JP4306031B2 - Optical element angle adjustment device for optical equipment - Google Patents

Optical element angle adjustment device for optical equipment Download PDF

Info

Publication number
JP4306031B2
JP4306031B2 JP18959899A JP18959899A JP4306031B2 JP 4306031 B2 JP4306031 B2 JP 4306031B2 JP 18959899 A JP18959899 A JP 18959899A JP 18959899 A JP18959899 A JP 18959899A JP 4306031 B2 JP4306031 B2 JP 4306031B2
Authority
JP
Japan
Prior art keywords
fulcrum
base plate
plate
turning
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18959899A
Other languages
Japanese (ja)
Other versions
JP2001021790A (en
Inventor
達男 藤原
俊孝 大野
審也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18959899A priority Critical patent/JP4306031B2/en
Publication of JP2001021790A publication Critical patent/JP2001021790A/en
Application granted granted Critical
Publication of JP4306031B2 publication Critical patent/JP4306031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレーザ発振器等の光学機器に具備されている光学素子の角度位置を調整するために用いる角度調整装置に関するものである。
【0002】
【従来の技術】
光学機器の一つであるレーザ発振器は、図6にその一例の概略を示す如く、レーザ媒質ガスを封入した容器1内に一対の放電電極2を配置し、該放電電極2の放電によりレーザ媒質ガスを励起させて発生させたレーザ光3を、容器の長手方向に対峙させて配置した共振器ミラーとしての半反射ミラー4、全反射ミラー5,6,7の間でZ字状に繰り返し反射させて共振させ、該レーザ光3の一部をレーザ発振器の前面側にあるレーザ光取出口部の半反射ミラー4から誘導放出させるようにしてある。
【0003】
上記レーザ発振器において、レーザ光3の位置精度(ポインテイング)を安定させることは重要であり、そのため、従来より、ミラーの角度を角度調整装置により調整できるようにしてある。
【0004】
従来の角度調整装置としては、レーザ発振器の後方へ向いている上記全反射ミラー6の部分について図7(イ)(ロ)に一例を示す如く、ベースプレート8の後面側に、表面に全反射ミラー6を取り付けた煽りプレート9を、後方へ向けて引張りばね10を介しほぼ平行に配置して、該引張りばね10により煽りプレート9を常時ベースプレート8側へ引き付けているような力が付与されているようにし、且つ上記ベースプレート8と煽りプレート9との重合部において、上記全反射ミラー6を取り囲む三角形の各頂点位置に、第1支点部O1 と第2支点部O2 と第3支点部O3 とを定め、第1支点部O1 には、先端を球面状に形成した支点軸11をベースプレート8の前面部に突設して、該支点軸11の先端を、煽りプレート9の前面に取り付けた受け部12に当接させ、更に、第2支点部O2 と第3支点部O3 には、先端を球面状に形成した調整ねじ13を、ベースプレート8の前面側より後面側へ突出するようにそれぞれ貫通螺合させて、該各調整ねじ13の先端を、煽りプレート9の前面に取り付けた受け部14に当接させ、第2支点部O2 と第3支点部O3 のいずれか一方又は両方の調整ねじ13の煽りプレート側への突出量を変化させることで、煽りプレート9の煽り角度を支点軸11の先端を支点として変化させることにより、全反射ミラー6の角度を調整できるようにした、所謂キネマティックマウント方式としたものがある(特開平5−82867号公報)。
【0005】
【発明が解決しようとする課題】
ところが、上記キネマティックマウント方式を採用した角度調整装置の場合、その構造上、実装できる引張りばね10が小さいため、支点軸11と受け部12あるいは調整ねじ13と受け部14の接点が少しでも浮いてしまうと、見かけの接触状態は同じでも(調整ねじ13を回していなくても)、微小な角度精度の差が発生するため、レーザ発振器の機能、性能に支障を来す問題がある。特に、煽りプレート9に冷却水流路を通し、該冷却水流路に配管を接続するようにしてある冷却構造付きのものでは、煽りプレート9を動かすときに配管も動かすことになって外力が加わるので、煽りプレート8の角度精度に影響を与える場合がある。
【0006】
又、従来、上記3つの支点部に皿ばねを配置し、各皿ばねにねじを挿入することにより、ベースプレートに対して煽りプレートを引張り勝手又は離し勝手にねじを保持させるようにした皿ばね3点支持方式もあるが、この方式の場合、荷重については大きなものが掛かっていることから、よほど大きな外力が加わらない限り動くことはないが、構造上、煽りプレートには、煽り角度分以上の逃げ孔を大きく設けることになって、プレート面方向に若干のがたを許容できるようにしなければならないので、微小な角度調節をする際に、調整ターゲット位置近傍で、煽り角度の往復動作を行うと、同じ調整ねじ位相に対して、煽りプレートの角度の再現精度が得にくいという問題がある。
【0007】
そこで、本発明は、通常の外力が加わっても煽りプレートの位置安定性を高く保つことができるようにすると共に、調整ねじの往復動作による微調整を行っても、往復動作のヒシテリシスを極小に抑えて角度再現性を高めることができるようにしようとするものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、片面側に光学素子を取り付けた煽りプレートの反対側をベースプレートに向け対峙させて配置し、該両プレートの重なり部における上記光学素子を取り囲む三角形の各頂点位置に、第1支点部と第2支点部と第3支点部とを設定し、上記第1支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレートから圧縮ばね及び両球面軸受に締め付けボルトを挿通させて締付け固定してなる定圧支持機構を組み付け、又、上記第2支点部及び第3支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレート、圧縮ばね及び両球面軸受に調整ねじを挿通させて、該調整ねじの操作で上記第1支点部の球面軸受部を支点に煽りプレートの煽り角度を調整できるようにしてなる煽り調整機構を組み付けた構成とし、更に、上記第2支点部の貫通孔を、第1支点部方向へ延びる長孔とし、上記第3支点部の長孔を、調整ねじが360°の方向に動ける大きさに設定した構成とする。
【0009】
光学素子の角度調整を行う場合には、第2支点部と第3支点部の少なくとも一方の煽り調整機構の調整ねじを操作して煽りプレートの煽り角度を調整するようにする。この際、第1支点部の球面軸受部分に対し、第2支点部の球面軸受部分は1方向の自由度を持ち、第3支点部の球面軸受部分は360°方向の自由度を持つため、調整ねじの進退量に追従して煽りプレートの角度が決められる。
【0010】
又、いずれか1つの支点部のみに煽り調整機構を組み付け、且つ残りの支点部に定圧支持機構を組み付けた構成とした場合は、煽りプレートを一方向にのみ角度調整することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0012】
図1乃至図4は本発明の実施の一形態を示すもので、図6に示したレーザ発振器の前面側にあるレーザ光取出口部に位置する半反射ミラー4の角度を調整する角度調整装置について示す。
【0013】
すなわち、半反射ミラー4を光路孔15に取り付けた煽りプレート16をベースプレート17の後面側に所要間隔を隔てて平行に対峙させて配置して、該両プレート16,17の重なり部における上記半反射ミラー4を取り囲む三角形の各頂点位置に、第1支点部O1 と第2支点部O2 と第3支点部O3 とを定め、第1支点部O1 に定圧支持機構18を組み付け、又、第2支点部O2 と第3支点部O3 に煽り調整機構19と20を組み付ける。
【0014】
上記第1支点部O1 の定圧支持機構18は、図2に詳細を示す如く、煽りプレート16に貫通孔21を設けて、該貫通孔21の前後両端部側に円錐状凹部22a,22bをそれぞれ形成し、該各円錐状凹部22a,22bに、センター孔付きの球面軸受23a,23bをそれぞれ係合させると共に、前部の球面軸受23aの前面に配した座金26とベースプレート17の後面との間に圧縮ばねとしての皿ばね24を介装し、且つ上記ベースプレート17の前面側からベースプレート17、皿ばね24、球面軸受23a、貫通孔21、球面軸受23bに締め付けボルト25を挿通させて締付け固定してなる構成としてある。
【0015】
上記第2支点部O2 の煽り調整機構19は、図3及び図4に詳細を示す如く、煽りプレート16に第1支点部O1 方向へ向けて延びる長孔状の貫通孔27を設けて、該貫通孔27の前後両端部側に円錐状凹部28a,28bをそれぞれ形成し、該各円錐状凹部28a,28bに、センター孔付きの球面軸受29a,29bをそれぞれ係合させ、一方、ベースプレート17に上記貫通孔27よりも大きい貫通孔30を設け、又、外管31の内側に該外管31よりも長い内管32を同芯状に配して、内管32の前端部外周に設けたフランジ33に外管31の前端を固定してなる2重管構造のばねケース34を形成して、該ばねケース34の内管32を上記貫通孔30に挿入すると共に外管31の後端を上記貫通孔30の前端縁に当接させるようにベースプレート17の前面に取り付け、且つ該ばねケース34の外管31と内管32との間に形成された空胴部にコイル状の圧縮ばね35を配して、該圧縮ばね35を、座金36を介して上記前部の球面軸受29aに押接させ、更に、前端につまみ37を有し且つ前端側と後端側のみをねじ部38a,38bとした調整ねじ38を、順次上記ばねケース34の内管32、座金36、球面軸受29a、貫通孔27、球面軸受29bを挿通させて配置して、前端側ねじ部38aを内管32の前端部に螺合させると共に、後端側ねじ部38bを後部球面軸受29bにナット39にて固定してなり、つまみ37の回転操作で調整ねじ38の前後方向の進退移動を球面軸受29a,29bに伝えることにより、第1支点部O1 の球面軸受23a,23bを支点に煽りプレート16の煽り角度を調整できるようにしてある。
【0016】
又、上記第3支点部O3 の煽り調整機構20は、煽りプレート16に設けた貫通孔40の直径を、調整ねじ38が360°の方向に動ける大きさに設定してある点を除いて、上記第2支点部O2 の煽り調整機構19と同様な構成としてあり、同一部分には同一符号が付してある。
【0017】
なお、図1乃至図4において、41はベースプレート17の固定台、42はベースプレート17の前面部に突設してレーザ発振器よりレーザ光3を前方へ放出させるためのレーザ光3用の出射パイプを示す。
【0018】
煽りプレート16に取り付けられている半反射ミラー4の角度を調整する場合には、第2支点部O2 の煽り調整機構19と第3支点部O3 の煽り調整機構20の一方もしくは双方の調整ねじ38を進退移動させて煽りプレート16の煽り角度を調整するようにする。
【0019】
この場合、たとえば、第2支点部O2 の煽り調整機構19の調整ねじ38を、つまみ37の回転操作で進退移動させると、その移動力が球面軸受29a,29bを介して煽りプレート16に伝えられるため、煽りプレート16は、第1支点部O1 の球面軸受23a,23bと第3支点部O3 の球面軸受29a,29bを支点として傾動させられることになる。又、同様に、第3支点部O3 の煽り調整機構20を操作すると、煽りプレート16は、第1支点部O1 の球面軸受23a,23bと第2支点部O2 の球面軸受29a,29bを支点として傾動させられることになる。
【0020】
上記において、第2支点部O2 の煽り調整機構19における煽りプレート16の貫通孔27は第1支点部O1 の方向へ向け延びる長孔としてあるため、煽りプレート16の煽り角度の調整時には、一方向の自由度をもち、又、第3支点部O3 の煽り調整機構20における煽りプレート16の貫通孔27は、調整ねじ38が360°動けるように大きくしてあるため、煽りプレート16の煽り角度の調整時には、プレート面方向の自由度をもつため、煽りプレート16は、各調整ねじ38の移動に追従することができる。
【0021】
又、各煽り支点は球面軸受によって構成されていて、第1支点部O1 、第2支点部O2 、第3支点部O3 の順で位置エネルギーが安定する系となっていること、更には、煽りプレート16とベースプレート17との間には、圧縮ばね35や皿ばね24等により大きな離反荷重を掛けることができることから、ベースプレート17に対する煽りプレート16の位置関係を一意に決めることができて、高い位置安定性を得ることができると共に、調整ねじ38を往復動作させても位置再現性の高い系を実現することができる。
【0022】
なお、上記実施の形態では、第1支点部O1 に定圧支持機構を組み付けた場合を示したが、図5に示す如く、第1支点部O1 に、第2支点部O2 や第3支点部O3 と同様な構成の煽り調整機構43を組み付けた構成とすることもできる。図中図2、図3と同一部分には同一符号が付してある。
【0023】
図5に示すような構成とすると、煽りプレート16の煽り角度調整は勿論のこと、煽りプレート16をベースプレート17に対して並進移動調整することもできるようになり、半反射ミラー4の位置調整範囲を拡大することができる。
【0024】
又、いずれか一つの支点部O1 、O2 又はO3 のみに、煽り調整機構43、19又は20を組み付けた構成としても、煽りプレート16の一方向のみの煽り角度調整を、高い位置安定性と再現性をもって実現することができる。
【0025】
更に、上記実施の形態では、煽り調整機構にコイル状の圧縮ばね35を組み込んで用いた場合を示したが、皿ばねを用いるようにしてもよく、したがって、この場合、たとえば、図2に示す如く前部の球面軸受とベースプレート17との間に皿ばねを直接組み込むスペースがあれば、図3に示すようなばねケース34は不要であること、又、実施の形態では、図6のレーザ発振器の半反射ミラー4の部分への適用例について示したが、他の全反射ミラーの部分についても同様に適用できること、更に、レーザ発振器以外の光学機器による光ビームの指向角度を調整する部分についても同様に適用できること、すなわち、ミラーに限らず、レンズやプリズム等の光学素子を用いた部分であれば適宜採用できること、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0026】
【発明の効果】
以上述べた如く、本発明の光学機器の光学素子角度調整装置によれば、片面側に光学素子を取り付けた煽りプレートの反対側をベースプレートに向け対峙させて配置し、該両プレートの重なり部における上記光学素子を取り囲む三角形の各頂点位置に、第1支点部と第2支点部と第3支点部とを設定し、上記第1支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレートから圧縮ばね及び両球面軸受に締め付けボルトを挿通させて締付け固定してなる定圧支持機構を組み付け、又、上記第2支点部及び第3支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレート、圧縮ばね及び両球面軸受に調整ねじを挿通させて、該調整ねじの操作で上記第1支点部の球面軸受部を支点に煽りプレートの煽り角度を調整できるようにしてなる煽り調整機構を組み付けた構成としてあるので、煽りプレートの角度調整時の支点を圧縮ばねによる大きな荷重で保持することができて、高い位置安定性と位置再現性を得ることができると共に、球面軸受と調整ねじの組み合わせにより、調整ねじに煽りプレートを正確に追従させることができて、効率的に調整を行うことができ、したがって、産業用大出力レーザ発振器等の精度の要求される光学機器の光学素子の位置、角度を正確に調整することができ、たとえば、振動や冷却水ホース(配管)の引き回しにより外力の加わる可能性が高い系においても、安定した位置保持力、位置再現性を実現することができる。又、上記第2支点部の貫通孔を、第1支点部方向へ延びる長孔とし、上記第3支点部の長孔を、調整ねじが360°の方向に動ける大きさに設定した構成とすることにより、第2支点部は1方向の自由度を持ち、第3支点部は2方向の自由度を持つことができて調整ねじに追従して煽りプレートの角度を決めることができ、更に、いずれか1つの支点部のみに煽り調整機構を組み付け、且つ残りの支点部に定圧支持機構を組み付けた構成とすることによって、煽りプレートの一方向のみの煽り角度調整を安定して行うことができる、等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の光学機器の光学素子角度調整装置の実施の一形態を示す正面図である。
【図2】図1のA−A方向矢視図である。
【図3】図1のB−B方向矢視図である。
【図4】図3のC−C方向矢視図である。
【図5】本発明の実施の他の形態を示す部分断面図である。
【図6】レーザ発振器の一例を示す概略図である。
【図7】従来の角度調整装置の一例を示すもので、(イ)は正面図、(ロ)は(イ)の切断側面図である。
【符号の説明】
4 半反射ミラー(光学素子)
16 煽りプレート
17 ベースプレート
18 定圧支持機構
19,20 煽り調整機構
21 貫通孔
22a,22b 円錐状凹部
23a,23b 球面軸受
24 皿ばね(圧縮ばね)
25 締め付けボルト
27 貫通孔
28a,28b 円錐状凹部
29a,29b 球面軸受
30 貫通孔
35 圧縮ばね
38 調整ねじ
40 貫通孔
43 煽り調整機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an angle adjusting device used for adjusting the angular position of an optical element provided in an optical apparatus such as a laser oscillator.
[0002]
[Prior art]
A laser oscillator, which is one of the optical devices, has a pair of discharge electrodes 2 disposed in a container 1 filled with a laser medium gas, as shown schematically in FIG. The laser beam 3 generated by exciting the gas is repeatedly reflected in a Z-shape between the semi-reflective mirror 4 and the total reflection mirrors 5, 6, 7 that are arranged facing each other in the longitudinal direction of the container. Thus, a part of the laser beam 3 is stimulated and emitted from the semi-reflective mirror 4 at the laser beam extraction portion on the front side of the laser oscillator.
[0003]
In the laser oscillator, it is important to stabilize the positional accuracy (pointing) of the laser beam 3, and therefore, the angle of the mirror can be conventionally adjusted by an angle adjusting device.
[0004]
As a conventional angle adjusting device, the part of the total reflection mirror 6 facing rearward of the laser oscillator has a total reflection mirror on the surface on the rear side of the base plate 8 as shown in FIGS. The twist plate 9 with 6 attached thereto is arranged substantially in parallel via the tension spring 10 toward the rear, and the tension spring 10 applies a force that always attracts the twist plate 9 to the base plate 8 side. In the overlapping portion of the base plate 8 and the turn plate 9, the first fulcrum portion O 1 , the second fulcrum portion O 2, and the third fulcrum portion O are located at the respective vertex positions of the triangle surrounding the total reflection mirror 6. 3 and the first fulcrum portion O 1 is provided with a fulcrum shaft 11 whose tip is formed in a spherical shape protruding from the front surface of the base plate 8, and the tip of the fulcrum shaft 11 is placed on the front surface of the turn plate 9. take Is brought into contact only received 12, further, the second fulcrum portion O 2 and the third fulcrum O 3, an adjusting screw 13 forming the tip in a spherical shape, protruding toward the rear side from the front surface side of the base plate 8 In this manner, the adjustment screw 13 is brought into contact with the receiving portion 14 attached to the front surface of the turn plate 9, and either the second fulcrum portion O 2 or the third fulcrum portion O 3 is engaged. The angle of the total reflection mirror 6 can be adjusted by changing the protrusion angle of the one or both adjustment screws 13 toward the turning plate side to change the turning angle of the turning plate 9 with the tip of the fulcrum shaft 11 as the fulcrum. There is a so-called kinematic mount system (Japanese Patent Laid-Open No. 5-82867).
[0005]
[Problems to be solved by the invention]
However, in the case of the angle adjusting device adopting the kinematic mounting method, since the tension spring 10 that can be mounted is small due to its structure, the contact point between the fulcrum shaft 11 and the receiving portion 12 or the adjusting screw 13 and the receiving portion 14 is slightly lifted. Therefore, even if the apparent contact state is the same (even if the adjusting screw 13 is not turned), a minute difference in angular accuracy occurs, which causes a problem in the function and performance of the laser oscillator. In particular, in the case with a cooling structure in which the cooling water passage is passed through the turning plate 9 and the piping is connected to the cooling water passage, when the turning plate 9 is moved, the piping is also moved and an external force is applied. The angle accuracy of the turning plate 8 may be affected.
[0006]
Conventionally, a disc spring 3 has been provided in which a disc spring is disposed at each of the three fulcrum portions, and a screw is inserted into each disc spring, whereby the twist plate is pulled or released from the base plate. There is also a point support method, but in this method, since a large load is applied, it does not move unless a very large external force is applied, but due to the structure, the twist plate has a twist angle more than Since a large relief hole must be provided to allow a slight play in the plate surface direction, a reciprocating operation at a turning angle is performed in the vicinity of the adjustment target position when performing a fine angle adjustment. There is a problem that it is difficult to obtain the accuracy of the angle of the turn plate for the same adjustment screw phase.
[0007]
Therefore, the present invention makes it possible to keep the position stability of the turning plate high even when a normal external force is applied, and minimizes the hysteresis of the reciprocating operation even if fine adjustment is performed by the reciprocating operation of the adjusting screw. This is intended to suppress the angle reproducibility and improve the angle reproducibility.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention is arranged such that the opposite side of the turn plate with the optical element attached to one side faces the base plate, and each of the triangles surrounding the optical element in the overlapping portion of the two plates A first fulcrum part, a second fulcrum part, and a third fulcrum part are set at the apex position, and the first fulcrum part is provided with a through hole in the turn plate, and conical recesses are formed at both ends of the through hole. And a spherical bearing with a center hole is engaged with each conical recess, a compression spring is interposed between the base plate side spherical bearing and the base plate, and the compression spring and both A constant pressure support mechanism in which a tightening bolt is inserted and fixed to the spherical bearing is assembled, and a through hole is provided in the turn plate at the second fulcrum part and the third fulcrum part. Conical recesses are formed on both ends of the through-holes, and spherical bearings with center holes are respectively engaged with the conical recesses, and a compression spring is interposed between the base plate-side spherical bearing and the base plate. And an adjustment screw is inserted through the base plate, compression spring and both spherical bearings, and the turning angle of the plate can be adjusted by turning the spherical bearing portion of the first fulcrum portion as a fulcrum by operating the adjustment screw. The adjustment mechanism is assembled, and the through hole of the second fulcrum portion is a long hole extending in the direction of the first fulcrum portion, and the adjustment screw can move in the 360 ° direction of the long hole of the third fulcrum portion. The configuration is set to the size.
[0009]
When adjusting the angle of the optical element, the turning angle of the turning plate is adjusted by operating the adjustment screw of the turning adjustment mechanism of at least one of the second fulcrum part and the third fulcrum part. At this time, the spherical bearing part of the second fulcrum part has a degree of freedom in one direction and the spherical bearing part of the third fulcrum part has a degree of freedom in the direction of 360 ° with respect to the spherical bearing part of the first fulcrum part. The angle of the turning plate is determined following the amount of advancement and retraction of the adjusting screw.
[0010]
Further, when the turning adjustment mechanism is assembled to only one of the fulcrum portions and the constant pressure support mechanism is assembled to the remaining fulcrum portions, the angle of the turning plate can be adjusted only in one direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
1 to 4 show an embodiment of the present invention, and an angle adjusting device for adjusting the angle of the semi-reflective mirror 4 located at the laser light extraction port on the front side of the laser oscillator shown in FIG. Show about.
[0013]
That is, the turning plate 16 having the semi-reflecting mirror 4 attached to the optical path hole 15 is disposed on the rear surface side of the base plate 17 so as to face each other in parallel with a predetermined interval, and the semi-reflecting at the overlapping portion of the plates 16 and 17 is arranged. A first fulcrum portion O 1 , a second fulcrum portion O 2, and a third fulcrum portion O 3 are defined at each vertex position of a triangle surrounding the mirror 4, and a constant pressure support mechanism 18 is assembled to the first fulcrum portion O 1. The turn adjusting mechanisms 19 and 20 are assembled to the second fulcrum part O 2 and the third fulcrum part O 3 .
[0014]
As shown in detail in FIG. 2, the constant pressure support mechanism 18 of the first fulcrum portion O 1 is provided with a through hole 21 in the turn plate 16, and conical recesses 22 a and 22 b at the front and rear end portions of the through hole 21. The spherical bearings 23a and 23b with center holes are respectively engaged with the conical recesses 22a and 22b, and a washer 26 disposed on the front surface of the front spherical bearing 23a and the rear surface of the base plate 17 are formed. A disc spring 24 as a compression spring is interposed between the base plate 17 and the base plate 17, the disc spring 24, the spherical bearing 23a, the through hole 21, and the spherical bearing 23b from the front side of the base plate 17. It is set as the structure which consists of.
[0015]
As shown in detail in FIGS. 3 and 4, the turning adjustment mechanism 19 of the second fulcrum portion O 2 is provided with a long through hole 27 extending in the direction of the first fulcrum portion O 1 in the turning plate 16. The conical recesses 28a and 28b are respectively formed on the front and rear end portions of the through-hole 27, and the spherical bearings 29a and 29b with center holes are engaged with the conical recesses 28a and 28b, respectively. 17 is provided with a through hole 30 larger than the through hole 27, and an inner tube 32 longer than the outer tube 31 is arranged concentrically on the inner side of the outer tube 31. A spring case 34 having a double-pipe structure is formed by fixing the front end of the outer tube 31 to the provided flange 33, and the inner tube 32 of the spring case 34 is inserted into the through hole 30 and the rear of the outer tube 31. The end is brought into contact with the front end edge of the through hole 30. A coiled compression spring 35 is disposed in a cavity formed between the outer tube 31 and the inner tube 32 of the spring case 34 and attached to the front surface of the spring plate 34. And the adjusting screw 38 having the knob 37 at the front end and the screw portions 38a, 38b only on the front end side and the rear end side in turn. The inner tube 32, the washer 36, the spherical bearing 29a, the through hole 27, and the spherical bearing 29b are inserted and arranged so that the front end side screw portion 38a is screwed to the front end portion of the inner tube 32 and the rear end side screw portion. 38b is fixed to the rear spherical bearing 29b by the nut 39, and the rotation of the knob 37 transmits the forward / backward movement of the adjusting screw 38 to the spherical bearings 29a and 29b, thereby causing the spherical surface of the first fulcrum O 1 to move. Bearing 23a, 23b It is also available adjust the tilt angle of the tilt plate 16 to the point.
[0016]
Further, the turning adjustment mechanism 20 of the third fulcrum portion O 3 is except that the diameter of the through hole 40 provided in the turning plate 16 is set to a size that allows the adjustment screw 38 to move in the direction of 360 °. The second fulcrum portion O 2 has the same configuration as the turning adjustment mechanism 19, and the same portions are denoted by the same reference numerals.
[0017]
1 to 4, reference numeral 41 denotes a fixing base for the base plate 17, 42 denotes a projecting pipe for the laser light 3 that protrudes from the front surface of the base plate 17 and emits the laser light 3 forward from the laser oscillator. Show.
[0018]
When adjusting the angle of the semi-reflective mirror 4 attached to the turn plate 16, adjustment of one or both of the turn adjustment mechanism 19 of the second fulcrum portion O 2 and the turn adjustment mechanism 20 of the third fulcrum portion O 3 is performed. The turning angle of the turning plate 16 is adjusted by moving the screw 38 forward and backward.
[0019]
In this case, for example, when the adjusting screw 38 of the turning adjustment mechanism 19 of the second fulcrum portion O 2 is moved forward and backward by rotating the knob 37, the moving force is transmitted to the turning plate 16 through the spherical bearings 29a and 29b. is therefore, tilting plate 16 will be allowed to tilt the first fulcrum O 1 of the spherical bearing 23a, 23b and the third fulcrum portion O 3 spherical bearing 29a, and 29b as a fulcrum. Similarly, when the turning adjustment mechanism 20 of the third fulcrum portion O 3 is operated, the turning plate 16 causes the spherical bearings 23a and 23b of the first fulcrum portion O 1 and the spherical bearings 29a and 29b of the second fulcrum portion O 2 to be used. Will be tilted around the fulcrum.
[0020]
In the above, since the through hole 27 of the turn plate 16 in the turn adjustment mechanism 19 of the second fulcrum portion O 2 is a long hole extending in the direction of the first fulcrum portion O 1 , when adjusting the turn angle of the turn plate 16, The through hole 27 of the turn plate 16 in the turn adjustment mechanism 20 of the third fulcrum portion O 3 has a degree of freedom in one direction, and is enlarged so that the adjustment screw 38 can move 360 °. At the time of adjusting the turning angle, the turning plate 16 can follow the movement of each adjusting screw 38 because it has a degree of freedom in the plate surface direction.
[0021]
Further, each turning fulcrum is constituted by a spherical bearing, and the potential energy is stabilized in the order of the first fulcrum part O 1 , the second fulcrum part O 2 , and the third fulcrum part O 3. Since a large separation load can be applied between the turn plate 16 and the base plate 17 by the compression spring 35, the disc spring 24, etc., the positional relationship of the turn plate 16 with respect to the base plate 17 can be uniquely determined. High positional stability can be obtained, and a system with high position reproducibility can be realized even if the adjusting screw 38 is reciprocated.
[0022]
In the above embodiment, the case assembled with the constant pressure supporting mechanism in the first fulcrum portion O 1, as shown in FIG. 5, the first fulcrum portion O 1, second fulcrum portion O 2 or the third It can also be a fulcrum O 3 and configuration assembled with the tilt adjustment mechanism 43 of the same structure. In the figure, the same parts as those in FIGS. 2 and 3 are denoted by the same reference numerals.
[0023]
If the configuration as shown in FIG. 5 is adopted, not only the turning angle of the turn plate 16 but also the turn plate 16 can be translated and adjusted with respect to the base plate 17, and the position adjustment range of the semi-reflective mirror 4 can be adjusted. Can be enlarged.
[0024]
Further, even when the turning adjustment mechanism 43, 19 or 20 is assembled to only one of the fulcrum portions O 1 , O 2 or O 3 , the turning angle adjustment in only one direction of the turning plate 16 is highly stable. And can be realized with reproducibility.
[0025]
Furthermore, in the above-described embodiment, the case where the coiled compression spring 35 is incorporated and used in the twist adjusting mechanism is shown. However, a disc spring may be used. Therefore, in this case, for example, as shown in FIG. If there is a space for directly incorporating a disc spring between the front spherical bearing and the base plate 17 as described above, the spring case 34 as shown in FIG. 3 is unnecessary, and in the embodiment, the laser oscillator of FIG. 6 is used. Although an example of application to the part of the semi-reflective mirror 4 is shown, it can be applied to other parts of the total reflection mirror in the same manner, and also to a part for adjusting the directivity angle of the light beam by an optical device other than the laser oscillator Applicable in the same way, that is, not only a mirror but also a part using an optical element such as a lens or a prism can be adopted as appropriate, and departs from the gist of the present invention. It is needless to say that various changes and modifications may be made in the stomach area.
[0026]
【The invention's effect】
As described above, according to the optical element angle adjustment device of the optical apparatus of the present invention, the opposite side of the turning plate having the optical element attached on one side is arranged facing the base plate, and the overlapping portion of the two plates is arranged. A first fulcrum part, a second fulcrum part and a third fulcrum part are set at each vertex position of a triangle surrounding the optical element, and a through-hole is provided in the turn plate in the first fulcrum part, Conical recesses are formed on both ends of the hole, respectively, and a spherical bearing with a center hole is engaged with each of the conical recesses, and a compression spring is interposed between the base plate side spherical bearing and the base plate, In addition, a constant pressure support mechanism in which a tightening bolt is inserted and fixed from the base plate to the compression spring and both spherical bearings is assembled, and the second fulcrum part and the third fulcrum part have a twist. A through hole is provided in the rate, conical recesses are formed on both end sides of the through hole, and a spherical bearing with a center hole is engaged with each conical recess, respectively, and the base plate side spherical bearing and the base plate A compression spring is interposed between the base plate, the compression spring, and both spherical bearings, and an adjustment screw is inserted through the spherical bearing. By operating the adjustment screw, the spherical bearing portion of the first fulcrum portion is turned as a fulcrum and the plate is turned. Since it has a structure that incorporates a tilt adjustment mechanism that makes it possible to adjust the angle, it can hold the fulcrum when adjusting the angle of the tilt plate with a large load from the compression spring, and achieves high position stability and position repeatability. In addition, the combination of the spherical bearing and the adjustment screw allows the adjustment screw to follow the adjustment plate accurately, making adjustments efficiently. Therefore, it is possible to accurately adjust the position and angle of the optical element of an optical device that requires high accuracy such as an industrial high-power laser oscillator, for example, by vibration or routing of a cooling water hose (pipe). Even in a system where there is a high possibility that an external force is applied, stable position holding force and position reproducibility can be realized. Further, the through hole of the second fulcrum part is a long hole extending in the direction of the first fulcrum part, and the long hole of the third fulcrum part is set to a size that allows the adjustment screw to move in the direction of 360 °. Thus, the second fulcrum part can have a degree of freedom in one direction, the third fulcrum part can have a degree of freedom in two directions, and can follow the adjusting screw to determine the angle of the turn plate, By setting the turning adjustment mechanism to only one of the fulcrum portions and the constant pressure support mechanism to the remaining fulcrum portions, the turning angle adjustment in only one direction of the turning plate can be stably performed. Exhibits excellent effects such as
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of an optical element angle adjustment device for an optical apparatus according to the present invention.
FIG. 2 is a view taken in the direction of arrows AA in FIG.
FIG. 3 is a view taken in the direction of arrows BB in FIG. 1;
4 is a view in the direction of arrows CC in FIG. 3. FIG.
FIG. 5 is a partial cross-sectional view showing another embodiment of the present invention.
FIG. 6 is a schematic view showing an example of a laser oscillator.
FIGS. 7A and 7B show an example of a conventional angle adjusting device, in which FIG. 7A is a front view and FIG. 7B is a cut side view of FIG.
[Explanation of symbols]
4 Semi-reflective mirror (optical element)
16 Swash plate 17 Base plate 18 Constant pressure support mechanism 19, 20 Strain adjustment mechanism 21 Through holes 22a, 22b Conical recesses 23a, 23b Spherical bearing 24 Disc spring (compression spring)
25 Tightening bolt 27 Through hole 28a, 28b Conical recess 29a, 29b Spherical bearing 30 Through hole 35 Compression spring 38 Adjustment screw 40 Through hole 43 Shaft adjustment mechanism

Claims (3)

片面側に光学素子を取り付けた煽りプレートの反対側をベースプレートに向け対峙させて配置し、該両プレートの重なり部における上記光学素子を取り囲む三角形の各頂点位置に、第1支点部と第2支点部と第3支点部とを設定し、上記第1支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレートから圧縮ばね及び両球面軸受に締め付けボルトを挿通させて締付け固定してなる定圧支持機構を組み付け、又、上記第2支点部及び第3支点部には、煽りプレートに貫通孔を設けて、該貫通孔の両端側に円錐状凹部をそれぞれ形成し、該各円錐状凹部にセンター孔付きの球面軸受をそれぞれ係合させると共に、上記ベースプレート側球面軸受とベースプレートとの間に圧縮ばねを介装し、且つ上記ベースプレート、圧縮ばね及び両球面軸受に調整ねじを挿通させて、該調整ねじの操作で上記第1支点部の球面軸受部を支点に煽りプレートの煽り角度を調整できるようにしてなる煽り調整機構を組み付けた構成を有することを特徴とする光学機器の光学素子角度調整装置。The first fulcrum part and the second fulcrum are arranged at each vertex position of a triangle surrounding the optical element in the overlapping part of the two plates, with the opposite side of the turn plate with the optical element attached on one side facing the base plate. And a third fulcrum part, and the first fulcrum part is provided with a through hole in the turn plate, and conical recesses are formed on both end sides of the through hole, respectively. The spherical bearings with holes are engaged with each other, a compression spring is interposed between the base plate side spherical bearing and the base plate, and tightening bolts are inserted from the base plate to the compression spring and both spherical bearings to be fastened and fixed. In addition, the second fulcrum part and the third fulcrum part are provided with through holes in the turn plate, and conical recesses are formed on both end sides of the through holes, respectively. And a spherical bearing with a center hole is engaged with each conical recess, and a compression spring is interposed between the base plate side spherical bearing and the base plate, and the base plate, compression spring, and both spherical bearings are provided. And an adjustment screw is inserted, and a turning adjustment mechanism is provided in which the turning angle of the plate can be adjusted by turning the spherical bearing of the first fulcrum by the operation of the adjustment screw. An optical element angle adjustment device for optical equipment. 第2支点部の貫通孔を、第1支点部方向へ延びる長孔とし、
第3支点部の長孔を、調整ねじが360°の方向に動ける大きさに設定した請求項1記載の光学機器の光学素子角度調整装置。
The through hole of the second fulcrum part is a long hole extending in the direction of the first fulcrum part,
2. The optical element angle adjustment device for an optical apparatus according to claim 1, wherein the elongated hole of the third fulcrum portion is set to a size that allows the adjustment screw to move in the direction of 360 degrees.
第1支点部に定圧支持機構を組み付け、第2支点部と第3支点部に煽り調整機構を組み付けることに代えて、いずれか1つの支点部のみに煽り調整機構を組み付け、且つ残りの支点部に定圧支持機構を組み付けた請求項1記載の光学機器の光学素子角度調整装置。Instead of assembling the constant pressure support mechanism at the first fulcrum part and assembling the turning adjustment mechanism at the second fulcrum part and the third fulcrum part, the turning adjustment mechanism is assembled only at one of the fulcrum parts, and the remaining fulcrum parts 2. The optical element angle adjustment device for an optical apparatus according to claim 1, wherein a constant pressure support mechanism is assembled to the optical device.
JP18959899A 1999-07-02 1999-07-02 Optical element angle adjustment device for optical equipment Expired - Fee Related JP4306031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18959899A JP4306031B2 (en) 1999-07-02 1999-07-02 Optical element angle adjustment device for optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18959899A JP4306031B2 (en) 1999-07-02 1999-07-02 Optical element angle adjustment device for optical equipment

Publications (2)

Publication Number Publication Date
JP2001021790A JP2001021790A (en) 2001-01-26
JP4306031B2 true JP4306031B2 (en) 2009-07-29

Family

ID=16244002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18959899A Expired - Fee Related JP4306031B2 (en) 1999-07-02 1999-07-02 Optical element angle adjustment device for optical equipment

Country Status (1)

Country Link
JP (1) JP4306031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777587A (en) * 2015-04-20 2015-07-15 中国科学院长春光学精密机械与物理研究所 Primary mirror positioning and mounting mechanism

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244018A (en) * 2001-02-16 2002-08-28 Hitachi Electronics Eng Co Ltd Mechanism for adjusting distance and angle of mirror
CN100377232C (en) * 2004-12-01 2008-03-26 鸿富锦精密工业(深圳)有限公司 Optical element holder
JP5025298B2 (en) * 2007-03-28 2012-09-12 サイバーレーザー株式会社 Laser equipment
CN102854604B (en) * 2012-08-29 2014-11-19 中国科学院长春光学精密机械与物理研究所 Telescope primary mirror center radial positioning mechanism and assembly and adjustment method thereof
CN106383397B (en) * 2016-12-08 2018-09-14 中国科学院长春光学精密机械与物理研究所 Primary mirror installation and adjustment mechanism
CN114465077B (en) * 2022-04-14 2022-08-19 广东粤港澳大湾区硬科技创新研究院 Nonlinear crystal clamping device and installation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777587A (en) * 2015-04-20 2015-07-15 中国科学院长春光学精密机械与物理研究所 Primary mirror positioning and mounting mechanism
CN104777587B (en) * 2015-04-20 2017-07-14 中国科学院长春光学精密机械与物理研究所 A kind of primary mirror location and installation mechanism

Also Published As

Publication number Publication date
JP2001021790A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP2001059928A (en) Device for adjusting optical element angle of optical instrument
JPS60111788A (en) Laser processing equipment
JP4306031B2 (en) Optical element angle adjustment device for optical equipment
JP2006270106A (en) External cavity laser and its tuning method
US5400184A (en) Kinematic high bandwidth mirror mount
JP2004006641A (en) Laser diode collimator system
US4023891A (en) Adjustable mirror mount assembly
US8295322B2 (en) Method for forming a laser resonator so that optical components of the laser resonator are aligned
JP2862032B2 (en) Laser oscillation device
US20020085611A1 (en) Optical alignment apparatus with a beam splitter
CN116125740A (en) Adjusting mechanism of reflecting mirror and laser projection equipment
JP2022121864A (en) Tilt stage, optical device, and laser interferometer
JP2005215507A (en) Mirror holder
JP2001332789A (en) Optical resonator mirror holder
CN112630960A (en) Biaxial resonant scanning mirror
JP3767356B2 (en) Laser marking machine
JP4554825B2 (en) Focus adjustment device
JPH09299382A (en) Mirror adjustment mechanism for laser
JPH02229480A (en) Apparatus for regulating angle of partial reflecting mirror
JP3415269B2 (en) Grating positioning device
JPS63127218A (en) Direction adjusting device for light beam changing mirror
JP2593056Y2 (en) Mirror support device
JPH06224498A (en) Solid-state laser
JPH02109383A (en) Gas laser oscillator
JP2007035960A (en) Laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees