JP4309862B2 - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP4309862B2
JP4309862B2 JP2005063286A JP2005063286A JP4309862B2 JP 4309862 B2 JP4309862 B2 JP 4309862B2 JP 2005063286 A JP2005063286 A JP 2005063286A JP 2005063286 A JP2005063286 A JP 2005063286A JP 4309862 B2 JP4309862 B2 JP 4309862B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
row
solid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005063286A
Other languages
Japanese (ja)
Other versions
JP2006253747A (en
Inventor
和也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005063286A priority Critical patent/JP4309862B2/en
Publication of JP2006253747A publication Critical patent/JP2006253747A/en
Application granted granted Critical
Publication of JP4309862B2 publication Critical patent/JP4309862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、固体撮像素子に関するものである。本発明の固体撮像素子は、たとえば電子スチルカメラ、画像入力装置、ムービカメラおよび携帯電話等の分野に適用される。   The present invention relates to a solid-state imaging device. The solid-state imaging device of the present invention is applied to fields such as an electronic still camera, an image input device, a movie camera, and a mobile phone.

特許文献1の固体撮像素子は、互いに隣接する受光素子の行同士において、一方の行における受光素子の配列が他方の行における受光素子の配列に対して該配列間隔のほぼ1/2だけ相対的にずれて配置され、さらに行方向に隣接する受光素子間には2列分の垂直転送路が配置され、斜め方向に隣接する受光素子間には1列分の垂直転送路が配置されるように垂直転送路が受光素子間を蛇行するように半導体基板上に形成された構成を採用する。これにより、画像の空間的サンプリング点を最適化しかつ全画素同時読出しを可能にする。   In the solid-state imaging device of Patent Document 1, in the rows of light receiving elements adjacent to each other, the arrangement of the light receiving elements in one row is relative to the arrangement of the light receiving elements in the other row by approximately half of the arrangement interval. The vertical transfer paths for two columns are arranged between the light receiving elements adjacent in the row direction, and the vertical transfer paths for one column are arranged between the light receiving elements adjacent in the oblique direction. Further, a configuration in which the vertical transfer path is formed on the semiconductor substrate so as to meander between the light receiving elements is adopted. This optimizes the spatial sampling points of the image and allows all pixels to be read simultaneously.

この固体撮像素子は、受光無効領域の上下に配設された受光素子の信号を利用して無効領域の信号を、仮想画素として生成することで等価的に受光素子数の2倍の解像度が得られる信号処理を可能にし、モアレ等の偽信号が抑圧される。この固体撮像素子からは高品質撮像信号が得られる。 This solid-state imaging device uses a signal of a light receiving element disposed above and below the light receiving invalid area to generate a signal in the invalid area as a virtual pixel, thereby obtaining a resolution equivalent to twice the number of light receiving elements. Signal processing, and false signals such as moire are suppressed. A high quality image signal can be obtained from this solid-state image sensor.

固体撮像素子は、上述の受光素子に配置することから、色フィルタやマイクロレンズの形状に対する選択肢が増加し、受光効率を向上でき、受光無効領域を極力排除し高集積化をもたらす。   Since the solid-state imaging device is arranged in the above-described light receiving device, options for the shape of the color filter and the microlens are increased, the light receiving efficiency can be improved, the light receiving invalid region is eliminated as much as possible, and high integration is brought about.

また、この固体撮像素子は製造工程で発生する受光素子と垂直転送路との相対的位置ズレに起因する受光素子間の特性不均一をなくすことができる。製造は、従来の2層重ね合わせ電極構造の製造技術を利用して作成できるので容易である。   In addition, this solid-state imaging device can eliminate unevenness in characteristics between the light receiving elements due to the relative positional deviation between the light receiving element and the vertical transfer path that occurs in the manufacturing process. Manufacture is easy because it can be made using a conventional manufacturing technique of a two-layer superimposed electrode structure.

また、特許文献2の固体撮像装置は、機能を使い分け、占有面積を増加させることなく、解像度を高くし、感度の低下を抑制することを目的に提案される。固体撮像装置は、受光領域を有する半導体基板と、半導体基板の受光領域に行列状に形成された多数の受光素子が画素として配設される。各受光素子は、相対的に広い面積を有する主感光部と相対的に狭い面積を有する従感光部とに分離されている。受光素子それぞれは、少なくとも、主感光部を覆う主カラーフィルタ群と、この主カラーフィルタ群の上方に、少なくとも、主感光部を覆うマイクロレンズ群とが形成される。受光素子は、主感光部および従感光部のいずれからも選択的に画像信号を取り出すことができる。   Further, the solid-state imaging device of Patent Document 2 is proposed for the purpose of increasing the resolution and suppressing the decrease in sensitivity without using the functions properly and increasing the occupied area. In a solid-state imaging device, a semiconductor substrate having a light receiving region and a large number of light receiving elements formed in a matrix in the light receiving region of the semiconductor substrate are arranged as pixels. Each light receiving element is separated into a main photosensitive portion having a relatively large area and a secondary photosensitive portion having a relatively small area. Each of the light receiving elements is formed with at least a main color filter group covering the main photosensitive portion and a micro lens group covering at least the main photosensitive portion above the main color filter group. The light receiving element can selectively extract an image signal from either the main photosensitive portion or the secondary photosensitive portion.

特開平10−136391号公報JP-A-10-136391 特開2003−218343号公報JP2003-218343

ところで、特許文献2における受光素子の主感光部および従感光部は、それぞれ、高感度および低感度に対応する。上述したように受光素子上にマイクロレンズには1つ形成される。これにより受光素子の感度を調整することが難しい。受光素子の感度とその飽和を用いると、読み出した信号のダイナミックレンジが決定される。   Incidentally, the main photosensitive portion and the secondary photosensitive portion of the light receiving element in Patent Document 2 correspond to high sensitivity and low sensitivity, respectively. As described above, one microlens is formed on the light receiving element. This makes it difficult to adjust the sensitivity of the light receiving element. Using the sensitivity of the light receiving element and its saturation, the dynamic range of the read signal is determined.

とくに、この場合の従感光部は主感光部の上方向に配置されている。この従感光部の配置から、この固体撮像装置は、入射光の角度依存性を持つことになる。この依存性は、固体撮像装置にシェーディングを容易に発生させることが予想される。   In particular, the secondary photosensitive portion in this case is arranged above the main photosensitive portion. Due to the arrangement of the secondary photosensitive portion, the solid-state imaging device has an angle dependency of incident light. This dependency is expected to easily generate shading in the solid-state imaging device.

本発明はこのような従来技術の欠点を解消し、高画素化に対応させ、受光素子の感度を調整し易くすることができる固体撮像素子を提供することを目的とする。   It is an object of the present invention to provide a solid-state imaging device that can eliminate such drawbacks of the conventional technology, can cope with an increase in the number of pixels, and can easily adjust the sensitivity of the light receiving device.

本発明は上述の課題を解決するために、半導体基板上に入射光を光電変換により信号電荷を生成する複数の受光素子が配列され、この配列は一方の行における受光素子の配置間隔に対し他方の行の隣接する受光素子と相対的にほぼ1/2の配置間隔だけずらし、この受光素子それぞれに蓄積した信号電荷を列方向に転送させる列転送手段と、この列転送手段からの信号電荷を行方向に転送させる行転送手段とを有する固体撮像素子において、受光素子は、列転送手段の本数を一列おきに間引き、さらに、受光素子は、受光素子の感光領域を相対的に感度の高い第1の受光素子と第1の受光素子より相対的に感度の低い第2の受光素子とに分けて、第1の受光素子は、間引きにより残した列転送手段の一方に信号電荷を読み出す第1のゲート手段が配設され、第2の受光素子は、列転送手段の一方と反対の列転送手段に前記信号電荷を読み出す第2のゲート手段が配設され、第1および第2の受光素子からの信号電荷をそれぞれ異なるタイミングで読み出すことを特徴とする。   In order to solve the above-described problems, the present invention has a plurality of light receiving elements that generate signal charges by photoelectric conversion of incident light on a semiconductor substrate, and this arrangement is different from the arrangement interval of the light receiving elements in one row. The column transfer means for transferring the signal charges accumulated in each of the light receiving elements in the column direction, and the signal charges from the column transfer means In a solid-state imaging device having a row transfer means for transferring in the row direction, the light receiving element thins out the number of column transfer means every other column, and the light receiving element has a relatively high sensitivity in the photosensitive region of the light receiving element. The first light receiving element is divided into a first light receiving element and a second light receiving element that is relatively less sensitive than the first light receiving element, and the first light receiving element reads the signal charge to one of the column transfer means left by thinning. The gate means The second light receiving element is provided with second gate means for reading the signal charge in the column transfer means opposite to one of the column transfer means, and the signal light from the first and second light receiving elements is received. It is characterized by reading at different timings.

本発明の固体撮像素子は、列転送手段の本数を一列おきに間引き、この間引きにより空いた領域を受光素子の感光領域に用いて広げ、第1の受光素子を相対的に感度を高くし高画素化しても信号電荷の十分な生成を可能にし、第2の受光素子を相対的に低くした実画素の情報として信号電荷を読み出す。このように見かけ上、空間的に異なる位置に第1および第2の受光素子を配置することができる。これらにそれぞれ蓄積した信号電荷は、第1および第2のゲート手段から異なるタイミングで読み出すことにより、感度コントロールが容易で正確になる。   In the solid-state imaging device of the present invention, the number of column transfer means is thinned out every other column, and the area vacated by this thinning is used as the photosensitive region of the light receiving element, and the first light receiving element is relatively increased in sensitivity. Even if the pixel is formed, the signal charge can be sufficiently generated, and the signal charge is read out as information of an actual pixel in which the second light receiving element is relatively lowered. In this manner, the first and second light receiving elements can be arranged at spatially different positions. The signal charges respectively stored in these are read from the first and second gate means at different timings, so that sensitivity control is easy and accurate.

次に添付図面を参照して本発明による固体撮像素子の一実施例を詳細に説明する。   Next, an embodiment of a solid-state imaging device according to the present invention will be described in detail with reference to the accompanying drawings.

本実施例は、本発明の固体撮像素子をCCD(Charge Coupled Device)撮像素子10に適用した場合である。本発明と直接関係のない部分について図示および説明を省略する。以下の説明で、信号はその現れる接続線の参照番号で指示する。   In this embodiment, the solid-state imaging device of the present invention is applied to a CCD (Charge Coupled Device) imaging device 10. The illustration and description of parts not directly related to the present invention are omitted. In the following description, the signal is indicated by the reference number of the connecting line in which it appears.

CCD撮像素子10は、受光素子12を画素ずらしさせて配置される。画素ずらしは、互いに隣接する受光素子12の行同士において、一方の行に位置する受光素子の配列が他方の行に位置する受光素子12の配列に対する配列間隔を1/2だけ相対的にずらされる。受光素子12はこの配置により稠密に配置される。通常、CCDには、受光素子12の間に垂直転送路14が形成される。   The CCD image pickup device 10 is arranged by shifting the light receiving device 12 by pixels. In the pixel shift, in the rows of the light receiving elements 12 adjacent to each other, the arrangement of the light receiving elements located in one row is relatively shifted by 1/2 with respect to the arrangement of the light receiving elements 12 located in the other row. . The light receiving elements 12 are densely arranged by this arrangement. Normally, a vertical transfer path 14 is formed between the light receiving elements 12 in the CCD.

本実施例のCCD撮像素子10は、一列おきに蛇行した垂直転送路14を設ける。CCD撮像素子10において従来、垂直転送路のあった、空いた領域は、感光領域に用いる。したがって、感光領域は、従来の感光領域に比べて横方向に拡大されることになる。感光領域の拡大は、受光素子12に蓄積する信号電荷の飽和量を増大させることができる。   The CCD image sensor 10 of the present embodiment is provided with vertical transfer paths 14 meandering every other row. In the CCD image pickup device 10, a vacant area that has conventionally had a vertical transfer path is used as a photosensitive area. Therefore, the photosensitive area is expanded in the lateral direction as compared with the conventional photosensitive area. The enlargement of the photosensitive region can increase the saturation amount of the signal charge accumulated in the light receiving element 12.

さらに、本実施例では受光素子12は、従来の感光領域における画素中心を含む高感度画素16と低感度画素18とに素子分離される点に特徴がある。高感度画素16における感光領域は、従来の感光領域より横方向に広い。低感度画素18は、素子分離と垂直転送路14との間を遮光部材で覆われた領域の一部を開口する。この開口は、従来の感光領域の中心が形成する矩形20の中心に形成する。受光素子12における高感度画素16および低感度画素18の開口部は、従来と同じ構造を有する。したがって、図1の場合、低感度画素18の開口部は、奇数行では右側に設け、偶数行では左側に設ける。このように低感度画素18は、主感度画素16の横方向に形成される。高感度素子16と低感度素子18にはそれぞれ独立したマイクロレンズを形成するとよい。また、高感度素子16と低感度素子18は開口率も調整して形成することもできる。これらにより、受光素子12の感度を制御することができる。   Further, the present embodiment is characterized in that the light receiving element 12 is separated into a high sensitivity pixel 16 and a low sensitivity pixel 18 including the pixel center in the conventional photosensitive region. The photosensitive area in the high sensitivity pixel 16 is wider in the lateral direction than the conventional photosensitive area. The low-sensitivity pixel 18 opens a part of the region covered with the light shielding member between the element isolation and the vertical transfer path 14. This opening is formed at the center of the rectangle 20 formed by the center of the conventional photosensitive region. The openings of the high sensitivity pixel 16 and the low sensitivity pixel 18 in the light receiving element 12 have the same structure as the conventional one. Therefore, in the case of FIG. 1, the opening of the low-sensitivity pixel 18 is provided on the right side in the odd rows and on the left side in the even rows. In this way, the low sensitivity pixel 18 is formed in the horizontal direction of the main sensitivity pixel 16. Independent microlenses may be formed on the high sensitivity element 16 and the low sensitivity element 18, respectively. The high sensitivity element 16 and the low sensitivity element 18 can also be formed by adjusting the aperture ratio. Thus, the sensitivity of the light receiving element 12 can be controlled.

従来の受光素子は2つに感光領域を分離し、主感度画素の上方に低感度画素を形成する。低感度画素は遮光部材で覆われた領域の一部を開口する点で同じである。主感度画素と低感度画素は列方向に形成されることから、受光素子に蓄積した信号電荷は、同じ垂直転送路に読み出すことができる。これに対して、本実施例で低感度画素18は、同じ垂直転送路に読み出すことができない。これは、高感度画素16の感光領域が垂直転送路14の間にあって遮っているからである。そこで、低感度画素18は、蓄積した信号電荷を直近の垂直転送路14に出力する。   A conventional light receiving element separates a photosensitive region into two, and forms a low sensitivity pixel above the main sensitivity pixel. The low-sensitivity pixel is the same in that a part of the area covered with the light shielding member is opened. Since the main sensitivity pixel and the low sensitivity pixel are formed in the column direction, the signal charge accumulated in the light receiving element can be read out to the same vertical transfer path. In contrast, in this embodiment, the low-sensitivity pixel 18 cannot read out to the same vertical transfer path. This is because the photosensitive area of the high-sensitivity pixel 16 is between the vertical transfer paths 14 and is blocked. Therefore, the low sensitivity pixel 18 outputs the accumulated signal charge to the latest vertical transfer path 14.

このような信号電荷の読出しを行なうため受光素子12のトランスファゲート22および24は、高感度画素16および低感度画素18のそれぞれが接する側の垂直転送路14に形成される。トランスファゲート22および24は、黒丸の記号で表す。高感度画素16および低感度画素18をそれぞれ区別して読み出す上で、トランスファゲート22および24は、垂直転送路14の異なるCCDに読み出すように形成される。   In order to read out such signal charges, the transfer gates 22 and 24 of the light receiving element 12 are formed in the vertical transfer path 14 on the side where the high sensitivity pixel 16 and the low sensitivity pixel 18 are in contact with each other. The transfer gates 22 and 24 are represented by black circle symbols. When the high-sensitivity pixel 16 and the low-sensitivity pixel 18 are separately read out, the transfer gates 22 and 24 are formed so as to read out to different CCDs in the vertical transfer path 14.

また、開口部を覆うカラーフィルタセグメントは、G正方RB完全市松パターンを用いる。高感度画素16および低感度画素18を覆うカラーフィルタセグメントは同色にする。カラーフィルタセグメントの配色は同色に限定されない。   The color filter segment covering the opening uses a G square RB complete checkered pattern. The color filter segments covering the high sensitivity pixel 16 and the low sensitivity pixel 18 are the same color. The color arrangement of the color filter segments is not limited to the same color.

このように開口形状が左右に拡大することにより、集光特性によるけられ量が小さくでき、シェーディングに強くすることができる。   By expanding the opening shape to the left and right in this way, the amount of squeezing due to the light condensing characteristic can be reduced and the shading can be strengthened.

垂直転送路14は、前述したように従来のCCD撮像素子に比べて半分だけ形成される。垂直転送路14は、構成要素のCCDに転送電極E1〜E4を単位に対応する。転送電極E1〜E4には、駆動信号V1〜V4がそれぞれ供給される。駆動信号V1〜V4は1フィールドに一つの駆動信号だけフィールドシフトゲートパルスが供給される。信号電荷読出しについては後段で説明する。   As described above, the vertical transfer path 14 is formed in half compared to the conventional CCD image sensor. The vertical transfer path 14 corresponds to the CCD of the constituent element in units of transfer electrodes E1 to E4. Drive signals V1 to V4 are supplied to the transfer electrodes E1 to E4, respectively. The drive signals V1 to V4 are supplied with a field shift gate pulse for one drive signal per field. The signal charge readout will be described later.

CCD撮像素子10は、複数の垂直転送路14と直交する水平転送路26を有する。CCD撮像素子10は、水平転送路26からの信号電荷を電圧に変換するアンプ28を含む。アンプ28は、フローティングディフュージョンアンプである。   The CCD image pickup device 10 has a horizontal transfer path 26 orthogonal to the plurality of vertical transfer paths 14. The CCD image pickup device 10 includes an amplifier 28 that converts the signal charge from the horizontal transfer path 26 into a voltage. The amplifier 28 is a floating diffusion amplifier.

次にCCD撮像素子10の動作を説明する。色Gの行における高感度画素16から信号電荷を読み出す場合、垂直同期信号に同期した駆動信号V1にフィールドシフトパルスを追加し転送電極E1に印加させる。これにより転送電極E1からフィールドシフトゲート22から蓄積した信号電荷が垂直転送路14に読み出される。垂直転送路14に読み出した信号電荷は通常の読出し、すなわち相駆動で水平転送路26に転送する。水平転送路26は、転送された信号電荷をアンプ28に出力する。 Next, the operation of the CCD image sensor 10 will be described. When signal charges are read from the high-sensitivity pixels 16 in the color G row, a field shift pulse is added to the drive signal V1 synchronized with the vertical synchronization signal and applied to the transfer electrode E1. As a result, the signal charge accumulated from the field shift gate 22 from the transfer electrode E1 is read out to the vertical transfer path. The signal charge read to the vertical transfer path 14 is transferred to the horizontal transfer path 26 by normal reading, that is, four- phase driving. The horizontal transfer path 26 outputs the transferred signal charge to the amplifier 28.

次のフィールドで供給される垂直同期信号に同期した駆動信号V3にフィールドシフトパルスを追加し転送電極E3に印加させる。これにより転送電極E3からフィールドシフトゲート22から蓄積した色R/Bの信号電荷が垂直転送路14に読み出される。垂直転送路14に読み出した信号電荷は通常の読出し、すなわち相駆動で水平転送路26に転送する。水平転送路26は、転送された信号電荷をアンプ28に出力する。このように2フィールドで高感度画素16の全信号電荷を読み出すことができる。 A field shift pulse is added to the drive signal V3 synchronized with the vertical synchronization signal supplied in the next field and applied to the transfer electrode E3. As a result, the signal charge of color R / B accumulated from the transfer electrode E3 from the field shift gate 22 is read out to the vertical transfer path. The signal charge read to the vertical transfer path 14 is transferred to the horizontal transfer path 26 by normal reading, that is, four- phase driving. The horizontal transfer path 26 outputs the transferred signal charge to the amplifier 28. In this way, all signal charges of the high sensitivity pixel 16 can be read out in two fields.

次に供給される垂直同期信号に同期した駆動信号V2にフィールドシフトパルスを追加し転送電極E3に印加させる。これにより転送電極E2からフィールドシフトゲート24から蓄積した色Gの信号電荷が垂直転送路14に読み出される。垂直転送路14は、先に色Gの信号電荷を読み出した垂直転送路14と別な垂直転送路14である。この低感度画素18は、従来の受光素子をハニカム配置した際の仮想画素に対応する。この位置の画素を実画素として読み出す。読み出した信号電荷は通常の読出し、すなわち相駆動で水平転送路26に転送する。水平転送路26は、転送された信号電荷をアンプ28に出力する。 Next, a field shift pulse is added to the drive signal V2 synchronized with the supplied vertical synchronization signal and applied to the transfer electrode E3. As a result, the color G signal charge accumulated from the field shift gate 24 from the transfer electrode E2 is read out to the vertical transfer path. The vertical transfer path 14 is a vertical transfer path 14 different from the vertical transfer path 14 from which the color G signal charge has been read out first. The low sensitivity pixel 18 corresponds to a virtual pixel when a conventional light receiving element is arranged in a honeycomb. The pixel at this position is read as an actual pixel. The read signal charges are transferred to the horizontal transfer path 26 by normal reading, that is, four- phase driving. The horizontal transfer path 26 outputs the transferred signal charge to the amplifier 28.

さらに、供給される垂直同期信号に同期した駆動信号V4にフィールドシフトパルスを追加し転送電極E3に印加させる。これにより転送電極E2からフィールドシフトゲート24から蓄積した色R/Bの信号電荷が垂直転送路14に読み出される。実画素として読み出した信号電荷は通常の読出し、すなわち相駆動で水平転送路26に転送する。水平転送路26は、転送された信号電荷をアンプ28に出力する。このように2フィールドで低感度画素18の全信号電荷を読み出すことができる。 Further, a field shift pulse is added to the drive signal V4 synchronized with the supplied vertical synchronization signal and applied to the transfer electrode E3. As a result, the color R / B signal charge accumulated from the field shift gate 24 from the transfer electrode E2 is read out to the vertical transfer path 14. The signal charges read as actual pixels are transferred to the horizontal transfer path 26 by normal reading, that is, four- phase driving. The horizontal transfer path 26 outputs the transferred signal charge to the amplifier 28. Thus, all signal charges of the low sensitivity pixel 18 can be read out in two fields.

高感度画素16および低感度画素18からの信号電荷読出しは、4フィールドで読み出すことができる。受光素子12、とくに高感度画素16の感光領域を広げることができ、感度の異なる低感度画素18も配置することが容易にできる。また、低感度画素18を従来のハニカム配置における仮想画素の位置に配置することができる。これにより、得られた低感度画素18の信号電荷を実信号として取り出し、たとえばこの信号を基に得られる画素データの配置における相関性の判断に利用することができる。この利用により上述した判断における精度を向上させることから、各受光素子12の感度をコントロールし易い。   Signal charge readout from the high sensitivity pixel 16 and the low sensitivity pixel 18 can be performed in four fields. The photosensitive region of the light receiving element 12, especially the high sensitivity pixel 16, can be expanded, and the low sensitivity pixel 18 having different sensitivities can be easily arranged. Further, the low sensitivity pixel 18 can be arranged at the position of the virtual pixel in the conventional honeycomb arrangement. Thereby, the signal charge of the obtained low-sensitivity pixel 18 can be taken out as a real signal, and can be used, for example, for determining the correlation in the arrangement of pixel data obtained based on this signal. Since the accuracy in the above-described determination is improved by using this, the sensitivity of each light receiving element 12 can be easily controlled.

本発明に係る固体撮像素子を適用した実施例におけるCCD固体撮像素子の概略的な構成を示す図である。It is a figure which shows schematic structure of the CCD solid-state image sensor in the Example to which the solid-state image sensor which concerns on this invention is applied.

符号の説明Explanation of symbols

10 CCD撮像素子
12 受光素子
14 垂直転送路
16 高感度画素
18 低感度画素
22、24 フィールドシフトゲート
26 水平転送路
28 アンプ
10 CCD image sensor
12 Light receiving element
14 Vertical transfer path
16 high sensitivity pixels
18 Low sensitivity pixels
22, 24 field shift gate
26 Horizontal transfer path
28 amplifiers

Claims (4)

射光を光電変換して信号電荷を生成する複数の受光素子が半導体基板上に行列状に配列され、該複数の受光素子は、一の行における受光素子の配置間隔に対して該一の隣接する他の行の受光素子相対的にほぼ1/2の配置間隔だけずれて配設され、該受光素子の列に沿って配列されて該受光素子のそれぞれに蓄積された信号電荷を列方向に転送させる複数列の列転送手段と、該列転送手段からの信号電荷を行方向に転送させる行転送手段とを有する固体撮像素子において、
前記複数の受光素子のそれぞれは、第1の受光素子と、第1の受光素子より感度の低い第2の受光素子とからなり、
前記列転送手段は、前記受光素子の列について一列おきに間引かれて配設され第2の受光素子は該間引かれた列の位置に配設され、
1の受光素子は、前記複数列の列転送手段のうちのの列の列転送手段へ前記信号電荷を読み出す第1のゲート手段が配設され、
第2の受光素子は、前記受光素子の列に対して前記一の列の列転送手段と反対列の列転送手段に前記信号電荷を読み出す第2のゲート手段が配設され、
第1の受光素子と第2の受光素子とは、互いに異なるタイミングで駆動されて、第1の受光素子および第2の受光素子から、それぞれ対応する列の前記列転送手段へ信号電荷が読み出され、該列転送手段からの信号電荷が前記行転送手段へと読み出されることを特徴とする固体撮像素子。
A plurality of light receiving elements for generating signal charge through photoelectric conversion of the incident Shako are arranged in a matrix on a semiconductor substrate, said plurality of light receiving elements, said one row with respect to the arrangement interval of the light receiving elements in one row is not only the arrangement interval of the light receiving element is relatively almost half of the other row adjacent to the arranged, the signal charges accumulated in the respective light receiving elements are arranged along the columns of the light receiving element In a solid-state imaging device having a plurality of column transfer means for transferring the signal charges in the column direction and a row transfer means for transferring the signal charges from the column transfer means in the row direction,
Each of the plurality of light receiving elements includes a first light receiving element and a second light receiving element having a lower sensitivity than the first light receiving element,
It said column transfer means is he decimation disposed every other row the columns of the light receiving element, the second light receiving element is disposed at the column position drawn該間,
The first light receiving element, a first gate means for reading one said signal charge to the column transfer means of the column of the column transfer means of said plurality of rows are arranged,
The second light receiving element, wherein the column transfer means of said one row with respect to the column of the light receiving element is disposed a second gate means for reading out the signal charge in the column transfer means opposite row,
The first light receiving element and the second light receiving element are driven at different timings, and signal charges are read from the first light receiving element and the second light receiving element to the column transfer means in the corresponding columns, respectively. is a solid-state imaging device characterized by the signal charge from said column transfer means is read out to the row transfer section.
請求項1または2に記載の固体撮像素子において、前記第1の受光素子および第2の受光素子それぞれには、入射光を集光する集光手段が配設されていることを特徴とする固体撮像素子。 In the solid-state imaging device according to claim 1 or 2, each front Symbol first light receiving element and the second light receiving element, focusing means for focusing the incident light, characterized in that Tei Rukoto disposed Solid-state image sensor. 請求項1に記載の固体撮像素子において、第1の受光素子と第2の受光素子とが行方向において隣り合っていることを特徴とする固体撮像素子。2. The solid-state imaging device according to claim 1, wherein the first light-receiving element and the second light-receiving element are adjacent to each other in the row direction. 請求項1に記載の固体撮像素子において、第2の受光素子は、前記一の行で第1の受光素子の行方向において一方の側に設けられ、前記他の行では前記行方向において他方の側に設けられていることを特徴とする固体撮像素子。2. The solid-state imaging device according to claim 1, wherein the second light receiving element is provided on one side in the row direction of the first light receiving element in the one row, and the other in the row direction in the other row. A solid-state image sensor provided on the side.
JP2005063286A 2005-03-08 2005-03-08 Solid-state image sensor Expired - Fee Related JP4309862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063286A JP4309862B2 (en) 2005-03-08 2005-03-08 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063286A JP4309862B2 (en) 2005-03-08 2005-03-08 Solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2006253747A JP2006253747A (en) 2006-09-21
JP4309862B2 true JP4309862B2 (en) 2009-08-05

Family

ID=37093806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063286A Expired - Fee Related JP4309862B2 (en) 2005-03-08 2005-03-08 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4309862B2 (en)

Also Published As

Publication number Publication date
JP2006253747A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20240006427A1 (en) Imaging device and imaging system
JP5241454B2 (en) Solid-state imaging device and imaging system using the same
US8466998B2 (en) Solid-state image sensor and imaging apparatus equipped with solid-state image sensor
CN110113546B (en) Imaging system and method for combining and reading out adjacent pixel units in pixel array
JP5023480B2 (en) Electronic camera
JP6570384B2 (en) Imaging apparatus and imaging system
JP4858443B2 (en) Digital camera
KR20130038035A (en) Image sensor
JP2009206883A (en) Imaging apparatus, and imaging system employing the same
JP5034215B2 (en) Solid-state imaging device having function of generating focus detection signal
JPH1084507A (en) Active picture element image sensor and its manufacture
JP2011082768A (en) Solid-state imaging apparatus and imaging apparatus
WO2018082156A1 (en) Super-resolution image sensor and construction method thereof
JP2005347733A (en) Solid-state imaging device
JP2010520662A (en) Variable resolution variable sensitivity image sensor
US9294692B2 (en) Image pickup apparatus having photoelectric coversion units, method of driving image pickup apparatus, and method of driving image pickup system
US11728359B2 (en) Image sensor having two-colored color filters sharing one photodiode
JP4309862B2 (en) Solid-state image sensor
JP2008016862A (en) Solid state imaging apparatus
JP2011210748A (en) Ccd type solid-state imaging element and method of manufacturing the same, and imaging device
JP4613137B2 (en) Solid-state image sensor
JP4711630B2 (en) Solid-state image sensor
JP2012182824A (en) Solid-state imaging device having generation function of focus detection signal, and electronic camera
JP4251313B2 (en) Solid-state imaging device
JP4667268B2 (en) Solid-state image sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees