JP4306866B2 - Electronic component tilt adsorption detection method - Google Patents

Electronic component tilt adsorption detection method Download PDF

Info

Publication number
JP4306866B2
JP4306866B2 JP08266699A JP8266699A JP4306866B2 JP 4306866 B2 JP4306866 B2 JP 4306866B2 JP 08266699 A JP08266699 A JP 08266699A JP 8266699 A JP8266699 A JP 8266699A JP 4306866 B2 JP4306866 B2 JP 4306866B2
Authority
JP
Japan
Prior art keywords
electronic component
nozzle
sectional area
cross
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08266699A
Other languages
Japanese (ja)
Other versions
JP2000278000A (en
Inventor
正雄 中根
和幸 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08266699A priority Critical patent/JP4306866B2/en
Publication of JP2000278000A publication Critical patent/JP2000278000A/en
Application granted granted Critical
Publication of JP4306866B2 publication Critical patent/JP4306866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ノズルに吸着された電子部品の姿勢が、傾いているかどうかを検出することにより、電子部品の装着の可否を判定し、電子部品の装着ミスの低減を図った電子部品傾き吸着検出方法に関するものである。
【0002】
【従来の技術】
近年、テクノロジーの発展とともに、電子機器のモバイル化が進み、さらなる電子機器の小型化・軽量化が望まれている。それら電子機器の小型化を実現するために、様々な形状をした微小な電子部品の開発が推し進められている。これら多種にわたる電子部品を、電子部品装着機で装着するためには、吸着した電子部品毎に部品厚みを測定し、ノズル下降距離を算出して制御することで、基板に対する押し付け量を一定にして、装着ミスを低減する必要がある。
【0003】
電子部品の厚みを測定して、ノズル下降距離を算出する装置としては、一次元イメージセンサを用いた電子部品厚み測定装置が知られている。
一次元イメージセンサを用いた電子部品厚み測定装置について、図1を参照して説明する。
電子部品装着機において、電子部品厚み測定装置1は電子部品2を吸着したノズル3が吸着位置から装着位置に移動するまでの間に配設される。この電子部品厚み測定装置1は、ノズル3に吸着された電子部品2に対して平行光束4を照射する投光部5と、電子部品2に遮られた影6を一次元イメージセンサにより撮像する受光部7と、投光部5と受光部7を制御する投光器制御部8と受光器制御部9と、受光部7で撮像された撮像データを演算処理するデータ処理部10と、電子部品種別により異なる部品厚みを記憶する記憶部11と、基板への装着時にノズル下降距離を制御するノズル制御部12で構成されている。
【0004】
以上の構成による電子部品厚み測定装置1の従来の測定動作を、図1,図4及び図5を参照して説明する。
まず、図4(a)に示すように平行光束4を横切るようにノズル3を移動させて、吸着された電子部品2を平行移動させる。
それにより、平行光束4の一部が電子部品2及びノズル3により遮光され、遮光された影6を受光部7の一次元イメージセンサが撮像する。
【0005】
撮像された撮像データをデータ処理部10に入力し、演算処理することによって、一次元イメージセンサ原点21から電子部品下面22までの距離が算出される。
そして、電子部品2が平行光束4内を平行移動する間に、前記測定を連続して行い(図4(b))、それら測定値から最大値Hmaxを算出することで、一次元イメージセンサ原点21から電子部品最下点22までの距離が算出される。
【0006】
この時、最大値Hmaxと、予め記憶部11に記憶されたノズル高さデータ23との差分をとる事で、部品厚み24が求められる。
そして、最大値Hmaxと、予め部品ライブラリとして入力された電子部品データの部品厚みとノズル高さとの合計αを比較して、一致すれば正しい電子部品が正しい姿勢で吸着されていると判断し、装着位置での部品装着を行う。
【0007】
部品装着を行う際のノズル下降距離25は、一次元イメージセンサ原点21から電子部品最下点22までの距離と、一次元イメージセンサ原点21から基板上面26までの予め記憶された距離データとの差分で算出される。
最大値Hmaxと電子部品データの部品厚みとノズル高さとの合計αを比較し、一致しなければ正常に電子部品が吸着されていないと判断して、電子部品の装着は行わない。図5は前記の正常吸着と異常吸着を判定するフローを示す。
【0008】
しかし一般に、電子部品が微小化されるにしたがって、電子部品31の大きさがノズルよりも小さくなり、図6(a)に示すような正常吸着時の電子部品31とノズル穴32の関係の場合は問題はないが、図6(b)に示すような傾き吸着時の電子部品31とノズル穴32の関係の場合は、電子部品31の一部がノズル穴32に入り込むことによって、電子部品31の傾き吸着が生じ、装着ミスが発生し装着率が低下するという問題のあることが知られている。
【0009】
この問題に対して、図4(b)のような傾き吸着状態の場合、図6(b−3)に示すような傾き吸着状態の部品最下点H’maxが図6(a−3)に示すような正常吸着状態の部品最下点Hmaxと同じであるために、装着可能であると判断されてしまい、装着ミスが発生する。
この問題に対する従来の解決手段を、図7(a)(b)を参照して説明する。
【0010】
電子部品厚み測定装置で取得された、一次元イメージセンサ原点から電子部品下面までの距離を用いて、その差分を算出する。
h=H(n)−H(n−1)
h=0である場合、電子部品の下面が平行であり、電子部品が正常に吸着されていると判断して装着を行う。
【0011】
また、h≠0である場合、電子部品の下面が平行でなく、電子部品が傾き吸着であると判断して装着を行わない。
前記の手段により、電子部品の傾き吸着を検出して装着の可否を判定し、電子部品厚みに合わせたノズル下降距離の制御を行って、装着ミスが少なく、生産性の高い電子部品実装機を実現している。
【0012】
【発明が解決しようとする課題】
しかしながら、一次元イメージセンサを用いた電子部品厚み測定装置で、従来の電子部品傾き吸着検出方法を行った場合、図5(c)のように下面が複雑で平らでない電子部品では、図7(d)のように、下式が成立する。
h=H(n)−H(n−1)≠0
このため、電子部品が正常に吸着されているにもかかわらず、電子部品が傾いて吸着されていると誤判定してしまうため、下面が平らでない電子部品には電子部品傾き吸着検出方法を使用できないという問題点があった。
または、下面が平らである部分を選定し、傾き吸着の算出をしなければならないという問題点があった。
【0013】
本発明は、上記従来の問題点に鑑み、下面が平らでないような複雑な形状をした電子部品であっても、さらに傾き吸着状態で電子部品最下点が正常吸着時と同じ場合であっても、傾き吸着を正しく判定でき、ノズル下降距離を正しく算出できるような電子部品傾き吸着検出方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明は、電子部品装着機のノズルに吸着された電子部品が平行光束を横切るように前記ノズルを移動させて、前記電子部品によって遮光された影を一次元イメージセンサで撮像し、撮像データを演算処理することにより、前記ノズルに吸着された電子部品の厚みを算出する電子部品厚み測定装置を用いた電子部品の傾き吸着を検出する電子部品傾き吸着検出方法であって、予め、前記ノズルによる正常吸着状態の電子部品が前記平行光束内を横切るように移動する間に、前記電子部品の厚みを複数回測定し、その測定値を積算することにより前記電子部品の断面積を求め、前記電子部品の断面積を基準値として記憶しておき、その後前記電子部品装着機のノズル前記予め記憶しておいた電子部品と同じ部品厚みを有する電子部品を吸着し装着する場合に、前記吸着した電子部品が前記平行光束内を横切るように移動する間に、前記予め記憶しておいた電子部品の場合と同様にして前記吸着した電子部品の断面積を求め、前記吸着した電子部品の断面積と前記予め記憶しておいた電子部品の断面積の基準値との比較を行うことで前記吸着した電子部品の傾き吸着を検出するものである。また、前記吸着した電子部品の断面積と前記予め記憶しておいた電子部品の断面積の基準値が異なる場合に、前記ノズルにより吸着された電子部品を異常吸着と判定するものである。
即ち、正常吸着状態における、平行光束の光軸方向から見た電子部品の断面積を基準値とし、前記基準値と吸着毎に測定し算出される電子部品の断面積とを比較して、異なることを検出することで、電子部品傾き吸着と判断する。
【0015】
これにより、正常吸着状態の電子部品のみ装着を行うことが可能となり、電子部品の装着ミスの低減を図り、生産性を向上することができる。
【0016】
【発明の実施の形態】
以下、本発明の電子部品傾き吸着検出方法を具体的な実施の形態に基づいて図1〜図3を参照して説明する。
図1は本発明の実施の形態を示す。
投光部5は、ノズル3に吸着された電子部品2に対して平行光束4を照射する。受光部7は、電子部品2に遮られた影6を一次元イメージセンサにより撮像する。投光部制御部8と受光部制御部9は、それぞれ前記投光部5と受光部7を制御する。データ処理部10は、受光部7で撮像された撮像データの演算処理を行いノズル下降距離を算出する。また、従来のものとは異なり電子部品厚みを測定毎に算出して、その合計、即ち平行光束の光軸方向から見た電子部品の断面積を算出する(図2(a)(b)の(a−3),(b−3))。記憶部11は、部品ライブラリとして予め入力された電子部品厚みを記憶するとともに、正常吸着した状態での電子部品の断面積を記憶している。
【0017】
図3は、データ処理部10で算出される部品厚みH(i)の取得から、電子部品の断面積を算出し、正常吸着で有るか、傾き吸着であるかを判断するまでを表したフローである。
(S11)では、データ処理部10で算出された部品厚みH(i)を取得する。iは平行光束が電子部品に対して照射された回数である。即ち、部品厚みの測定回数である。(S12)(S13)では、部品厚みの測定回数だけ部品厚みH(i)を積算することで電子部品の断面積Snを算出する。(S14)におけるβは、予め記憶部11に記憶されている正常吸着時の電子部品の断面積であり、基準値である。(S14)では、測定結果である電子部品の断面積Snと基準値であるβを比較する。この時、Sn≠βであれば、即ち、正常吸着状態の断面積と、測定による電子部品の断面積が異なる場合には、(S15)の傾き吸着として部品装着を行わない。また、Sn=βであれば、即ち、正常吸着状態の断面積と、測定による電子部品の断面積が等しい場合には、(S16)の正常吸着状態であると判断して、ノズル下降距離だけノズル制御部12で制御を行い、電子部品の基板上への装着を行う。
【0018】
以上により、電子部品の断面積を算出することで、電子部品の傾き吸着を検出して、装着ミスを削減し、さらに正常吸着状態の場合には、ノズル下降距離を算出することで、基板への実装を行うものである。
【0019】
【発明の効果】
以上のように本発明によれば、電子部品の下面が平らでないような複雑な形状をした電子部品であっても、さらに、傾き吸着状態で電子部品最下点が正常吸着時と同じ位置であっても、傾き吸着検出を行うための位置の指定及び部品の形状にとらわれず、傾き吸着を正しく判定でき、ノズル下降距離を正しく算出できるような電子部品傾き吸着検出方法が実現できる。これにより、ノズルに吸着された電子部品の姿勢が、傾いているかどうかを検出することが可能となり、電子部品の装着の可否を判定し、電子部品の装着ミスの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の電子部品傾き吸着検出方法を実行する電子部品厚み測定装置及び電子部品傾き吸着検出装置の構成図
【図2】(a)は正常吸着時の電子部品と断面積の関係を示し、(b)は傾き吸着時の電子部品と断面積の関係図
【図3】電子部品の断面積より装着の可否を判定するフロー図
【図4】(a)は平行光束内におけるノズル・電子部品・基板の位置関係を示し、(b)は平行光束内を部品が通過することによって得られる部品外形を説明する図
【図5】電子部品厚みより装着の可否を判定するフロー図
【図6】(a)は正常吸着時の電子部品とノズル穴の関係図で、(b)は傾き吸着時の電子部品とノズル穴の関係図
【図7】(a)は底面の平らな電子部品が傾き吸着をおこした場合を示し、(b)は上記状態における特定位置の高さ測定値を示し、(c)は底面の複雑な電子部品が正常吸着されている場合を示し、(d)は上記状態における特定位置の高さ測定値を示す図
【符号の説明】
1 電子部品厚み測定装置
2 電子部品
3 ノズル
4 平行光束
5 投光部
6 ノズルと電子部品の影
7 受光部
8 投光器制御部
9 受光器制御部
10 データ処理部
11 記憶部
12 ノズル制御部
21 一次元イメージセンサ原点
22 電子部品最下点
23 ノズル高さ
24 電子部品厚み
25 ノズル下降距離
26 基板上面
31 電子部品
32 ノズル穴
[0001]
BACKGROUND OF THE INVENTION
The present invention determines whether or not electronic components can be mounted by detecting whether or not the posture of the electronic component sucked by the nozzle is tilted, and detects electronic component tilt suction that reduces electronic component mounting errors. It is about the method.
[0002]
[Prior art]
In recent years, with the development of technology, electronic devices have become mobile, and further reduction in size and weight of electronic devices is desired. In order to realize miniaturization of these electronic devices, development of minute electronic components having various shapes has been promoted. In order to mount these various electronic components with an electronic component mounting machine, the component thickness is measured for each sucked electronic component, the nozzle descending distance is calculated and controlled, and the pressing amount against the substrate is made constant. There is a need to reduce mounting errors.
[0003]
As an apparatus for measuring the thickness of an electronic component and calculating a nozzle descending distance, an electronic component thickness measuring apparatus using a one-dimensional image sensor is known.
An electronic component thickness measuring apparatus using a one-dimensional image sensor will be described with reference to FIG.
In the electronic component mounting machine, the electronic component thickness measuring device 1 is arranged until the nozzle 3 that sucks the electronic component 2 moves from the suction position to the mounting position. The electronic component thickness measuring apparatus 1 images a light projecting unit 5 that irradiates an electronic component 2 adsorbed by a nozzle 3 with a parallel light beam 4 and a shadow 6 blocked by the electronic component 2 by a one-dimensional image sensor. A light receiving unit 7, a light projecting unit 5, a light projector control unit 8 that controls the light receiving unit 7, a light receiver control unit 9, a data processing unit 10 that performs arithmetic processing on image data captured by the light receiving unit 7, and an electronic component type The storage unit 11 stores different component thicknesses, and the nozzle control unit 12 controls the nozzle descending distance when mounted on the board.
[0004]
A conventional measuring operation of the electronic component thickness measuring apparatus 1 having the above configuration will be described with reference to FIGS.
First, as shown in FIG. 4A, the nozzle 3 is moved so as to cross the parallel light flux 4, and the sucked electronic component 2 is translated.
Thereby, a part of the parallel light beam 4 is shielded by the electronic component 2 and the nozzle 3, and the one-dimensional image sensor of the light receiving unit 7 images the shielded shadow 6.
[0005]
The captured image data is input to the data processing unit 10 and is processed to calculate the distance from the one-dimensional image sensor origin 21 to the electronic component lower surface 22.
Then, while the electronic component 2 moves in the parallel light beam 4 in parallel, the measurement is continuously performed (FIG. 4B), and the maximum value Hmax is calculated from these measurement values, thereby the origin of the one-dimensional image sensor. The distance from 21 to the electronic component lowest point 22 is calculated.
[0006]
At this time, the component thickness 24 is obtained by taking the difference between the maximum value Hmax and the nozzle height data 23 stored in the storage unit 11 in advance.
Then, the maximum value Hmax is compared with the total α of the component thickness and nozzle height of the electronic component data input in advance as a component library, and if they match, it is determined that the correct electronic component is sucked in the correct posture, Parts are mounted at the mounting position.
[0007]
The nozzle lowering distance 25 when mounting components is a distance between the one-dimensional image sensor origin 21 and the electronic component lowest point 22 and pre-stored distance data from the one-dimensional image sensor origin 21 to the substrate upper surface 26. Calculated as a difference.
The sum α of the maximum value Hmax, the component thickness of the electronic component data, and the nozzle height is compared. If they do not match, it is determined that the electronic component is not normally sucked, and the electronic component is not mounted. FIG. 5 shows a flow for determining the normal adsorption and the abnormal adsorption.
[0008]
However, in general, as the electronic component becomes smaller, the size of the electronic component 31 becomes smaller than the nozzle, and the relationship between the electronic component 31 and the nozzle hole 32 at the time of normal suction as shown in FIG. There is no problem, but in the case of the relationship between the electronic component 31 and the nozzle hole 32 at the time of the suction suction as shown in FIG. 6B, a part of the electronic component 31 enters the nozzle hole 32, thereby It has been known that there is a problem that a slanting suction occurs, a mounting error occurs, and the mounting rate decreases.
[0009]
With respect to this problem, in the case of the inclination adsorption state as shown in FIG. 4B, the component lowest point H′max in the inclination adsorption state as shown in FIG. Since it is the same as the component lowest point Hmax in the normal suction state as shown in FIG. 6, it is determined that the component can be mounted, and a mounting error occurs.
Conventional means for solving this problem will be described with reference to FIGS.
[0010]
The difference is calculated using the distance from the origin of the one-dimensional image sensor to the lower surface of the electronic component acquired by the electronic component thickness measuring apparatus.
h = H (n) -H (n-1)
When h = 0, it is determined that the lower surface of the electronic component is parallel and the electronic component is normally sucked, and mounting is performed.
[0011]
If h ≠ 0, the lower surface of the electronic component is not parallel, and it is determined that the electronic component is tilted and suction is not performed.
By the above-mentioned means, it is determined whether or not mounting is possible by detecting the inclination adsorption of the electronic component, and the nozzle lowering distance is controlled according to the thickness of the electronic component, so that an electronic component mounting machine with few mounting errors and high productivity can be obtained. Realized.
[0012]
[Problems to be solved by the invention]
However, when a conventional electronic component tilt adsorption detection method is performed with an electronic component thickness measuring apparatus using a one-dimensional image sensor, an electronic component having a complicated bottom surface as shown in FIG. As shown in d), the following equation holds.
h = H (n) −H (n−1) ≠ 0
For this reason, the electronic component tilt adsorption detection method is used for an electronic component whose bottom surface is not flat because the electronic component is incorrectly attracted even though the electronic component is normally attracted. There was a problem that it was not possible.
Alternatively, there is a problem that it is necessary to select a portion where the lower surface is flat and calculate tilt adsorption.
[0013]
In view of the above-described conventional problems, the present invention is a case where the electronic component lowest point is the same as in normal suction even in an inclined suction state even for an electronic component having a complicated shape whose bottom surface is not flat. Another object of the present invention is to provide an electronic component tilt suction detection method capable of correctly determining tilt suction and calculating a nozzle descending distance correctly.
[0014]
[Means for Solving the Problems]
The present invention moves the nozzle to the electronic component sucked to the nozzle of the electronic component mounting machine crosses the parallel light beam, and imaging a shadow that is blocked by the electronic component in one-dimensional image sensor, the imaging data An electronic component tilt suction detection method for detecting tilt suction of an electronic component using an electronic component thickness measuring device that calculates the thickness of the electronic component sucked by the nozzle by performing an arithmetic process, the method using the nozzle in advance While the electronic component in the normal suction state moves so as to cross the parallel light beam, the thickness of the electronic component is measured a plurality of times, and the cross-sectional area of the electronic component is obtained by integrating the measured values. stores the cross-sectional area of the part as a reference value, then the electronic component having the same part thickness as the electronic component, wherein the previously stored at the nozzle of the electronic component mounting apparatus adsorption When mounted, while the electronic component the suction is moved to cross the plane parallel light beam, we obtain a cross-sectional area of the case and the electronic component described above adsorbed in the same electronic component which the previously stored, wherein in order to detect the adsorbed inclination adsorption of the electronic component by performing the comparison with the reference values of the cross-sectional area of adsorbed electronic component electronic component that has been said previously stored cross-sectional area of the. Further, when the reference value of the cross-sectional area of the electronic component that has been said previously stored cross-sectional area of adsorbed electronic components are different, in which it is determined that abnormal suck the electronic component sucked by the nozzle.
That is, in the normal suction state, the cross-sectional area of the electronic component viewed from the optical axis direction of the parallel light flux is used as a reference value, and the reference value and the cross-sectional area of the electronic component measured and calculated for each suction are compared to be different. By detecting this, it is determined that the electronic component is tilted.
[0015]
As a result, it is possible to mount only an electronic component in a normal suction state, and it is possible to reduce mounting errors of the electronic component and improve productivity.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electronic component inclination adsorption detection method of the present invention will be described with reference to FIGS. 1 to 3 based on specific embodiments.
FIG. 1 shows an embodiment of the present invention.
The light projecting unit 5 irradiates the electronic component 2 sucked by the nozzle 3 with the parallel light beam 4. The light receiving unit 7 images the shadow 6 blocked by the electronic component 2 with a one-dimensional image sensor. The light projecting unit control unit 8 and the light receiving unit control unit 9 control the light projecting unit 5 and the light receiving unit 7, respectively. The data processing unit 10 performs a calculation process on the imaging data captured by the light receiving unit 7 and calculates the nozzle descending distance. Also, unlike the conventional one, the thickness of the electronic component is calculated for each measurement, and the total, that is, the cross-sectional area of the electronic component viewed from the optical axis direction of the parallel light flux is calculated (see FIGS. 2A and 2B). (A-3), (b-3)). The storage unit 11 stores the electronic component thickness input in advance as a component library, and also stores the cross-sectional area of the electronic component in a normally sucked state.
[0017]
FIG. 3 shows a flow from obtaining the component thickness H (i) calculated by the data processing unit 10 to calculating the cross-sectional area of the electronic component and determining whether it is normal suction or inclined suction. It is.
In (S11), the component thickness H (i) calculated by the data processing unit 10 is acquired. i is the number of times the parallel light beam is irradiated to the electronic component. That is, the number of times the part thickness is measured. (S12) In (S13), the cross-sectional area Sn of the electronic component is calculated by integrating the component thickness H (i) by the number of times the component thickness is measured. Β in (S14) is a cross-sectional area of the electronic component at the time of normal suction, which is stored in advance in the storage unit 11, and is a reference value. In (S14), the cross-sectional area Sn of the electronic component as the measurement result is compared with β as the reference value. At this time, if Sn.noteq..beta., That is, if the cross-sectional area of the normal suction state and the cross-sectional area of the electronic component by measurement are different, the component mounting is not performed as tilted suction in (S15). If Sn = β, that is, if the cross-sectional area of the normal suction state is equal to the cross-sectional area of the electronic component measured, it is determined that the normal suction state is (S16), and only the nozzle lowering distance is obtained. Control is performed by the nozzle control unit 12 to mount the electronic component on the substrate.
[0018]
As described above, by calculating the cross-sectional area of the electronic component, it is possible to detect inclination adsorption of the electronic component, reduce mounting mistakes, and, in the normal adsorption state, calculate the nozzle descending distance to the substrate. Is implemented.
[0019]
【The invention's effect】
As described above, according to the present invention, even if the electronic component has a complicated shape such that the lower surface of the electronic component is not flat, the lowest point of the electronic component in the inclined adsorption state is the same position as in normal adsorption. Even in such a case, it is possible to realize an electronic component tilt suction detection method that can correctly determine tilt suction and correctly calculate the nozzle descending distance, regardless of the designation of the position for performing tilt suction detection and the shape of the component. As a result, it is possible to detect whether or not the posture of the electronic component attracted by the nozzle is tilted, determine whether or not the electronic component can be mounted, and reduce mounting mistakes in the electronic component.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electronic component thickness measurement device and an electronic component tilt suction detection device that execute an electronic component tilt suction detection method of the present invention. FIG. 2 (a) is a relationship between an electronic component and a cross-sectional area during normal suction. Fig. 3 (b) is a diagram showing the relationship between the electronic component and the cross-sectional area at the time of tilt adsorption. -Shows the positional relationship between the electronic component and the board, and (b) is a diagram for explaining the external shape of the component obtained by the component passing through the parallel light beam. 6A is a diagram showing the relationship between electronic components and nozzle holes during normal suction, and FIG. 6B is a diagram showing the relationship between electronic components and nozzle holes during tilt suction. FIG. This shows the case where the component has tilted suction, and (b) shows the specific position in the above state. Indicates the height measurement values, (c) shows a case where complex electronic components of the bottom surface is properly adsorbed, (d) is [EXPLANATION OF SYMBOLS] shows a height measurement of the particular position in the state
DESCRIPTION OF SYMBOLS 1 Electronic component thickness measuring apparatus 2 Electronic component 3 Nozzle 4 Parallel light beam 5 Light projection part 6 Nozzle and electronic component shadow 7 Light receiving part 8 Light projector control part 9 Light receiver control part 10 Data processing part 11 Storage part 12 Nozzle control part 21 Primary Original image sensor origin 22 Electronic component lowest point 23 Nozzle height 24 Electronic component thickness 25 Nozzle descending distance 26 Substrate upper surface 31 Electronic component 32 Nozzle hole

Claims (2)

電子部品装着機のノズルに吸着された電子部品が平行光束を横切るように前記ノズルを移動させて、前記電子部品によって遮光された影を一次元イメージセンサで撮像し、撮像データを演算処理することにより、前記ノズルに吸着された電子部品の厚みを算出する電子部品厚み測定装置を用いた電子部品の傾き吸着を検出する電子部品傾き吸着検出方法であって、
予め、前記ノズルによる正常吸着状態の電子部品が前記平行光束内を横切るように移動する間に、前記電子部品の厚みを複数回測定し、その測定値を積算することにより前記電子部品の断面積を求め、前記電子部品の断面積を基準値として記憶しておき、
その後前記電子部品装着機のノズル前記予め記憶しておいた電子部品と同じ部品厚みを有する電子部品を吸着し装着する場合に、前記吸着した電子部品が前記平行光束内を横切るように移動する間に、前記予め記憶しておいた電子部品の場合と同様にして前記吸着した電子部品の断面積を求め、
前記吸着した電子部品の断面積と前記予め記憶しておいた電子部品の断面積の基準値との比較を行うことで前記吸着した電子部品の傾き吸着を検出する電子部品傾き吸着検出方法。
The nozzle is moved so that the electronic component sucked by the nozzle of the electronic component mounting machine crosses the parallel light beam, and the shadow blocked by the electronic component is imaged by a one-dimensional image sensor, and the imaging data is processed. An electronic component inclination adsorption detection method for detecting inclination adsorption of an electronic component using an electronic component thickness measuring device that calculates the thickness of the electronic component adsorbed by the nozzle,
Previously, the cross-sectional area of the electronic component by the electronic components of the normal adsorption state by the nozzle while moving across the said parallel beam, the electronic component and the thickness was measured several times, integrating the measured value And storing the cross-sectional area of the electronic component as a reference value,
Thereafter, the mobile when said electronic part wherein the nozzle of the placement machine to suck the electronic component having the same part thickness as the electronic component stored in advance attached, as electronic component the suction traverses said parallel beam In the meantime, the cross-sectional area of the sucked electronic component is obtained in the same manner as in the case of the electronic component stored in advance ,
Electronic components inclination adsorption method of detecting the adsorbed inclination adsorption of the electronic component by performing the comparison with the reference values of the cross-sectional area of an electronic component wherein the stored adsorbed the sectional area of the electronic component in advance.
前記吸着した電子部品の断面積と前記予め記憶しておいた電子部品の断面積の基準値が異なる場合に、前記ノズルにより吸着された電子部品を異常吸着と判定することを特徴とする請求項1に記載の電子部品傾き吸着検出方法。 If the reference value of the cross-sectional area of the electronic component that has been stored adsorbed to the cross-sectional area of the electronic component the advance differs, claims and judging abnormal suck the electronic component sucked by said nozzle Item 2. The electronic component tilt adsorption detection method according to Item 1.
JP08266699A 1999-03-26 1999-03-26 Electronic component tilt adsorption detection method Expired - Fee Related JP4306866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08266699A JP4306866B2 (en) 1999-03-26 1999-03-26 Electronic component tilt adsorption detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08266699A JP4306866B2 (en) 1999-03-26 1999-03-26 Electronic component tilt adsorption detection method

Publications (2)

Publication Number Publication Date
JP2000278000A JP2000278000A (en) 2000-10-06
JP4306866B2 true JP4306866B2 (en) 2009-08-05

Family

ID=13780765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08266699A Expired - Fee Related JP4306866B2 (en) 1999-03-26 1999-03-26 Electronic component tilt adsorption detection method

Country Status (1)

Country Link
JP (1) JP4306866B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614144B2 (en) 2003-05-13 2009-11-10 Panasonic Corporation Component mounting apparatus
JP4758263B2 (en) * 2005-03-30 2011-08-24 ヤマハ発動機株式会社 Component transfer device, surface mounter and component inspection device
KR20100046149A (en) 2007-08-28 2010-05-06 파나소닉 주식회사 Component placement apparatus
JP4998148B2 (en) * 2007-08-28 2012-08-15 パナソニック株式会社 Component mounting equipment
JP5665648B2 (en) * 2011-05-09 2015-02-04 富士機械製造株式会社 Adsorbent detection method and component mounting apparatus in suction nozzle of component mounting head
WO2017017788A1 (en) * 2015-07-28 2017-02-02 富士機械製造株式会社 Component mounting machine

Also Published As

Publication number Publication date
JP2000278000A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
TW201329439A (en) Method and apparatus for generating a three-dimensional model of a region of interest using an imaging system
KR100915128B1 (en) Control method for mounting parts, mounting tester and mounting system
JP4306866B2 (en) Electronic component tilt adsorption detection method
JP5448136B2 (en) Pickup means selection device and pickup means selection method
JP2007305005A (en) Image processing method and image processor characterized by roundness measurement method
JP2009130058A (en) Method and apparatus for mounting component
JP2008070135A (en) Detecting method of optical axis shift of imaging apparatus and part position detecting method and device
US10727141B2 (en) Method for inspecting sensor package structure, inspection apparatus, and focus assistant loader of inspection apparatus
JP5721222B2 (en) Electronic component mounting equipment
JP4681174B2 (en) Electronic component automatic mounting device
JP3434004B2 (en) Component recognition device and component mounting device
JP2019219357A (en) Imaging apparatus, imaging method, and imaging program
JPH08181493A (en) Parts mounting method and apparatus
JP2007194419A (en) Exposure processing method and manufacturing method of semiconductor device
JP2002243412A (en) Position detecting device
JP3296705B2 (en) Generating device for standard data for component recognition
JP3675646B2 (en) Component recognition apparatus calibration jig, component recognition calibration method using the jig, and component mounting apparatus for handling the calibration jig
JPH07183694A (en) Component mounting apparatus
WO2024111022A1 (en) Component appearance inspection device and component appearance inspection method
JPH07169812A (en) Method of wafer rotary-angle computing
CN217606236U (en) Information acquisition system
JPH08167800A (en) Part mounting equipment
JP2003264400A (en) Method and device for detecting electrode floating of electronic component
US10510569B2 (en) Pattern forming apparatus and manufacturing method for semiconductor device
JP4665679B2 (en) Photomask, distortion detection apparatus thereof, and method of manufacturing semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees