15の閉弁時期が所定範囲、車速が所定範囲、EGR弁開度が所定範囲、EGR率が所定範囲、吸気管内温度が所定範囲、エンジン始動後経過時間が所定範囲等である。即ち、吹き返し吸気脈動波圧への影響が略同一となるものであれば、如何なる条件、所定値を用いてもよく、複数の範囲(条件、所定値)を設定するようにしてもよい。さらに、排気圧上昇装置が作動から非作動になる場合と非作動から作動になる場合とで異なる条件、所定値を用いるようにしてもよい。   In addition, the intake air amount Qa is used in the determination of the operating condition, but the throttle opening, intake pipe pressure, volumetric efficiency, net average effective pressure, and idle speed control valve opening are used instead of the intake air amount Qa. Alternatively, other different conditions may be added. For example, the air conditioner switch OFF, the power steering switch OFF, the electrical load switch OFF, the valve overlap is a predetermined range, the opening timing of the intake valve 11 is a predetermined range, the closing timing of the exhaust valve 15 is a predetermined range, and the vehicle speed is a predetermined range. The EGR valve opening degree is a predetermined range, the EGR rate is a predetermined range, the intake pipe temperature is a predetermined range, the elapsed time after engine start is a predetermined range, and the like. That is, any conditions and predetermined values may be used, and a plurality of ranges (conditions and predetermined values) may be set as long as the influence on the blow-back intake pulsation wave pressure is substantially the same. Further, different conditions and predetermined values may be used depending on whether the exhaust pressure increasing device is deactivated from operation or not.

また、上記実施形態では、吹き返し吸気脈動波圧情報dP0が検出されるまで排気圧上昇装置を作動させておらず(ステップS32)、吹き返し吸気脈動波圧情報dP1が検出されるまで排気圧上昇装置を非作動としていないが(ステップS36)、排気圧上昇装置を作動から非作動とした後、吹き返し吸気脈動波圧情報dP0を検出する場合には、吹き返し吸気脈動波圧情報dP0が検出されるのを待たず(ステップS32を実行せず)に、例えば所定期間経過後に他の条件により排気圧上昇装置を作動させるようにしてもよい。   In the above embodiment, the exhaust pressure increasing device is not operated until the blowback intake pulsation wave pressure information dP0 is detected (step S32), and the exhaust pressure increase device is detected until the blowback intake pulsation wave pressure information dP1 is detected. Is not activated (step S36), but after the exhaust pressure increasing device is deactivated from the activated state, when the blow-back intake pulsation wave pressure information dP0 is detected, the blow-back intake pulsation wave pressure information dP0 is detected. For example, the exhaust pressure increasing device may be operated according to other conditions after a predetermined period of time, without waiting for (step S32 is not executed).

なお、上記以外の如何なる場合においても吹き返し吸気脈動波圧情報dP0、dP1が検出されるまで排気圧上昇装置を作動、非作動とするものではなく、必要に応じて吹き返し吸気脈動波圧情報dP0、dP1が未検出でも排気圧上昇装置を作動、非作動させるようにすることを妨げるものではない。
また、上記実施形態では、吸気管圧力センサ3を吸気マニホールド10に設けるようにしたが、吸気管圧力センサ3については吸気管内、サージタンク内等、吹き返し吸気脈動波圧を検出できる場所であれば如何なる場所に設けるようにしてもよく、複数設けるようにしてもよい。
In any case other than the above, the exhaust pressure increasing device is not operated or deactivated until the blow-back intake pulsation wave pressure information dP0, dP1 is detected, and the blow-back intake pulsation wave pressure information dP0, dP0, Even if dP1 is not detected, it does not prevent the exhaust pressure raising device from being activated or deactivated.
In the above-described embodiment, the intake pipe pressure sensor 3 is provided in the intake manifold 10. However, the intake pipe pressure sensor 3 may be any place that can detect the blow-back intake pulsation wave pressure, such as in the intake pipe or surge tank. It may be provided in any place, and a plurality of them may be provided.

また、上記本発明に係る故障判定手法と他の故障判定技術とを組み合わせて故障判定を行うことを妨げるものではない。   Further, the failure determination method according to the present invention and other failure determination techniques are not combined to prevent failure determination.

車両に搭載された本発明に係る排気圧上昇手段の故障判定装置を含むシステムの概略構成図である。1 is a schematic configuration diagram of a system including a failure determination device for exhaust pressure increasing means according to the present invention mounted on a vehicle. エンジンの運転条件を判定するルーチンを示すフローチャートである。It is a flowchart which shows the routine which determines the driving | running condition of an engine. 吹き返し吸気脈動波圧情報を検出するルーチンを示すフローチャートである。It is a flowchart which shows the routine which detects blow-back intake pulsation wave pressure information. 排気圧上昇装置を作動制御するルーチンを示すフローチャートである。It is a flowchart which shows the routine which controls operation | movement of an exhaust-pressure raising apparatus. 最終的に排気圧上昇装置の故障を判定するルーチンを示すフローチャートである。It is a flowchart which shows the routine which finally determines the failure of an exhaust pressure raising apparatus. 吸気圧の時間変化を示す図であって、ピークホールド値及びボトムホールド値を示す図である。It is a figure which shows the time change of intake pressure, Comprising: It is a figure which shows a peak hold value and a bottom hold value.

符号の説明Explanation of symbols

1 エンジン
3 吸気管圧力センサ(吸気系圧力検出手段)
17 スロットル弁
20 排気管(排気通路)
30 三元触媒
40 密閉型開閉弁(排気圧上昇手段)
50 ECU(電子コントロールユニット)
51 故障判定部(故障判定手段)
1 Engine 3 Intake pipe pressure sensor (Intake system pressure detection means)
17 Throttle valve 20 Exhaust pipe (exhaust passage)
30 Three-way catalyst 40 Sealed on-off valve (exhaust pressure increase means)
50 ECU (Electronic Control Unit)
51 Failure determination unit (failure determination means)

Claims (3)

内燃機関の気筒に連通する吸気通路及び排気通路と、
該排気通路の排気系圧力を上昇させる排気圧上昇手段と、
前記吸気通路に設けられ、吸気系圧力を検出する吸気系圧力検出手段と、
該吸気系圧力検出手段の検出情報に基づき、前記吸気通路の吹き返し吸気脈動波圧またはその相関値を検出する吸気脈動波圧検出手段と、
前記吸気脈動波圧検出手段により検出される前記排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値を比較し、比較値が所定値より小さいか否かに基づいて前記排気圧上昇手段の故障を判定する故障判定手段とを備え
前記吹き返し吸気脈動波圧は、吸気弁開時期から所定期間において前記吸気系圧力検出手段により検出される吸気系圧力の最大値及び最小値の少なくとも一方であって、前記吹き返し吸気脈動波圧の相関値は、これら最大値及び最小値の少なくとも一方を含む指標であることを特徴とする排気圧上昇手段の故障判定装置。
An intake passage and an exhaust passage communicating with the cylinder of the internal combustion engine;
Exhaust pressure raising means for raising the exhaust system pressure in the exhaust passage;
An intake system pressure detecting means provided in the intake passage for detecting an intake system pressure;
An intake pulsation wave pressure detection means for detecting a blowback intake pulsation wave pressure of the intake passage or a correlation value thereof based on detection information of the intake system pressure detection means;
A comparison is made between the blow-back intake pulsation wave pressure before and after the operation of the exhaust pressure increase means detected by the intake pulsation wave pressure detection means or a correlation value thereof , and the exhaust pressure increase is based on whether the comparison value is smaller than a predetermined value. and a determining failure determining means a failure of the means,
The blow-back intake pulsation wave pressure is at least one of the maximum value and the minimum value of the intake system pressure detected by the intake system pressure detection means during a predetermined period from the intake valve opening timing, and the correlation between the blow-back intake pulsation wave pressures The failure determination device for exhaust pressure increasing means, wherein the value is an index including at least one of the maximum value and the minimum value .
前記故障判定手段は、内燃機関の運転条件を判定する運転条件判定手段を有し、該運転条件判定手段により内燃機関の運転条件が略同一の範囲内にあると判定されている間の前記排気圧上昇手段の作動前後の吹き返し吸気脈動波圧またはその相関値に基づいて前記排気圧上昇手段の故障を判定することを特徴とする、請求項1記載の排気圧上昇手段の故障判定装置。   The failure determination means includes an operation condition determination means for determining an operation condition of the internal combustion engine, and the exhaust condition while the operation condition of the internal combustion engine is determined to be within substantially the same range by the operation condition determination means. The failure determination device for an exhaust pressure increasing means according to claim 1, wherein a failure of the exhaust pressure increasing means is determined based on the blowback intake pulsation wave pressure before and after the operation of the atmospheric pressure increasing means or a correlation value thereof. 前記吸気脈動波圧検出手段は、前記吸気系圧力検出手段により検出される吸気系圧力の最大値をピークホールドし或いは最小値をボトムホールドすることにより前記吹き返し吸気脈動波圧またはその相関値を検出することを特徴とする、請求項1または2記載の排気圧上昇手段の故障判定装置。 The intake pulsation wave pressure detection means detects the blow-back intake pulsation wave pressure or its correlation value by peak-holding the maximum value of the intake system pressure detected by the intake-system pressure detection means or bottom-holding the minimum value. The failure determination device for exhaust pressure increasing means according to claim 1 or 2 , characterized in that:
JP2004199683A 2004-07-06 2004-07-06 Failure determination device for exhaust pressure raising means Expired - Fee Related JP4310641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199683A JP4310641B2 (en) 2004-07-06 2004-07-06 Failure determination device for exhaust pressure raising means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199683A JP4310641B2 (en) 2004-07-06 2004-07-06 Failure determination device for exhaust pressure raising means

Publications (2)

Publication Number Publication Date
JP2006022672A JP2006022672A (en) 2006-01-26
JP4310641B2 true JP4310641B2 (en) 2009-08-12

Family

ID=35796139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199683A Expired - Fee Related JP4310641B2 (en) 2004-07-06 2004-07-06 Failure determination device for exhaust pressure raising means

Country Status (1)

Country Link
JP (1) JP4310641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813075B2 (en) 2007-10-22 2010-10-12 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for performing metrology on patterned media disks with test pattern areas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674588B2 (en) * 2007-01-26 2011-04-20 トヨタ自動車株式会社 Exhaust control device for internal combustion engine
EP2369164B1 (en) 2008-12-10 2016-03-09 Toyota Jidosha Kabushiki Kaisha Control apparatus of an internal combustion engine
US10513989B2 (en) 2015-09-01 2019-12-24 Jacobs Vehicle Systems, Inc. Method and apparatus for determining exhaust brake failure
KR102057124B1 (en) * 2015-12-27 2020-01-22 자콥스 비히클 시스템즈, 인코포레이티드. Method and apparatus for determining exhaust brake failure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813075B2 (en) 2007-10-22 2010-10-12 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for performing metrology on patterned media disks with test pattern areas

Also Published As

Publication number Publication date
JP2006022672A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7024304B2 (en) Diagnosis system for variable valve controller
JP4306642B2 (en) Internal combustion engine control system
US6792346B2 (en) Diagnostic apparatus for an engine
US7159391B2 (en) Method for restricting excessive temperature rise of filter in internal combustion engine
US7349791B2 (en) Control apparatus for internal combustion engine
JP3783778B2 (en) Failure judgment device for exhaust pressure raising means
JP5168233B2 (en) Engine fuel injection control device
JP4310641B2 (en) Failure determination device for exhaust pressure raising means
JP4655980B2 (en) Control device and control method for internal combustion engine
KR100520254B1 (en) Exhaust purification apparatus of a internal combustion engine
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
WO2012117552A1 (en) Catalyst deterioration determining system
JP5018974B2 (en) Control device for internal combustion engine
JP4946345B2 (en) Control device for internal combustion engine
JP4923803B2 (en) Fuel injection control system for internal combustion engine
JP2008008223A (en) Exhaust gas temperature suppressing device for internal combustion engine
JP2007077857A (en) Operation mode control device for internal combustion engine
JP2008215142A (en) Knocking detection device for internal combustion engine
JP2009264118A (en) Control device for internal combustion engine
JP2007085199A (en) Idle rotation control apparatus for internal combustion engine
JP2008240559A (en) Exhaust emission control system for internal combustion engine
JP4214407B2 (en) Exhaust pressure control device for internal combustion engine
JP2009057838A (en) Control device of internal combustion engine
JP4324787B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006002701A (en) Cylinder injection internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees